Cell Reports, Volume 41

Supplemental information

tRNA methylation resolves codon usage bias

at the limit of cell viability

Isao Masuda, Yuka Yamaki, Rajesh Detroja, Somnath Tagore, Henry Moore, Sunita Maharjan, Yuko Nakano, Thomas Christian, Ryuma Matsubara, Todd M. Lowe, Milana Frenkel-Morgenstern, and Ya-Ming Hou

Figure S1 (Related to Figure 1). The cmo⁵U34 modification expands the decoding capacity using various wobble base-pairing structures.

(A) Chemical structures of cmo⁵U, mcmo⁵U, and ncm⁵U. (B) Expanded base pairings of cmo⁵U with A, G, C, and U as observed in crystal structures (Weixlbaumer et al., 2007). The hydrogen bonds are shown by dotted lines.

Figure S2 (Related to Figures 1 and 2). The isolated *proS* suppressor mutants are viable without *trmD* but less fit than the WT expressing *trmD*.

(A) Absence of the pKD46-*EctrmD* maintenance plasmid from suppressors with the *trmD*-KO allele. Suppressors were analyzed for the 5 colonies isolated from MG1655 and the 4 colonies isolated from BW25113. Absence of the plasmid was analyzed by PCR using primers specific to pKD46-*EctrmD*. The WT sample was isolated from the parental strain containing pKD46-*EctrmD*. (B) Mapping of *proS* suppressor mutations to the structure of *E. faecalis proS* enzyme as in Figure 1D. The images are blown up for Cluster I mutations near the monomer-monomer interphase (left) and for Clusters II and III mutations near the proline-binding pocket adjacent to the proof-reading domain (right). (C) A multi-sequence alignment of the ProRS enzyme as in Figure 1E, with an expanded set of species. (D) Absence of TrmD in the reconstructed *proS* suppressors in Western blots. Whole-cell lysates of early-log phase cultures were run on a 10% SDS-PAGE gel. Proteins transferred to a PVDF membrane were probed by anti-TrmD and anti-CysRS antibodies. (E) The *proS*-A231E (-) suppressor is out-competed by the WT (+) strain in a cell fitness assay as in Figure 2C. The bar graph shows the relative abundance of the two strains in a 1:1 mixture over the time course of 24 h.

Figure S3 (Related to Figure 3). Acid-urea denaturing gel analysis of charged and uncharged Pro(UGG).

(A) Northern blot analysis showing that the probe for *E. coli* Pro(UGG) is specific to the tRNA and does not hybridize to the other two isoacceptors Pro(CGG) and Pro(GGG). Each tRNA in this analysis is an unmodified transcript, run on a 12% PAGE/7M urea gel, and probed with the [³²P]-labeled probe. (B) Acid-urea gel analysis of the *proS* suppressors S123R (–) and T199S (–), showing prolyl-aminoacylation level of 50% and 59%, respectively. An uncharged transcript of Pro(UGG) is shown in lane 1, and a positive control sample from an MG1655 *trmD-KO* strain expressing a plasmid-borne *trmD* grown in the Ara (+) condition and a negative control collected in the Ara (–) condition are shown in lanes 2 and 3. The sample from the WT MG1655 is shown in lane 4.

A Pro(UGG)

ProRS	State of G37	<i>Κ_m</i> (μM)	k _{cat} (s ⁻¹)	κ _{cat} / Κ _m (μΜ ⁻¹ s ⁻¹)	Fold change in $k_{\text{cat}} / K_{\text{m}}$ Relative to G37-state
	m¹G37	0.96 ± 0.15	4.92 ± 0.78	5.14 ± 0.09	20.7
VVI	G37	11.8 ± 2.24	2.91 ± 1.71	0.25 ± 0.12	1.0
D98N	m1G37	0.29 ± 0.08	0.04 ± 0.003	0.13 ± 0.03	2.9
	G37	1.59 ± 0.41	0.07 ± 0.005	0.05 ± 0.1	1.0
T400	m¹G37	0.61 ± 0.19	0.02 ± 0.007	0.03 ± 0.003	3.0
11991	G37	4.50 ± 1.90	0.05 ± 0.03	0.01 ± 0.006	1.0
N232S	m1G37	0.25 ± 0.04	0.03 ± 0.01	0.13 ± 0.05	2.5
	G37	1.71 ± 0.88	0.07 ± 0.005	0.05 ± 0.03	1.0

B Pro(GGG)

ProRS	State of G37	<i>Κ_m</i> (μΜ)	k _{cat} (s ⁻¹)	κ _{cat} / Κ _m (μΜ ⁻¹ s ⁻¹)	Fold change in $k_{\text{cat}} / K_{\text{m}}$ Relative to G37-state
wт	m¹G37	0.70 ± 0.25	1.97 ± 0.62	3.12 ± 1.14	20.5
	G37	9.10 ± 2.97	1.28 ± 0.19	0.15 ± 0.03	1.0
D98N	m1G37	0.26 ± 0.08	0.04 ± 0.007	0.14 ± 0.04	4.4
	G37	2.15 ± 0.47	0.07 ± 0.007	0.03 ± 0.008	1.0

C Pro(CGG)

ProRS	State of G37	<i>Κ</i> _m (μΜ)	К _{саt} (S ⁻¹)	κ _{cat} / Κ _m (μΜ ⁻¹ s ⁻¹)	Fold change in <i>k_{cat} / K_m</i> Relative to G37-state
WT	m¹G37	8.33 ± 3.27	3.59 ± 1.15	0.45 ± 0.14	18.8
	G37	14.8 ± 1.27	0.35 ± 0.07	0.02 ± 0.005	1.0
D98N	m¹G37	0.53 ± 0.29	0.02 ± 0.003	0.07 ± 0.05	3.4
	G37	4.71 ± 0.47	0.10 ± 0.03	0.02 ± 0.006	1.0

Figure S4 (Related to Figure 3). Kinetic parameters of prolyl-aminoacylation.

(A) Kinetic parameters of prolyl-aminoacylation of Pro(UGG) shown in Figure 3B. For each enzyme, K_m (μ M) for the tRNA substrate, k_{cat} (s⁻¹), k_{cat}/K_m (μ M⁻¹s⁻¹), and the fold-change of k_{cat}/K_m of the G37-state relative to the m¹G37-state are shown. (B) Kinetic parameters of prolyl-aminoacylation of Pro(GGG) shown in Figure 3C. (C) Kinetic parameters of prolyl-aminoacylation of Pro(CGG) shown in Figure 3D.

Figure S5 (Related to Figure 4). Requirement of Pro(GGG) for cell viability of *proS*-T199I and *proS*-N232S mutants in m¹G37– condition.

Pro(CGG) or Pro(GGG) was removed from *proS*-T199I and *proS*-N232S mutants lacking *trmD* and cells were grown in m¹G37+ or m¹G37- condition as in Figure 4C. No growth was observed when both m¹G37 and Pro(GGG) were absent.

Figure S6 (Related to Figure 5). High frequency of CC[C/U] codons in *E. coli csp* genes.

(A) The frequencies of CC[C/U] codons are shown for selected *csp* genes, showing higher frequencies than the average and median (0.31 and 0.29, respectively) for most of these genes. (B) Rescue of cold sensitivity by expression of Pro(GGG) in *proS*-D98N and *proS*-A231E suppressors as in Figure 5D. The *proS*-A231E mutant was incubated at 30°C for 2 overnights due to a slower growth phenotype.

Figure S7 (Related to Figure 6). Co-occurrence of Pro(GGG) and Pro(CGG) across bacterial species.

Heat-map table showing the number of co-occurrence of Pro(GGG) and Pro(CGG) across all bacterial species that are available in GtRNAdb. Counts are species within GtRNAdb beyond the curated set used in Figure 6A. The greatest majority of bacterial species have both Pro(GGG) and Pro(CGG), followed by a majority lacking both tRNAs, whereas few have Pro(CGG) but lack Pro(GGG).

	Masuda <i>et al</i> . (2022)		Clifton <i>et al.</i> (2021)										
Chromosomal trmD		KO		Y86*	R154A	S165L	G117N	R154A	S165L	Y86*	Y115A	G141A	D169A
Mutation description	Con	nplete del	etion	Y86 changed to a stop codon	Activity largely abolished	Colony size reduced by 90%	Colony size reduced by 90%	Activity largely abolished	Colony size reduced by 90%	Y86 changes to a stop codon	Catalytically compromised	Catalytically compromised	Activity largely abolished
Level of growth defect		Severe			Severe		Intermediate	Sev	/ere	Severe	Little	Little	Severe
Growth condition		LB, 43°C			LB, 37°C								
Days of cell culture		2 to 3			9		15	2	2	30		_	_
<i>proS</i> mutations	D98N T199I A231E	G107C T199S N232S	S123R Q211L A236E	A231E	E19K A36V Y89N G107C G200S A231E E514V	D98N G200S G200A A231E L235Q M441I		E19K G200S <mark>A231E</mark> E514V	G200S E514K	V195L G200A A231E			
<i>trmD</i> coding region mutation (Yes or No)		N.A.		Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes (A169E)
<i>rimM-trmD</i> intergenic region mutation (Yes or No)		N.A.				Yes	Yes		Yes				
tRNA ^{Arg} gene mutations								argQ argW argY argZ	argV	argQ argV argY argZ			
						acrD fecA		spoT yfbM-yfbN intergenic		<i>insH1</i> intergenic <i>IrhA-alaA</i> intergenic			
Other gene mutations including intergenic region						cfa		<i>yifK-argX</i> intergenic		rpoC			
						nirB ulaG				spoT yifK-argX intergenic vtfK			

Table S1 (Related to Figure 1). Comparison between this study by Masuda et al. and the study by Clifton et al (Clifton et al., 2021).

Shown in red are *proS* suppressor mutations in common between the two studies.

Table S2 (Related to STAR Methods). Primers used in this study.

Category	Sequence (5'-3')	Purpose
Gene knockout		
E. coli proK-KO	AGGGCGTATCTGCGCAGTAAGATGCGCCCCGCATT GTGTAGGCTGGAGCTGCTTC AAAAAGCCTGCTCGTTGAGCAGGCTTTTCGAATTAT	Forward to amplify <i>Kan</i> from pKD4 with homologous extension Reverse to amplify <i>Kan</i> from pKD4
	GGGAATTAGCCATGGTCC	with homologous extension
CRISPR mutation		
	GIGCICAGIAICICIAICACIGA	Reverse to amplify pKDsgRNA
	CTGCTGCGTTTTGTTGACCGGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for D98N
	TGAGTTGGGCCGAGTACGAAGTTTTAGAGCTAGAA ATAGCAAG	Forward to amplify pKDsgRNA for G107C
	AGCTAAGCTCGTTACGAATCGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for creating a new PAM site to make S123R
	TGTAAGAGCTAAGCTCGTTAGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for S123R
	CAAGCCGACACCGGTTCTATGTTTTAGAGCTAGAA ATAGCAAG	Forward to amplify pKDsgRNA for T199I and T199S
	CTCTCACGAATTCCAGGTGCGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for Q211L
	CTATGCAGCGAACATTGAACGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for A231E and N232S
	CTATGCAGCGAACATTGAACGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA for creating a new PAM site for making A236E
	AGCTTCTGCCAGTTCAATATGTTTTAGAGCTAGAAA TAGCAAG	Forward to amplify pKDsgRNA or A236E
E. coli proS	GGGAACAGTACGGTCCGGAACTGCTGCGTTTTGTG AATCGTGGCGAGCGTCCGTTCGTACTCGGCCCAAC TCATGAAGAA	Mutation donor for making D98N
	CTGCGTTTTGTTGACCGTGGCGAGCGTCCGTTCGT ACTGTGTCCAACTCATGAAGAAGTTATCACTGACCT GATTCGTAA	Mutation donor for making G107C
	GTACTCGGCCCAACTCATGAAGAAGTTATCACTGA CCTTATCCGTAACGAGCTTAGCTCTTACAAACAGCT GCCGCTGAA	Mutation donor for making a new PAM site for making S123R
	CTCATGAAGAAGTTATCACTGACCTTATCCGTAACG AGTTGCGCTCTTACAAACAGCTGCCGCTGAACTTC TATCAGATC	Mutation donor for making S123R
	CCGCATGGGGCTGGATTTCCGCGCCGTACAAGCC GATATTGGTTCTATCGGCGGCAGCGCCTCTCACGA ATTCCAGGTGC	Mutation donor for making T199I
	CCGCATGGGGCTGGATTTCCGCGCCGTACAAGCC GATTCTGGTTCTATCGGCGGCAGCGCCTCTCACGA ATTCCAGGTGC	Mutation donor for making T199S
	CAAGCCGACACCGGTTCTATCGGCGGCAGCGCCT CTCACGAATTTCTTGTGCTGGCGCAGAGCGGTGAA GACGATGTGGT	Mutation donor for making Q211L
	GACGATGTGGTCTTCTCCGACACCTCTGACTATGC AGAAAATATTGAACTGGCAGAAGCTATCGCGCCGA AAGAACCGCG	Mutation donor for making A231E

	GACGATGTGGTCTTCTCCGACACCTCTGACTATGC AGCCAGTATTGAACTGGCAGAAGCTATCGCGCCGA AAGAACCGCG	Mutation donor for making N232S
	GACGATGTGGTCTTCTCCGACACCTCTGACTATGC AGCCAATATTGAACTGGCAGAAGCTATCGCGCCGA AAGAACCGCG	Mutation donor for making a new PAM site for making A236E
	TCTCCGACACCTCTGACTATGCAGCCAATATTGAAT TAGAAGAAGCTATCGCGCCGAAAGAACCGCGCGCT GCTGCTACC	Mutation donor for making A236E
Probe for Northern blotting		
<i>E. coli</i> Pro(UGG) tRNA	CCAAACCAGTTGCGCTACCA	Annealing to the tRNA region from the D-loop to the anticodon stem- loop
Plasmid construction		
	GCCATTCTCGAGAATGGCGATGACGCATCCTCAC	Forward to amplify pKD46 with an Xhol site
pKD46-EctimD	AAGCGTCAGGTAGGATCCGCTAATCTTATGG	Reverse to amplify pKD46 with a BamHI site
pET22b- <i>EcproS</i> mutant	AAGGAGATATACATATGCGTACTAGCCAATACCTGC TCTC	Forward to amplify <i>proS</i> with an Ndel site
	GGTGGTGGTGCTCGAGGCCTTTAATCTGTTTCACC AGATAT	Reverse to amplify <i>proS</i> with an Xhol site
	TCACCGGAATTCCGGTGATTGGCGCAGCCTGGTAG CGCACTTCGTTCGGGACGAAG	Forward to construct <i>proK</i> with EcoRI site
prrzzo-o-pror	CGACCACTGCAGTGGTCGGTGATAGAGGATTCGAA CCTCCGACCCCTTCGTCCCGAACGAAG	Reverse to construct <i>proK</i> with Pstl site
	AAGCTTGGCTGTTTTGGCGGATG	Forward to amplify the pKK223-3 backbone
	GAATTCTGTTTCCTGTGTGAAATTGTTATC	Reverse to amplify the pKK223-3 backbone
pKK223-3-N-luc	CACACAGGAAACAGAATTCATGCCCGGTGTCTTCA CACTCGAAGATTTCG	Forward to amplify nLuc with a CCC at the second codon position
	CACACAGGAAACAGAATTCATGCCCCGGTGTCTTC ACACTCGAAGATTTCG	Forward to amplify nLuc with a CCC- C codon at the second position
	CGCCAAAACAGCCAAGCTTTTACGCCAGAATGCGT TCGCACAGC	Reverse to amplify nLuc
Confirmation of plasmid curing		
	CATATTGCATCAGACATTGCCG	Forward to amplify a partial fragment of pKD46- <i>EctrmD</i>
pKD46-EctrmD	CTATGTGCCATCTCGATACTCG	Reverse to amplify a partial fragment of pKD46- <i>EctrmD</i>