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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

This manuscript proposes TAPE, a method consisting of a deep autoencoder to improve cell 
deconvolution. They propose to improve over Scaden, an ensemble of deep neural networks for cell 
deconvolution. The method uses reconstruction loss on real bulk samples and mean absolute error on 

simulated data to learn cellular fractions. The authors design the training paradigm to learn in two 
steps and their intuition is to adapt to the tissue being tested on. Additionally, the method is extended 

to predict cell-type specific gene profiles (csGEPs) both per-group/overall and per-sample/high-
resolution. Comparisons with previous deconvolution approaches, CibersortX, RNAsieve and DWLS 

are given on simulated and real RNAseq datasets. 

On the task of estimating cell proportions, TAPE generally seems to perform better than the methods 

compared, however, there are some ambiguities and experiments where more information is 
necessary. On the task of estimating cell-type specific gene expression profiles, the evidence in 

general seems weak. 

The manuscript is well-written and easy to follow. 

Major comments: 

To mimic real data, the authors mention that the simulated data includes gaussian noise and 
dropouts, however, no further information is given. It is necessary to know the levels of that noise 

considered. 

The evidence provided to support the improvement in TAPE over existing algorithms is given over all 
cell-types present in a dataset. While this is a good comparison on evaluating a method overall, it 

does not provide any information about how TAPE performs on different cell-types. What happens if 
certain cell types are missing from the bulk or single cell data? 

Since TAPE uses reconstruction loss on real bulk to aid in learning, how does the sample size of the 
tissue bulk data affect the performance of TAPE? 

It is unclear how the method behaves on cell-types that are highly related. Any evidence supporting 
that will be helpful. Similarly, how does TAPE perform on cell fractions below 5% and 2%? Once of 

the main unresolved issues is good performance on rare cell types. 

The authors note that concordance between estimated relative gene expression of monocytes and 
corresponding ground-truth is not good. The source of this error is assumed to be individual and 
platform differences. Is it possible to provide more experiments to confirm that, possibly adding a new 

experiment with known ground-truth? 

A comparison with existing methods that can estimate csGEPs is necessary, in particular BLADE [1] 
and CibersortX, wherever the requirement of meeting the criteria of having a certain number of bulk 

samples is fulfilled. 

Minor comments and suggestions: 

[1] Andrade Barbosa, B., van Asten, S.D., Oh, J.W. et al. Bayesian log-normal deconvolution for 

enhanced in silico microdissection of bulk gene expression data. Nat Commun 12, 6106 (2021). 
https://doi.org/10.1038/s41467-021-26328-2 



Reviewer #2 (Remarks to the Author): 

Chen et al developed a deep learning method TAPE (Tissue-AdaPtive autoEncoder) for precise 
deconvolution of bulk RNA-seq data in a short time. The authors claimed that TAPE can predict cell-

type-specific gene expression tissue-adaptively in a fast and sensitive way, and TAPE is capable to 
provide biological significance when analyzing clinical data. 

The deconvolution of bulk RNA-seq data for in-depth analysis is of great importance in biological 
research, especially tools that can be applied to analyze the huge amount of the existing clinical bulk 

RNA-seq data in a precise and fast way. The strength of TAPE relies on the deep learning algorithm 
and excellent performance (if truly as the authors claimed) compare with other state-of-the-art 

methods. The description of TAPE’s capability to analyze clinical bulk RNA-seq profiles with biological 
significance is the shortcoming of this manuscript in its current stage. Overall, I found this study 
somewhat interesting, but premature and needs to be substantially revised before considering for 

publication. 
Specific comments are as follows: 

1. The authors apparently acknowledged that there are a series of methods like CIBERSORT, MuSiC, 
CIBERSORTx, Bisque, DWLS, RNA-Sieve and etc. that have been developed to deconvolute bulk 

RNA-seq data, but why only a subset of these tools were included in the benchmark comparison? The 
authors claimed “we compared the performance of TAPE to that of four representative deconvolution 

methods (published on famous journals with high performance)”. It looks to me that both MuSic and 
Bisque were published in Nature Communications, which I believe is a very decent journal with high 
reputation, but why did the authors exclude them? 

2. When performing benchmark comparison, it is critical to compare the performance of every method 

in its optimized state, otherwise one has reasons to suspect that the advantages of TAPE over the 
other existing tools may not be caused by the algorithm itself, but could be caused by the author's 

incorrect use of the other algorithms, such as not entering the correct dataset (for instance, a pre-
selected cell-type-specific gene expression profile) according to the algorithm tutorial, not optimize the 
options so that each method is best performed and etc. Without these details, I can hardly be 

convinced that TAPE is the best performed method. As far as I know, CIBERSORTx is a very good 
performed tool, but way poorly performed in the authors benchmark analysis (Fig 2a). 

3. Following the above question, could it be possible that TAPE works better in a certain dataset but 
not the others. Since there are so many published datasets with paired single cell profiles as 

references, the authors should compare TAPE on a much larger data cohort, where 5 datasets is way 
below the expectation to prove the advantages of TAPE in cell type deconvolution with statistical 

significance. 

4. I feel it is a bit over claim of TAPE’s advantage to delineate the biological significance of the clinical 

data, by simply showing the tendency of certain cell types. Specifically, the authors claimed that “only 
TAPE could correctly predict proportions of neurons or microglia cells ranging from 0.32-0.55 and 

0.06-0.12 respectively” (Fig. 3a), there are multiple cell types in these studies, and how about the 
prediction (of cell proportions) of other cell types? Are they all correctly predicted? Are there any 

experimental evidences as gold standard to support these predictions? Similarly, the prediction of 
MLR tendency (Fig. 3b), where the authors show only the “monocytes fraction”, I wonder how about 
the other cell types, such as CD4+ T cell, CD8+ T cell, or B cell? Does TAPE also correctly predict the 

proportion and changes of these cell types in the mild, moderate and serious (should be severe) 
COVID-19 patient? Fig. 3c has the same problem. The logic here is, if TAPE, but no other tools 

(based on the assumption that these tools were corrected used), is capable of correctly predict the 
proportion and changes of cell subtypes, it should work for most (if not all) cell subtypes. By showing 
only one or two, and in this case not even a consistent cell type, in Fig. 3 is misleading, since without 

detailed analysis with statistical power, these results can simply be “cherry picking”. 

5. The capability of TAPE to “predict cell-type-specific gene expression at high-resolution” is what I 



believe a unique advantage of TAPE over the other methods, however results showing in Fig. 4 
greatly limited my overall enthusiasm. The authors predicted gene RAB11FIP5 as a DEG in NK cells 

(Fig. 4e), again, this is only one gene. What about the other known DEGs? What percentage and to 
what precision can TAPE predict the expressions of the known DEGs? Predict one gene within 

expectation can be shown as an example, but is way less enough to prove that TAPE is able to 
“predict cell-type-specific gene expression at high-resolution”. The authors should set up a gold 
standard where ground truth is known, and then evaluate the predictive power of TAPE on whatever 

indexes the authors interested to measure. 

6. As we know, major cell types, such and T cells, B cells and etc. can be further divided into cell 
subtypes, I am curious to what extent can TAPE reach to, i.e. what is TAPE’s limitation to predict the 

gene expression in smaller cell subtype, which can be referred to “high-resolution”. 

7. Fig. 5 is yet another very rough and premature result. Without solid evidence of the predictive 

power of TAPE, any TAPE prediction with biological implications can be wrong. Even if predictions 
from TAPE is right, what are the enriched pathways shown in Fig. 5a? What does this mean 

biologically (related to virus infection) if these pathways are enriched? How could people know 
whether these predictions were right? Are there any positive or negative controls? Without these 
detailed information, how can I be convinced? 

8. I am curious, if TAPE is applied to analyze clinical bulk RNA-seq data, does the model needs to be 

re-trained? In other words, if the authors trained TAPE with normal bulk/single-cell RNA-seq data, can 
TAPE be applied to predict the proportion of cell types or the expression of genes in disease state? 
Because I suspect genes are usually differentially expressed in disease samples, even in the same 

cell subtypes, and wonder if the model needs to be re-trained based on disease data. If “Yes”, then 
the application of TAPE to “enable and accelerate the precise analysis of high-throughput clinical data 

in a wide range” will be limited. 

9. Fig. 4b is problematic and needs to be further clarified. The author claimed “Interestingly, 
comparing the relative NRGN expression value in bulk GEP, single-cell GEPs, and predicted GEPs 
(Fig 4b), we found that TAPE can successfully predict a high expression value of NRGN in neurons 

while a low expression value of NRGN in endothelial cells.” I am not able to draw this conclusion by 
looking at this figure. Besides, why OPC, Oligodendrocytes and Unknown have either the blue or red 

bar, instead of both? What does “unknown” mean in this figure? Fig. 4e, very seldom people will use –
log10(P-value) in a box-plot to show the significance, and it should not be p=xx in the box-plot, 
otherwise p=0.00 is considered as “very significant”.



We are very grateful to the reviewers for their thoughtful and thorough comments, which
definitely helped us improve our paper significantly. We have revised the manuscript
following all the comments. Below please find the point-by-point response to all the
reviewers’ comments.

------------------------------------------------------
Reviewer #1.
This manuscript proposes TAPE, a method consisting of a deep autoencoder to improve cell
deconvolution. They propose to improve over Scaden, an ensemble of deep neural networks
for cell deconvolution. The method uses reconstruction loss on real bulk samples and mean
absolute error on simulated data to learn cellular fractions. The authors design the training
paradigm to learn in two steps and their intuition is to adapt to the tissue being tested on.
Additionally, the method is extended to predict cell-type specific gene profiles (csGEPs) both
per-group/overall and per-sample/high-resolution. Comparisons with previous deconvolution
approaches, CibersortX, RNAsieve and DWLS are given on simulated and real RNAseq
datasets.

On the task of estimating cell proportions, TAPE generally seems to perform better than the
methods compared, however, there are some ambiguities and experiments where more
information is necessary. On the task of estimating cell-type specific gene expression
profiles, the evidence in general seems weak.

The manuscript is well-written and easy to follow.

Answer:
Thank you very much for the excellent summary and the positive comments! As you have
mentioned, our tool is competitive with the existing state-of-the-art methods, and it can serve
as a useful tool for the community to perform precise deconvolution in a short time. In this
revision, we have further improved the manuscript based on your comments.
1. For your concerns about the ambiguous experiments of deconvolution, we re-designed
the pseudo-bulk experiments thoroughly based on your suggestions. Specifically, we present
all our results about deconvolution using box plots for all the cell types rather than the overall
metrics for each dataset to provide more details about TAPE’s performance.
2. In addition, following your suggestions, we add more experiments and detailed analyses
about cell-type-specific gene expression inference to benchmark TAPE more thoroughly.
We truly appreciated your insightful suggestions and comments, which have indeed helped
us improve the quality of our manuscript significantly! Below is the point-by-point response to
your suggestions and comments.

(1) To mimic real data, the authors mention that the simulated data includes gaussian noise
and dropouts, however, no further information is given. It is necessary to know the levels of
that noise considered.

Answer: Thank you very much for pointing that out! Yes, you are right. More detailed
information should be provided to make the manuscript more readable.



As we know, the relationship between the real bulk data and single-cell data is very complex
and highly non-linear. Thus, it is almost impossible to truly simulate the real bulk data by
simply adding many single-cell profiles.
Previously, when generating the pseudo-bulk data, people usually only considered the linear
combination of single-cell profiles without adding noises. The task will be too simple and far
from the real case.
Here, we add noise to the simulated data because we want to make this pseudo-bulk test
more difficult and closer to the real cases, instead of toy simulations. If we simply use the
summation of single-cell profiles as pseudo-bulk data and deconvolve it using single-cell
profiles as the reference, this task would probably degenerate into a linear regression task.
To avoid the trivial situation, we add artificial noise to make this pseudo-bulk deconvolution
task as difficult as real ones.
In this paper, we add Gaussian noise and dropouts. Specifically, We used 0.01 times random
value generated from a Gaussian distribution with gene expression mean and variance for
each gene as the Gaussian noise and randomly masked 20% genes for each pseudo-bulk
sample. The reason why we choose these two kinds of noises is that both of them can
represent the real-world sequencing noises. Gaussian noise is very common in different
sequencing technologies and dropout is very common in single-cell RNA-seq data. Adding
dropout into the pseudo-bulk RNA samples means that we increase the dropout rate in
single-cell profiles since the pseudo-bulk RNA-seq data is the sum of many single-cell
profiles. For example, we check the pseudo-bulk samples, it usually contains above 20,000
genes but 5,000 of them are zero since they are zero in the single-cell data. After adding
dropout genes, it contains 8,000 zero-value genes. So, this noise means that we simulate a
worse scenario where the single-cell profiles contain more dropouts. We have added the
details into the revision accordingly, following your suggestions:

(section 2.2) “To avoid this task degenerating into a simple linear regression task, we added
Gaussian noise (0.01 times random value generated from a Gaussian distribution with gene
expression mean and variance for each gene) and randomly masked 20% genes for each
pseudo-bulk sample.”

(2) The evidence provided to support the improvement in TAPE over existing algorithms is
given over all cell-types present in a dataset. While this is a good comparison on evaluating
a method overall, it does not provide any information about how TAPE performs on different
cell-types. What happens if certain cell types are missing from the bulk or single cell data?

Answer:
Thanks for pointing out that and asking the related question!. We value your suggestions
and have revised our manuscripts following your comments. Your concerns can be divided
into three parts. Please see the detailed reply for each one below:

a) it does not provide any information about how TAPE performs on different cell-types

We noticed that the performance may vary among different cell types, and the overall
indices can not provide detailed information. So, following your question, in this revision, we
measure the performance for each cell type and use box plots to display the performance.
Due to the limited space, we only show the detailed performance of each cell type in the



Monaco dataset here in the table below. For other datasets, please refer to the box plots in
Figure R1-4.

Table R1. Detailed performance on each cell type, source data of Figure R1 “monaco”
Dataset CellType Method CCC L1error

monaco Bcells TAPE 0.774372 0.016203

monaco CD4Tcells TAPE 0.484331 0.035803

monaco CD8Tcells TAPE 0.45154 0.037436

monaco Monocytes TAPE 0.320453 0.087987

monaco NK TAPE 0.290329 0.035385

monaco Bcells Scaden 0.90498 0.011847

monaco CD4Tcells Scaden 0.242023 0.071814

monaco CD8Tcells Scaden 0.455439 0.044727

monaco Monocytes Scaden 0.19598 0.167292

monaco NK Scaden 0.410949 0.03824

monaco Bcells RNAsieve 0.108525 0.052283

monaco CD4Tcells RNAsieve NA　 0.281521

monaco CD8Tcells RNAsieve 0.047161 0.161824

monaco Monocytes RNAsieve 0.336347 0.090341

monaco NK RNAsieve 0.004297 0.388941

monaco Bcells MuSiC NA　 0.106905

monaco CD4Tcells MuSiC NA　 0.281521

monaco CD8Tcells MuSiC NA　 0.213033

monaco Monocytes MuSiC 0.535987 0.06806

monaco NK MuSiC 0.003785 0.665789

monaco Bcells DWLS 0.16424 0.063149

monaco CD4Tcells DWLS 0.214363 0.144211

monaco CD8Tcells DWLS 0.445641 0.07766

monaco Monocytes DWLS 0.185611 0.200044

monaco NK DWLS 0.347201 0.049529

monaco Bcells CIBERSORTx 0.120926 0.068475

monaco CD4Tcells CIBERSORTx 0.550437 0.051943

monaco CD8Tcells CIBERSORTx 0.407114 0.075094

monaco Monocytes CIBERSORTx 0.675171 0.065061

monaco NK CIBERSORTx 0.244958 0.060843

monaco Bcells Bisque 0.169557 0.094422

monaco CD4Tcells Bisque 0.059738 0.303526

monaco CD8Tcells Bisque -0.072055 0.218607

monaco Monocytes Bisque 0.349341 0.146178

monaco NK Bisque -0.093793 0.225798

Despite that the performance may vary across different cell types, TAPE is the best
measured by MAE. In addition, TAPE shows a relatively small variance of CCC, which



indicates TAPE’s performance for all cell types is similar and robust, although it is not always
the best method measured by CCC across different cell types. We replaced the original
performance figure (Figure 2a in the original manuscript) with new figures (Figure R1 c,d.
Figure R2 R3 R4) in the revision, as shown below.

Figure R1. Figure 2c & d in the manuscript



Figure R2. Appendix Figure 1 in the manuscript

Figure R3.  Appendix Figure 2 in the manuscript



Figure R4. Appendix Figure 3 in the manuscript

b) What happens if certain cell types are missing from the bulk data?

That’s a very insightful question! If a certain type of cell is missing in the bulk or
single-cell data, the case would be more difficult than the normal deconvolution. We also
noticed that and tested the case. When certain cell types are missing from the bulk data,
whose ground truth value is considered as 0, usually, the predicted values of these cell types
from TAPE will be small values close to 0. Following the setting of Scaden (Menden et al.
Science Advances, 2020), we excluded the missing cell types and scaled the rest cell types
(divide by the sum of the rest cell types) to calculate CCC values and MAE values with
ground truth. For instance, the ROSMAP dataset only contains five cell types (Astrocytes,
Endothelial, Microglia, Neurons, and Oligodendrocytes), but its human brain single-cell
RNA-seq reference contains seven defined cell types (Astrocytes, Endothelial, ExNeurons,
InNeurons, Microglia, OPC and Oligodendrocytes). When evaluating the performance of all
the methods, we excluded OPC, combined ExNeurons with InNeurons to represent
“Neurons”, and scaled the results for the performance evaluation. This situation is also
suitable for the mouse brain referenced deconvolution of the ROSMAP dataset. Following
your question, to make the manuscript clearer, we have added how we process mouse brain
referenced deconvolution in our manuscript:

(section 2.3) “For the “missing cell types” scenario, the ROSMAP dataset using mouse brain
as reference is a good demonstration. The single-cell dataset of mouse brain has more cell
types than the measured bulk ROSMAP dataset (Figure 2a). So, we directly filtered out extra
cell types predicted by these methods and re-scaled the predicted fraction to make the
summation is 1.”

c) What happens if certain cell types are missing from the single-cell data?

You have pointed out a very practical question. Usually, obtaining single-cell data is
more expensive than obtaining bulk data. But fortunately, platforms such as Human Cell
Atlas (HCA), Single Cell Portal, and so on provide easy access to many publicly available
single-cell datasets. On the other hand, this task can be difficult, and all the existing methods
did not even consider it.

We find this situation interesting and explore more in the added experiments.
Intuitively, we expect that the algorithm should transfer one cell type’s proportion to its similar



cell types if this kind of cell is missing from the single-cell profiles. To test this situation, we
design a new scenario called “similar transferring” in the pseudo-bulk test. This scenario is
tested on the Marrow single-cell data from Tabular Muris as we mentioned before. In Marrow
dataset, it contains two similar B cells: late-pro B cell and immature B cell. We delete one
kind of B cell from the single-cell profiles and use them as a reference to deconvolve
pseudo-bulk data, which includes both kinds of B cells. The results show that TAPE can
transfer one kind of B cell’s weight to another if it is missing from the reference (Figure R5,
“missing transferring”).

Figure R5.  Figure 2c  in the manuscript

We have added all the descriptions about our re-designed pseudo-bulk test into
section 2.2 of the revision as the following:

“Since a real bulk dataset with its corresponding cell type fractions assessed by
traditional experimental methods (e.g., flow cytometry) is rare, and it is hard to analyze how
the batch effect would affect deconvolution performance, it is necessary to conduct a
pseudo-bulk test. The pseudo-bulk data are generated in silico from single-cell GEPs with
ground truth (pre-defined cell type proportions). That is, pseudo-bulk data are the summation
of many single-cell profiles. To avoid this task degenerating into a simple linear regression
task, we added Gaussian noise (0.01 times random value generated from a Gaussian
distribution with gene expression mean and variance for each gene) and randomly masked
20% genes for each pseudo-bulk sample. The single-cell profiles are from Tabular Muris
[17], a cell atlas for mouse with two different sequencing techniques, 10X-seq (UMI-based
method) and Smart-seq (counts-based method). This cell atlas is a good resource for us to
simulate the batch effect. Thus, in the following experiments, we used one protocol’s
single-cell data as the reference to predict another protocol’s pseudo-bulk data. Here we
only selected three tissues/organs from Tabular Muris because they have the largest number
of shared cell types across different protocols in all the tissues/organs. Specifically, “Limb
Muscle” has 6 cell types, “Marrow” has 7 cell types, and “Lung” has 9 cell types. To fully
exploit the advantages of pseudo-bulk data, we defined three deconvolution scenarios:
“normal”, “rare”, and “similar”. For the “normal” scenario, all the cell type proportions are
randomly generated, while in the “rare” scenario, some cell types’ fractions are set below



3%. To be specific, skeletal muscle satellite cells and endothelial cells are set to be rare cell
types in “Limb Muscle”; monocyte and hematopoietic precursor cells are set to be rare cell
types in “Marrow”; T cells, natural killer cells and ciliated columnar cells of tracheobronchial
trees are set to be rare cell types in “Lung”. In the “similar” task, we only used “Marrow”
because there are two similar subtypes of B cell in it: “late-pro B cell” and “immature B cell”.
Here, we expect that if we delete one kind of B cell from the single-cell reference, the
predicted fraction of the other type of B cell would still be similar to the summation of the two
kinds of B cell. That is, we expect the method could correctly transfer the weight of one kind
of B cell to another.”

Regarding the real dataset, as we mentioned in the Method part, section 4.1, second
paragraph:

“More specifically, the unknown fraction was calculated by one minus the sum of
known proportions and cell types of the same kind were added together to fit cell types in
training data. For example, monocytes C, monocytes I, and monocytes NC are different
kinds of monocytes, so their fractions will be added together as the total fraction of
monocytes.”

We actually add the similar cell type up to calculate the performance for monocyte if
the single-cell profiles do not have concrete subtypes. But, in practice, if we don’t have prior
knowledge about what cell types are in the bulk data, we can not exclude extra cell types in
single-cell profiles, and the prediction would be wrong. Notice that this situation is less likely
to happen, and currently, all the algorithms we tested can not solve this problem.

In general, for better performance, we suggest that single-cell data and bulk data should
include the same cell types. Through our experiments, we have the following findings. If
some cell types are missing from single-cell profiles, the deconvolution algorithm will allocate
weights of missing cell types to their similar cell types; if some cell types are missing from
the bulk data, it would be difficult, but our algorithm can guarantee that the relative cell type
ratio of existing cell types is almost correct (since in the previous analysis, we all exclude
extra cell types to calculate the existing cell type ration and the result is good). Considering
these situations may happen if users are not careful, we have added a special warning on
the Github page to remind users of the correct usage of deconvolution algorithms (Figure
R6).



Figure R6. Special warnings on the Github page

(3) Since TAPE uses reconstruction loss on real bulk to aid in learning, how does the
sample size of the tissue bulk data affect the performance of TAPE?

Answer:
Thank you for asking this question! Yes, you are correct. Usually, the sample size will affect
the results if the tissue bulk data are included in the training process. But, regarding our
algorithm, for the prediction of cell-type fractions, it would not be affected by the sample size
because we use about 5,000 pseudo-bulk samples for training, and we only use the real bulk
data for adaptive prediction. Normally, the model’s performance shall be affected once the
reconstruction loss is considered. However, we use enough pseudo-bulk data in the training
process, and the “reduction” method of the loss function torch.nn.functional.l1_loss() is
“mean” not the “sum”, so the sample size term in our reconstruction loss is considered per
sample and would not be affected by the sample size. The model’s parameters are fixed
after training with pseudo-bulk data, and we just use this model to predict cell-type fractions.

To further resolve your concern, we added an additional experiment on “Lung” (pseudo-bulk
dataset) in the revision, and the results are shown in the below table.

Table R2. Sample size of real bulk does not affect the performance of TAPE
Sample size of test data 20 40 60 80 100

Overall CCC 0.42494 0.49177 0.45102 0.41475 0.47003

Overall MAE 0.09995 0.09061 0.08586 0.09911 0.09152

That is why the performance has very small changes among different sample sizes in the
table (these changes should be mainly caused by the pseudo-bulk samples’ differences).

As for the GEP estimation part, our reconstruction loss is also considered in a per-sample
way. That’s why we can train the model per sample to achieve the “high-resolution” mode.



To make the training process clearer, we added the below details to the revised manuscript.

(section 4.2.5) “As previously stated, there are two stages of training in TAPE. The first is the
training stage, where we use about 5,000 pseudo-bulk samples for training. We use MAE
between prediction and ground truth to optimize the parameters of the encoder and MAE
between the reconstructed input and the original input to optimize both the decoder and the
encoder.”

(4) It is unclear how the method behaves on cell-types that are highly related. Any evidence
supporting that will be helpful. Similarly, how does TAPE perform on cell fractions below 5%
and 2%? Once of the main unresolved issues is good performance on rare cell types.

Answer: Thank you very much for this remarkable question! Deconvolution on the highly
related cell types and rare cell types is indeed very difficult. In the original manuscript, we
had some attempts on the real data. But following your questions and the comments from
Reviewer 2, we performed a more thorough and systematic evaluation of TAPE and other
methods in these specific situations in this revision. As we have mentioned in (2), to explore
the performance of TAPE in more detail, we defined three deconvolution scenarios: “normal”,
“rare”, and “similar”. The “similar” and “rare” scenarios can help to explain the following
questions separately.

a). How the method behaves on cell-types that are highly related?
Since highly related cell types are common in real-world data, we should give further

exploration on such situations. In the “similar” scenario, we use “Marrow” to compare the
deconvolution performance with other methods. This dataset has two types of B cells in it:
“late-pro B cell” and “immature B cell”, which satisfies the settings of highly related cell types.
As shown in the below figure, the calculated CCC and MAE values suggest that TAPE is the
best algorithm. In detail, TAPE can not only distinguish each cell type when both kinds of the
B cell are in the reference but also transfer one B cell’s proportion to another if this B cell is
missing from the reference (Figure R7).

Figure R7.  Figure 2c in the manuscript



Following your question, we have added the corresponding description in the revision.

(section 2.2) “As for the “similar” scenario, we investigate the performance of two kinds of B
cell in the “normal” scenario and what would happen if we delete one cell type from the
reference. The results show that TAPE is the most robust algorithm and can distinguish cell
subtypes when both kinds of the B cell are in the reference (Figure 2c, “similar
distinguishment”).”

b). How does TAPE perform on cell fractions below 5% and 2%?
Following your comments, we have added additional related experiments in the “rare”

scenario, where some cell-type fractions are set below 3%. To be specific, skeletal muscle
satellite cells and endothelial cells are set to be rare cell types in “Limb Muscle”; monocyte
and hematopoietic precursor cells are set to be rare cell types in “Marrow”; T cells, natural
killer cells and ciliated columnar cells of tracheobronchial trees are set to be rare cell types in
“Lung”. As you have pointed out, deconvolution on the rare cell types is indeed the
bottleneck of all the deconvolution methods. As shown in Figure R8, if we only calculate the
metrics for pre-defined rare cell types, all the methods cannot predict a satisfying
concordance with the ground truth. Interestingly, the CCC value is pretty low in all methods,
but the MAE is comparable to the “normal” scenario, which indicates these methods can
predict a value near the ground truth but are not correlated with each other. Regarding
TAPE, although it is not designed to focus on rare cell types, its performance (MAE) is
comparable to DWLS, which focuses on rare cell types. But indeed, the CCC values from
TAPE should be further improved in this specific situation. We thank you a lot for pointing out
this challenging problem. In the future, we will try to improve this situation by minimizing the
relative MAE for each cell type rather than the overall MAE in further package updates.

Figure R8.  Figure 2c in the manuscript

Following your question and our experiments, we also added the explanation of the “rare”
scenario to the revision.

(section 2.2) “In the “rare” scenario, we only display the metrics for pre-defined rare cell
types. The results show that all the methods can not result in a satisfying concordance



between prediction and ground truth in this scenario (Figure 2c). Interestingly, although the
CCC values are pretty low with those methods, their MAEs are comparable to those in the
“normal” scenario, which indicates that those methods can predict a value near ground truth
but are not correlated with each other. Though TAPE is not the best algorithm in this
scenario, its performance is comparable to DWLS, which focuses on rare cell types.”

Understandably, TAPE could be further improved, especially on the rare cell type
deconvolution, which is the bottleneck of all the deconvolution methods, as you have pointed
out. In the future, we will try to improve this situation by minimizing the relative MAE for each
cell type (like what DWLS does) rather than the overall MAE in further package updates
(Tsoucas et al. Nature Communications, 2019). Because the key feature distinguishing our
current work from previous methods is inferring the high-resolution cell-type-specific GEPs,
we added the rare cell type deconvolution issue in the discussion part as future work,
following your insightful question.

(section 3) “Although we have shown that TAPE’s deconvolution performance is pretty good
in many scenarios, we find that it would perform poorly in the “rare” scenario since it shows a
low CCC value. But, in the benchmarking process (Figure 2c), the results show that other
tools’ performance also drops in the “rare” scenario. This phenomenon indicates the “rare”
scenario has not been solved well by current methods and needs to be addressed in future
works.”

(5) The authors note that concordance between estimated relative gene expression of
monocytes and corresponding ground-truth is not good. The source of this error is assumed
to be individual and platform differences. Is it possible to provide more experiments to
confirm that, possibly adding a new experiment with known ground-truth?

Answer: Thank you very much for the comment! Your concern is very reasonable. Additional
experiments should be added to support the assumption. Following your comment, another
experiment is added to confirm our assumption. We test TAPE on a simulated dataset with
single-cell profiles as ground truth (Figure R9 a). We can see that our method can predict a
good concordance with the pseudo-bulk data but not good for only monocytes in the real
bulk data. Considering the real bulk data is not from the same source as single-cell data, and
the other five kinds of cell types have a good concordance, we draw the conclusion that this
disconcordance of monocytes is caused by individual differences, and these results also
prove that our method can predict adapted results rather than simply copy the single-cell
data.

Considering your comment, we have added the below figure and the description in the
revision to make the discussion more solid.



Figure R9. Figure 4a,b in the manuscript a Concordance between the predicted relative gene
expression value in simulated bulk data and the relative gene expression value from single-cell data.
The relative gene expression value is the original expression value after Log2 and MinMaxScaler()
transformation. b Concordance between the predicted relative gene expression value in real bulk data
and the relative gene expression value from single-cell data.

(section 2.6) “After testing TAPE on a simulated dataset with a single-cell profile as ground
truth (Figure 4a) and considering the good concordance in other five cell types, we draw the
conclusion that this distortion is caused by the individual difference.”

(6) A comparison with existing methods that can estimate csGEPs is necessary, in particular
BLADE [1] and CibersortX, wherever the requirement of meeting the criteria of having a
certain number of bulk samples is fulfilled.

Answer: Thank you very much for this excellent comment and for mentioning the recently
published work! Estimating csGEPs is an important question in this field, and only a few
methods have considered this problem. In the previous version, we showed the correctness
of the predicted csGEPs of TAPE by measuring the concordance between the predicted
gene expression value of each cell type and the original gene expression value obtained
from single-cell RNA. We should also compare TAPE with more methods designed for this.
Following your suggestion, we added additional experiments as described below.

(a) Thank you for mentioning the excellent work, BLADE! For BLADE, we ran it with 1,000
selected signature genes that are produced by the CSx. Usually, CSx would select about
3,000 genes as signature genes. But it cannot be all used because BLADE has higher time
complexity. For efficiency, we only randomly selected 1,000 genes from all the signature
genes. Unfortunately, in the pseudo-bulk test, BLADE requires half a day to deconvolve 100
samples. During the experiment, BLADE is running on a 48-core platform using the full
computational resource. Due to the limited recourse and time, we would not be able to run it
on the larger datasets, so we have to exclude it from the comparison. For your information,
the time consumption of BLADE and comparison among BLADE, TAPE, and other methods
we considered is listed in the below table.



Figure R10. Screenshot of the time interval for BLADE to do all the tasks, it finishes 5 tasks (each one
has 100 samples) from 11:49 May 1 to 2:40 May 3.

Table R3. Time consumption on the test of “Lung umi2counts” task for each method, unit is second
tested on Lung

umi2counts 100 200 300 400 500 600 700 800

TAPE 112.72 107.58 110.45 106.56 114.79 146.63 157.50 122.82

Scaden 340.16 352.71 358.82 353.40 347.19 351.96 393.23 342.95

RNAsieve 120.20 158.52 198.18 231.03 275.40 315.85 348.13 398.68

CIBERSORTx
(web) 821.68 1664.05 2595.24 NA NA NA NA NA

DWLS 267.85 530.96 839.19 1064.65 1314.96 1581.76 1913.18 2133.69

MuSiC 14.74 17.21 21.20 26.13 28.73 34.15 39.23 44.02

Bisque 12.39 12.42 12.81 13.45 13.87 14.67 14.99 15.14

BLADE (Lung
umi2counts) 79620 NA NA NA NA NA NA NA

Although we did not show the results of BLADE eventually, we still thank the reviewer for
mentioning BLADE as an interesting work on the deconvolution task. BLADE is an
interpretable Bayesian method, and it can solve all the tasks we expected. We have
mentioned it in the manuscript for the reader’s interest.

(section 2.7) “Of note, the recently published method, BLADE [13], can do this task too, but
we did not benchmark BLADE in our experiments, considering its high time complexity.”

(b) As for CIBERSORTx, we now added it to estimate the cell-type-specific GEPs in
comparison to TAPE. To fully evaluated the ability to estimate differentially expressed genes
(DEGs) of these two methods, we added a new experiment to test their classification ability.
Following the settings in CIBERSORTx, we created a series of pseudo-bulk datasets with
foldchange gradients and cell proportion gradients. After obtaining the GEP of the CD8 T
cell, we used a two-sided t-test to detect DEGs (p<0.05), and we chose the area under the
receiver operating characteristic curve (AUROC) as the criterion. The results in (Figure R11
e,f) show that TAPE can successfully predict cell-type-specific DEGs correctly (with good



sensitivity) and selectively (with good specificity), while CIBERSORTx almost fails on this
task. The reason why it is hard for CIBERSORTx to infer the 100 DEGs properly is that
CIBERSORTx usually focuses on signature genes that have bigger statistical power and are
easily detectable if they are differentially expressed, but in this task, we randomly select 100
genes that are probably insignificant genes. Furthermore, we also tested whether
CIBERSORTx can predict RAB11FIP5 as DEG in NK cells rather than other cell types. The
results in (Figure R11 h) show that CIBERSORTx sensitively predicts the differential
expression of RAB11FIP5 in NK cells, while there is not sufficient statistical power for it to
estimate the expression value of RAB11FIP5 in other cell types (expression value of
RAB11FIP5 is NaN in other cell types).



Figure R11. Figure 4 in the manuscript

Following your suggestion, we have added the same figures to Figure 4 and the description
in the revision accordingly.

(section 2.7) “Following the settings in CIBERSORTx [9], we selected 100 cells across four
cell types (CD8 T cell, Natural Killer (NK) cell, B cell, and Monocyte) from PBMC single-cell



data and another 10 cells from human brain single-cell dataset as noise to compose the
pseudo-bulk data. Then we randomly selected 100 genes among 10,000 genes in CD8 T
cells as up-regulated genes to adjust their expression. Each pseudo-bulk dataset contains
50 pseudo-bulk samples and half of them are composed of up-regulated CD8 T cells. The
cell proportion of CD8 T cells in pseudo-bulk data ranges from 5% to 30%, and the
foldchange of up-regulated genes ranges from 1.5 to 5. In total, we created a series of
pseudo-bulk datasets with foldchange gradients and cell proportion gradients. After obtaining
the GEP of CD8 T cells, we used a two-sided t-test to detect DEGs (padj < 0.05). So, this task
is essentially a binary classification task, and we naturally chose area under receiver
operating characteristic curve (AUROC) as the criterion. The results show that (Figure 4f),
TAPE can successfully predict cell-type-specific DEGs correctly (with good sensitivity) and
selectively (with good specificity) while CIBERSORTx almost fails on this task. The overall
trend is that algorithms can easily recognize DEGs in one cell type if the proportion of this
cell type or the foldchange of DEGs is high. Interestingly, using DEGs in bulk as the
reference, we can see that TAPE can even predict DEGs not shown up in bulk samples but
in CD8 T cells (the maximum AUROC of TAPE is higher than the maximum AUROC of bulk
samples in Figure 4e,f). In the original article [9], CIBERSORTx has also demonstrated its
great ability in DEGs prediction, the reason why it failed in this task is that CIBERSORTx
usually focuses on signature genes which have bigger statistical power and are easily
detectable if they are differentially expressed, but in this task, we randomly selected 100
genes which are probably insignificant genes; therefore, it is hard for CIBERSORTx to infer
the 100 DEGs properly. In contrast, TAPE has shown its ability in predicting DEGs even
when they are not significant genes, which means TAPE has a broader application potential
than CIBERSORTx. Of note, the recently published method, BLADE [13], can do this task
too, but we did not benchmark BLADE in our experiments, considering its high time
complexity.”

(section 2.7) “So, we used TAPE and CIBERSORTx to tissue-adaptively deconvolve the HIV
PBMC data [35]. To avoid batch effects and harmful effects caused by the low-quality
single-cell data, we combined data6k, data8k, and data10k PBMC single-cell data [30, 37,
38] as the reference. After obtaining the predicted GEPs for each sample at high resolution,
we calculated the adjusted p-value and fold change for each cell type (Fig 4h). The results
show that both TAPE and CIBERSORTx successfully predict that RAB11FIP5 is differentially
expressed in NK cells.”



--------------------------------------------------------
Reviewer #2.
Chen et al developed a deep learning method TAPE (Tissue-AdaPtive autoEncoder) for
precise deconvolution of bulk RNA-seq data in a short time. The authors claimed that TAPE
can predict cell-type-specific gene expression tissue-adaptively in a fast and sensitive way,
and TAPE is capable to provide biological significance when analyzing clinical data.

The deconvolution of bulk RNA-seq data for in-depth analysis is of great importance in
biological research, especially tools that can be applied to analyze the huge amount of the
existing clinical bulk RNA-seq data in a precise and fast way. The strength of TAPE relies on
the deep learning algorithm and excellent performance (if truly as the authors claimed)
compare with other state-of-the-art methods. The description of TAPE’s capability to analyze
clinical bulk RNA-seq profiles with biological significance is the shortcoming of this
manuscript in its current stage. Overall, I found this study somewhat interesting, but
premature and needs to be substantially revised before considering for publication.
Specific comments are as follows:

Answer: We truly appreciated your thorough and constructive review of the paper and for
taking the time to go through many of the details!

1. For your concerns about the performance compared with other methods, we have added
more thorough experiments with hyperparameter tuning results and evaluated performance
for each cell type rather than the previous overall index. Moreover, we further compared our
method with CIBERSORTx on the “high-resolution” GEPs estimation task. On the simulated
data, we proved that our method is more sensitive than CIBERSORTx, and on the real data,
both of the methods can discover the DEGs accurately.
2. In addition, for your questions about the clinical data analysis results, we have added
more details to explain the background and avoid misleading results. Specifically, following
your suggestions, we examined each cell type’s proportion change in section 2.5 (question
4) and added the statistically significant results. In our GEPs’ analysis (section 2.7, question
5), we really thank you for your helpful suggestions. We designed a new simulated-data test
to evaluate our method’s performance and limitations on the DEGs detection task. As for the
ssGSEA analysis (section 2.8, question 7), we added more discussion and specific results to
show that our method can be useful in discovering the biologically meaningful pathways.

Based on your comments, our manuscript has been largely revised and improved. Below we
respond to all of your major concerns point by point.

(1) The authors apparently acknowledged that there are a series of methods like
CIBERSORT, MuSiC, CIBERSORTx, Bisque, DWLS, RNA-Sieve and etc. that have been
developed to deconvolute bulk RNA-seq data, but why only a subset of these tools were
included in the benchmark comparison? The authors claimed “we compared the
performance of TAPE to that of four representative deconvolution methods (published on
famous journals with high performance)”. It looks to me that both MuSic and Bisque were
published in Nature Communications, which I believe is a very decent journal with high
reputation, but why did the authors exclude them?



Answer: We thank the reviewer very much for pointing it out. We have revised our
manuscript accordingly and added the comparison with the two methods. We did not include
them in the original manuscript because their deconvolution performances were not so good
in the previous reports (Erdmann-Pham et al. Genome Research, 2021, Menden et al.
Science Advances, 2020). And in the original manuscript, we compared TAPE with the
previous state-of-the-art methods. But your concern is very reasonable. We should perform
a more thorough comparison with all these methods. Based on your suggestions, we have
added additional experiments in this revision.

The detailed comparison of TAPE and all the methods considered is shown in the figure
below (Figure R12c & d). Figure R12c shows the deconvolution results on simulated data.
Each box contains metric values for all the cell types considered in all the tissues. Different
color refers to different methods. We defined three deconvolution scenarios: “normal”, “rare”,
and “similar”. As for the “normal” scenario, all the cell type proportions are randomly
generated, while in the “rare” scenario, some cell types’ fraction is set below 3%. In the
“similar” task, there are two situations, “similar distinguishment” and “similar transferring”.
The results show that TAPE is the best algorithm and can distinguish cell subtypes when
both kinds of the B cell are in the reference (“similar distinguishment”), and TAPE can
transfer one B cell’s proportion to another if this kind of B cell is missing from the reference
(“similar transferring”). Figure R12d shows the deconvolution results on real data. Of note,
the hyperparameters for all the methods have been optimized in these experiments. Details
could be referred to answer to the next question.



Figure R12. Figure 2c & d in the manuscript

Following your question, we have added the detailed statements of setting for running the
two new methods in the manuscript section 4.4.

“For MuSiC, we installed the R package and ran it with default settings following its tutorial.
Of note, MuSiC claims it can take advantage of multi-subject single-cell profiles to improve
deconvolution performance. But in our pseudo-bulk test, we do not have multi-subject
single-cell data. To meet its requirement, we randomly assigned one dataset to two virtually
different sources. In the real bulk test, we first combined PBMC data6k and data8k as the
reference to deconvolve PBMC bulk dataset, but MuSiC failed to predict them properly. The
CCC value was negative, which was reported by a previous study [9]. Then we only used
PBMC data8k as the reference and assigned it to two virtually different datasets to
deconvolve PBMC bulk data. With only one source single-cell profile, the CCC value was
normal. Thus, we only displayed the one-subject single-cell reference results above.”

“For Bisque, we installed the R package BisqueRNA and ran it with default settings following
the example provided by the author. In the default mode of the 'Reference-based
decomposition' mode, Bisque filters low-variance genes first and uses the left genes for
decomposition, so we input all the genes without specifying some marker genes.”



(2) When performing benchmark comparison, it is critical to compare the performance of
every method in its optimized state, otherwise one has reasons to suspect that the
advantages of TAPE over the other existing tools may not be caused by the algorithm itself,
but could be caused by the author's incorrect use of the other algorithms, such as not
entering the correct dataset (for instance, a pre-selected cell-type-specific gene expression
profile) according to the algorithm tutorial, not optimize the options so that each method is
best performed and etc. Without these details, I can hardly be convinced that TAPE is the
best performed method. As far as I know, CIBERSORTx is a very good performed tool, but
way poorly performed in the authors benchmark analysis (Fig 2a).

Answer: Thanks for this comment! We totally understand your concerns. Although we did not
show it in the original manuscript due to the limited space, we had done the hyperparameter
searching previously. But following your comments, we have done a more thorough
optimization for all the compared methods in the revision. The details are shown below.

In the benchmarking settings, we compared TAPE with six methods. Besides carefully
following their tutorial, we also added hyperparameter fine-tuning experiments for all the
methods on the Monaco’s dataset to explore whether those parameters matter in the
outcomes. Each method’s optimized state is described below.

For Bisque, we ran it following the example Jupyter Notebook file on its GitHub repository.
By default, Bisque is designed to deal with all genes (after filtering out zero variance genes),
so we input all the genes without specifying some marker genes. Since Bisque uses
non-negative least-squares regression (NNLS) to estimate cell proportions from the bulk
RNA-seq data, there are no hyperparameters left to be tuned (no other parameters in the
main function, see https://github.com/cozygene/bisque/blob/master/R/reference_based.R).
Thus, we assume that Bisque is in the optimized state.

For Scaden: This is a deep learning method that uses almost all genes as input (because it
has a variance cutoff, we use the default settings). The simulation step is processed
according to its recommended settings, 500 cells per pseudo-bulk sample and 5000 samples
in total. The training step has hyperparameters like learning rate, batch size, and training
steps for users to tune. We tested these hyperparameters’ effects, as shown in the table
below. We also tried to tune network architecture, but the authors did not open the interface,
so we tuned the above hyperparameters. We found that, following its default settings,
Scaden can achieve a good performance. It’s not a surprise because, in the original paper
(Menden et al. Science Advances, 2020), the authors have searched these parameters
before. So, we just used the default settings following the tutorials
(https://scaden.readthedocs.io/en/latest/usage.html).

Table R4. Hyperparameters tuning for Scaden

parameters

batch size 128 64 64 64 64 128 128 128

learning rate 1.00E-04 1.00E-04 1.00E-04 1.00E-05 1.00E-05 1.00E-04 1.00E-05 1.00E-05

steps 5000 2000 5000 2000 5000 2000 2000 5000

　

metrics
CCC_overall 0.49 0.47 0.48 0.56 0.51 0.49 0.51 0.53

MAE_overall 0.07 0.07 0.08 0.06 0.07 0.07 0.07 0.07



CCC_average 0.37 0.32 0.32 0.33 0.31 0.31 0.33 0.31

MAE_average 0.07 0.07 0.08 0.06 0.07 0.07 0.07 0.07

For RNAsieve, it does not have detailed documentation, so we ran it following its example
code. In practice, we can produce the same result as its example code, but the results of
RNAsieve in pseudo and the real bulk test are not good. The benchmarking code is available
in the GitHub repository (https://github.com/poseidonchan/TAPE). We adjust the values of
the two parameters (trim_percent & gene_thresh) in the core function,
“model_from_raw_counts”, within a certain range around the default values (highlighted in
yellow), and the test results shown in the table below indicate that the outcome of RNAsieve
can not be significantly improved by just tuning the hyperparameters. Therefore, we followed
the default setting from the author to derive other results.

Table R5. Hyperparameters tuning for RNAsieve

parameters
trim_percent 0.02 0.10 0.05 0.01 0.02 0.10 0.05 0.01 0.02 0.10 0.05 0.01

gene_thresh 0.20 0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.30 0.30 0.30 0.30

　

metrics

CCC_overall -0.10 -0.08 -0.08 -0.10 -0.06 -0.07 -0.08 -0.06 -0.11 -0.10 -0.11 -0.10

MAE_overall 0.19 0.17 0.17 0.19 0.18 0.20 0.20 0.18 0.18 0.18 0.18 0.18

CCC_average nan nan nan nan nan nan nan nan nan nan nan nan

MAE_average 0.19 0.17 0.17 0.19 0.18 0.20 0.20 0.18 0.18 0.18 0.18 0.18

For MuSiC, it claims that it can take advantage of multi-subject single-cell profiles and find
the informative genes automatically. Considering the MuSiC’s claim, which can automatically
allocate weights to informative genes, we did not input a marker gene list. Besides the maker
genes, it also has parameters for users to change, including “nu”, “centered”, and
“normalized”. We found that these parameters don’t affect the performance significantly.
MuSiC still can not predict a proper CCC for some cell types (it predicts zero for some cell
types), leading to the NaN value for the average CCC.

Table R6.  Hyperparameters tuning for MuSiC

parame
ters

nu 0.0001 0.0000 0.0010 0.0100 0.1000 0.0001 0.0000 0.0010 0.0100 0.1000 0.0001 0.0010 0.0100 0.1000 0.0000 0.0001 0.0000 0.0010 0.0100 0.1000

centered FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

normalized FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

　

Metrics

CCC_overall -0.0275 0.0249 -0.0262 0.1967 0.2373 0.0986 0.0821 0.1222 0.2324 0.2219 -0.0165 -0.0650 -0.0924 -0.0898 0.0044 -0.0165 0.0280 0.0491 0.0302 -0.0162

MAE_overall 0.1796 0.1769 0.1683 0.1435 0.1731 0.1885 0.1954 0.1696 0.1496 0.1901 0.1739 0.1741 0.1771 0.1756 0.1712 0.1739 0.1821 0.1739 0.1786 0.1911

CCC_average NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

MAE_average 0.1796 0.1769 0.1683 0.1435 0.1731 0.1885 0.1954 0.1696 0.1496 0.1901 0.1739 0.1741 0.1771 0.1756 0.1712 0.1739 0.1821 0.1739 0.1786 0.1911

For DWLS, the first step is to choose the signature genes. It provides two flavors, “MAST”
and “Seurat” for us to use. In practice, we found that for the pseudo-bulk test, the “Seurat”
flavor can lead to a better result, while the “MAST” flavor can lead to a better performance in
real datasets. So, we used the “Seurat” flavor for the pseudo-bulk test and the “MAST” flavor
for the real bulk dataset. The p-value cutoff is 0.01, and the foldchange cutoff is 0.5. After
selecting the signature genes, we used them to deconvolve bulk RNA-seq samples one by
one. Of note, for the stability, we used nu-SVR to obtain an initial estimation instead of OLS
(the solve.QP function in R usually has many problems). We tested the performance for the



two different initial estimation methods, and the performance is the same in the pseudo-bulk
test. We think this is mainly due to the nature of the iterative method: an initial estimation in a
proper range can lead to the same result when the algorithm is converged. Considering the
marker gene selection process may affect the performance significantly, we used different
parameters to test DWLS’ performance on the real PBMC datasets from (Monaco et al. Cell
Reports, 2019) According to the results below, we found the “p-value cutoff” and “diff cutoff”
do not affect the performance significantly, so we use the default settings.

Table R7. Hyperparameters tuning for DWLS

parameters

p-value cutoff 0.0100 0.0100 0.0500 0.0500

diff cutoff 0.5 0.5 0.5 0.5

flavor MAST Seurat MAST Seurat

　

Metrics

CCC_overall 0.4056 0.4358 0.4056 0.1539

MAE_overall 0.0979 0.1037 0.0979 0.2040

CCC_average 0.2894 0.1515 0.2894 0.0554

MAE_average 0.0979 0.1037 0.0979 0.2040

For CIBERSORTx, we ran it following the tutorial on the website. We notice that it has some
potential hyperparameters at each step. When we generate the signature matrix, it has
hyperparameters like the maximum condition number, the q-value cutoff, sampling fraction,
and cell type fractions. When we impute cell fractions, it has hyperparameters like batch
correction mode, quantile normalization, and permutation. When we impute cell-type-specific
GEPs at high resolution, it has hyperparameters like batch correction and quantile
normalization. According to our prior knowledge, we exclude some hyperparameters from
the fine-tuning test. In the original paper, the success of CIBERSORTx mainly relies on the
success of the heuristical batch correction method. So, we all use S-mode for deconvolution
(since we only used single-cell data as reference). As for the quantile normalization, the
website has shown that it is recommended to be disabled for the RNA-seq data, and we
follow the instruction in all the tests. Considering the q-value cutoff is conventional in
statistics, so we tested the “conditional number” and “quantile normalization” in the following
table.

Table R8. Hyperparameters tuning for CIBERSORTx

parameters

Kappa 14.63 8.98 14.63 8.98 14.63 8.98 14.63 8.98 5 2

quantile
normalization in

generating
signature matrix

FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE

S-mode
correction TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE

quantile
normalization in
deconvolution

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

　

Metrics CCC_overall 0.6167 0.4955 0.6108 0.5517 0.2260 0.0953 0.2389 0.1061 0.6817 0.5788



MAE_overall 0.0683 0.0910 0.0659 0.0753 0.0866 0.0996 0.0875 0.0978 0.0603 0.0772

CCC_average 0.3235 0.2254 0.3189 0.2542 0.3258 0.2504 0.3282 0.2594 0.3477 0.0772

MAE_average 0.0683 0.0910 0.0659 0.0753 0.0866 0.0996 0.0875 0.0978 0.0603 0.0772

These results show that the default settings are quite near the optimized state. With the
“Kappa” (condition number) restricted below 5, the deconvolution performance achieves the
best. If the condition number is restricted below 2, the performance will drop. So, this
indicates the condition number of the signature matrix is really important to CSx. Since the
condition number below 5 can show the best performance. We updated all the results using
the same “Kappa” settings in Figure R13 accordingly.

Figure R13. Figure 2c & d in the manuscript

After we use CSx with a proper “Kappa” value, it can achieve satisfactory performance in
many situations.

We want to thank the reviewer again for this comment! An even more thorough
hyperparameter search would indeed further improve the performance of a few compared
methods. The reason why changing the parameters seems to have little influence on many
other algorithms or lead to worse performance, according to the above additional
experiments, is that the hyperparameters are already fine-tuned by their original developers.



Moreover, it is natural that the quality of the dataset would affect the algorithms’
performance. Usually, a better dataset will lead to better performance. But since the
hyperparameters in dataset pre-processing should be consistent across different algorithms,
which would have an impact across different algorithms in the same direction, we have
already normalized them and made them consistent across different methods in all of our
experiments, ruling out those hyperparameter’s effects. Thus, in the above experiments, we
only focused on the hyperparameters of each algorithm along, not the dataset choice and
pre-processing hyperparameters.

All of these results have already been incorporated into the manuscript. Following your
question, we have also put the hyperparameter searching results into the supplemental
materials. Your question has indeed made our experiments more thorough and solid.

(3) Following the above question, could it be possible that TAPE works better in a certain
dataset but not the others. Since there are so many published datasets with paired single
cell profiles as references, the authors should compare TAPE on a much larger data cohort,
where 5 datasets is way below the expectation to prove the advantages of TAPE in cell type
deconvolution with statistical significance.

Answer: Thanks for the comment! We fully understand your concern because we know that
a well-performed machine learning algorithm may perform poorly on another dataset if the
assumption of the method is not satisfied. This problem is critical but is hard to be solved
perfectly as every method has its own assumption and suitable application scenarios.
Following your comments, we have performed much more thorough experiments on more
datasets in the revision. Also, we performed additional experiments to investigate the
suitable application scenarios of our methods, guiding the users when they can use our
method confidently.

The ideal scenario is that we can find enough real bulk RNA-seq data with its cell type
fractions measured by flow cytometry or immunohistochemistry method. But the fact is that
we cannot find so many datasets with ground truth, that’s why we additionally do
experiments on pseudo-bulk data and real bulk data with clinical information (thus we can
test performance with prior clinical knowledge without cell fractions). These experimental
settings are inspired by previous work and these datasets are widely used in previous work
(Erdmann-Pham et al. Genome Research, 2021, Menden et al. Science Advances, 2020,
Jew et al. Nature Communications, 2020). Specifically, for the pseudo-test experiments, the
settings are similar to the RNAsieve (Erdmann-Pham et al. Genome Research, 2021), the
source datasets are also Tabular Muris. We also add some additional experiments following
the reviewers' comments in this revision. Three deconvolution scenarios: “normal”, “rare”,
and “similar” are defined to fully exploit the advantages of pseudo-bulk data. For the real
bulk test, all the five datasets are the same as the Scaden (Menden et al. Science
Advances, 2020). For the clinical data deconvolution, we test the ROSMAP datasets
following the original paper of Bisque (Jew et al. Nature Communications, 2020).
Additionally, we investigate the MLR tendency in the COVID-19 PBMC dataset and the
decrease of beta cell proportion after COVID-19 infection in the cultured islet dataset.



Another problem is that, although we can define cell type and calculate cell type fractions in
single-cell data, these cell type fractions are highly biased and can not be used as ground
truth to evaluate cell type fractions in bulk RNA-seq data (see the original paper of
CIBERSORTx, Fig. 2f, Newman et al. Nature Biotechnology, 2019). Considering this
problem, in this revision, we expand experiments to pseudo-bulk data and evaluate the
performance for each cell type (Figure R14, Table R9), thus we can test the performance in
detail with more data points to generate some statistical meaningful results.

Figure R14. Figure 2c & d in the manuscript, we show the results by box plots, each box contains all
the cell types’ performance in one dataset.

Table R9. Detailed performance on each cell type, source data of Figure R14 d “monaco”
Dataset CellType Method CCC L1error

monaco Bcells TAPE 0.774372 0.016203

monaco CD4Tcells TAPE 0.484331 0.035803

monaco CD8Tcells TAPE 0.45154 0.037436

monaco Monocytes TAPE 0.320453 0.087987

monaco NK TAPE 0.290329 0.035385

monaco Bcells Scaden 0.90498 0.011847

monaco CD4Tcells Scaden 0.242023 0.071814



monaco CD8Tcells Scaden 0.455439 0.044727

monaco Monocytes Scaden 0.19598 0.167292

monaco NK Scaden 0.410949 0.03824

monaco Bcells RNAsieve 0.108525 0.052283

monaco CD4Tcells RNAsieve NA　 0.281521

monaco CD8Tcells RNAsieve 0.047161 0.161824

monaco Monocytes RNAsieve 0.336347 0.090341

monaco NK RNAsieve 0.004297 0.388941

monaco Bcells MuSiC NA　 0.106905

monaco CD4Tcells MuSiC NA　 0.281521

monaco CD8Tcells MuSiC NA　 0.213033

monaco Monocytes MuSiC 0.535987 0.06806

monaco NK MuSiC 0.003785 0.665789

monaco Bcells DWLS 0.16424 0.063149

monaco CD4Tcells DWLS 0.214363 0.144211

monaco CD8Tcells DWLS 0.445641 0.07766

monaco Monocytes DWLS 0.185611 0.200044

monaco NK DWLS 0.347201 0.049529

monaco Bcells CIBERSORTx 0.120926 0.068475

monaco CD4Tcells CIBERSORTx 0.550437 0.051943

monaco CD8Tcells CIBERSORTx 0.407114 0.075094

monaco Monocytes CIBERSORTx 0.675171 0.065061

monaco NK CIBERSORTx 0.244958 0.060843

monaco Bcells Bisque 0.169557 0.094422

monaco CD4Tcells Bisque 0.059738 0.303526

monaco CD8Tcells Bisque -0.072055 0.218607

monaco Monocytes Bisque 0.349341 0.146178

monaco NK Bisque -0.093793 0.225798

Through our experiments, we find the setting of the variance cutoff fraction of the input data
matters in TAPE’s deconvolution performance. We made the assumption that TAPE works
well on datasets that have a proper number of highly variable genes, which has also been
reported by (Menden et al. Science Advances, 2020). Usually, this number is around 10,000.
To verify this, we further investigate the changes in both the overall CCC value and MAE
value among different variance cutoff settings on “Lung” (pseudo-bulk dataset, using
UMI-based single-cell reference to predict pseudo-bulk constructed from count-based
single-cell data) and add the related experiments.

Table R10. TAPE’s performance is affected by variance cut off
fractions of genes left
after variance cutoff 0.99 0.80 0.60 0.50 0.40 0.20 0.05

used genes number 16599 16529 13200 10718 8076 3489 739

overall CCC 0.28 0.28 0.42 0.43 0.59 0.56 0.33



overall MAE 0.12 0.12 0.10 0.10 0.07 0.07 0.09

From the table, we can tell that TAPE performs better with proper variance cutoff. We also
draw the data distribution of different variance cutoffs in Figure R15 a. When the distribution
does not have too many near-zero noises, the performance gets better. When the
distribution contains many low variance genes, which means the noise is very high, the
performance of TAPE is not so good. For your information, we also draw the data distribution
of the real datasets we considered in Figure R13 d, which may help to explain why TAPE is
not the top method on part of the datasets. From Table R9 and Figure R13, we can see that
TAPE is robust enough to deal with two different distributions after filtering low variance
genes but can not deal with distributions with too many near-zero noises (when we keep too
many genes with low variance), which confirms our assumption.

Figure R15. Data distribution. a. Data distribution of the Lung dataset with different variance cutoff. b.
Data distribution of the real datasets.

To guide the user to use our method better, following your comments, we also added this
assumption and stressed the variance cutoff procedure in our methods part.

(section 4.2.4) “Then we need to filter some genes with low variance both in the training data
and test data [10, 14]. This step is very important because TAPE will fail in predicting test
bulk data proportions properly without proper filtering (Supplementary Table 1 and
Supplementary Figure 7) [14]. In our experiments, we control the filtering threshold to keep
about 10,000 genes as reported by Scaden [14]. If the less variable genes are not filtered
out, TAPE can not predict a good result because of the noises (Supplementary Table 1 and
Supplementary Figure 7).”

(4) I feel it is a bit over claim of TAPE’s advantage to delineate the biological significance of
the clinical data, by simply showing the tendency of certain cell types. Specifically, the
authors claimed that “only TAPE could correctly predict proportions of neurons or microglia
cells ranging from 0.32-0.55 and 0.06-0.12 respectively” (Fig. 3a), there are multiple cell
types in these studies, and how about the prediction (of cell proportions) of other cell types?



Are they all correctly predicted? Are there any experimental evidences as gold standard to
support these predictions? Similarly, the prediction of MLR tendency (Fig. 3b), where the
authors show only the “monocytes fraction”, I wonder how about the other cell types, such as
CD4+ T cell, CD8+ T cell, or B cell? Does TAPE also correctly predict the proportion and
changes of these cell types in the mild, moderate and serious (should be severe) COVID-19
patient? Fig. 3c has the same problem. The logic here is, if TAPE, but no other tools (based
on the assumption that these tools were corrected used), is capable of correctly predict the
proportion and changes of cell subtypes, it should work for most (if not all) cell subtypes. By
showing only one or two, and in this case not even a consistent cell type, in Fig. 3 is
misleading, since without detailed analysis with statistical power, these results can simply be
“cherry picking”.
Answer: Thank you for raising the question about the biological significant deconvolution of
TAPE. We understand your concerns because, in our practice, each method’s performance
will vary across cell types, and the results may be biased. Your concerns can be divided into
three parts, and we explain them below.

a) For Alzheimer’s Disease (AD), we did these experiments following the previous
deconvolution methods Bisque (Jew et al. Nature Communications, 2020). In the original
manuscript, we explained the changing tendency of neurons and microglia cells with
references because neurons and microglia cells are of particular focus to AD. We also tried
to find other cell types’ changes during the development of AD, but there are not enough
previous studies. Therefore, we didn’t draw conclusions about other cell types.

Following your comments, in Figure R16, we show the proportions of all the cell types in the
ROSMAP dataset rather than just including neurons and microglia cells. Before explaining
the results, we need to clarify two things:

● The gold standard of these AD patients’ cell type proportions was cited from a
previous study that uses the immunohistochemistry method to measure the cell type
proportions. Actually, these fractions are the same as the ground truth in the real bulk
test, but the difference is that the ground truth only measures 41 patients included in
6 braak stage, but here we study about 532 patients, so we simplified the question
and accept an assumption that the cell type proportion range of the 41 measured
patients is the same as all the patients. We have added this assumption to section
2.5 in the manuscript:
“Impressively, if we accept the assumption that the cell type proportions’ ranges of
the 41 patients are the same as those of the 532 patients, only TAPE could predict
proportions in this range, which shows the remarkable accuracy of TAPE’s
prediction.”

● The 0 and 6 braak stages of the ground truth only have one sample, so we use braak
stages 1-5 as references to demonstrate whether the predicted results of TAPE have
both the correct range and trend.

For astrocytes cells, both TAPE and Scaden can predict the stable trend with changes in the
braak stage. Oligodendrocytes and endothelial cells show a slightly increasing trend which is
reasonable since the neuronal loss of AD, and TAPE can predict the trend and range similar
to the ground truth.



Figure R16. Each cell type’s fraction from immunohistochemistry (IHC) analysis (left column) and
predicted fraction from each method. IHC data only measures 41 samples from a total of 532

samples.

b) Sorry for the unclear statement in the text. Actually, the monocytes-to-lymphocytes
ratio (MLR) is calculated by the fraction of monocytes to the summation of fractions of CD8 T
cell, CD4 T cell, and B cell. So, the MLR index has included these cell types in the PBMC
dataset.
Following your comments, to make things clear, we have added this detail into the text
(section 2.5):

“The MLR is calculated by the fraction of monocytes divided by the sum of fractions of
CD4 T cell, CD8 T cell, and B cell.”



Moreover, for your information, to show our method has statistical power, we re-plot the bar
plot with error bars (Figure R17) and test the increasing tendency with more data points from
the convalescence and rehabilitation stage, not only from the treatment stage. We found that
the data points from the convalescence and rehabilitation stage also show similar
characteristics to data points from the treatment stage thus we delete the sentence from our
manuscript.

“More specifically, we only considered the treatment stage data because patients in
the convalescence or rehabilitation stage do not represent the same pathology
characteristics as the real infected circumstances.”

In these results (Figure R17), we can see that Scaden, CIBERSORTx, DWLS, and TAPE
show an increasing tendency, so we test whether the MLR of serious patients is higher than
the MLR of moderate patients or mild patients. The results show that we can only find the
statistical significance from TAPE that the MLR of serious patients is higher than the MLR of
mild patients. Other methods don’t have this statistical significance. Of note, MLR of
moderate patients is not significantly higher than MLR of mild patients and MLR of serious
patients is not significantly higher than MLR of moderate patients. To clearly show the
statistical significance value, we add a table below:

Table R11. Statistical significance of Figure 3c
Methods mild vs. moderate moderate vs. serious mild vs. serious

TAPE 0.1262 0.2578 0.0238

Scaden 0.1349 0.4291 0.0522

DWLS 0.0938 0.4214 0.081

CIBERSORTx 0.2008 0.3862 0.2512

Figure R17. Figure 3 c in the manuscript

Following your comments and the experiments, we have revised the manuscript accordingly.

(section 2.5) “Although Scaden, CIBERSORTx, DWLS, and TAPE predict an increasing
tendency correctly, after hypothesis tests, only TAPE predicts the increasing tendency of
MLR value with statistical significance, and the value range is suitable for the clinical report
(0.29-0.88) [15].”



c) Similarly, the correlation between the decrease of beta cells’ proportion and COVID
infection is reported before (Müller et al. Nature Metabolism, 2021). As for other cell types in
islet, we also want to find some evidence but there are insufficient experimental results. So,
we only used this report as an example to show the sensitivity of TAPE. To address your
concerns about the results, we did a one-sided t-test to test whether the virus-affected
beta-cell proportion is lower than the normal and medicine-treated ones. Both p-values are
lower than 0.05 which shows that our prediction has some statistical power (Figure R18). We
updated the t-test results in the figure and revised the corresponding description in the text:

(section 2.5) “Though Scaden and TAPE can predict both beta cell loss and restoration in
this experiment among the three conditions, after one-sided t-test, only TAPE’s predictions
show a statistical significance. The accurate deconvolution results of these controlled
experiments demonstrate that TAPE is sensitive to the biological changes in the bulk
RNA-seq data and can produce biologically significant results, which are consistent with the
previous research and reports. All the clinical deconvolution results show that TAPE’s
prediction is stable, with potential clinical applications for disease early screening and
treatment outcome prediction.”

Figure R18. Figure 3 d in the manuscript

To sum up, we used three examples to show TAPE’s application power in clinical data and
made relevant analysis according to the previous experimental evidence, rather than only
showing the positive cell type proportion results for TAPE. Following the reviewer’s
comments, we have made the analysis more comprehensive, covering more cell types, and
shown the stability and potential usage of the proposed method with statistical power. But of
course, during real-life usage, most of the analysis will be focused on the biomarker gene
and cell types. We recommend that users select the cell types they want to analyze further
from the TAPE output based on existing experimental evidence.

Following the reviewer’s insightful comments, which lead us to make the above
comprehensive analysis and discussion, we have added the following discussion into the
revision.

(section 3) “In the scenario of clinical data prediction, TAPE is capable of predicting the ratio
change for most cell types in clinical cases stably with statistical power, whose results are
consistent with the previous related clinical studies [15, 25, 28, 29, 31, 32]. During real-life



usage, to make the study more focused, we recommend that users select the cell types they
want to analyze further from the TAPE output based on the existing experimental evidence.”

(5) The capability of TAPE to “predict cell-type-specific gene expression at high-resolution” is
what I believe a unique advantage of TAPE over the other methods, however results
showing in Fig. 4 greatly limited my overall enthusiasm. The authors predicted gene
RAB11FIP5 as a DEG in NK cells (Fig. 4e), again, this is only one gene. What about the
other known DEGs? What percentage and to what precision can TAPE predict the
expressions of the known DEGs? Predict one gene within expectation can be shown as an
example, but is way less enough to prove that TAPE is able to “predict cell-type-specific
gene expression at high-resolution”. The authors should set up a gold standard where
ground truth is known, and then evaluate the predictive power of TAPE on whatever indexes
the authors interested to measure.

Answer: Really thanks for this insightful comment with detailed suggestions! Yes, we totally
agree with you. And we also think that this is the most interesting part of TAPE and should
be investigated more thoroughly.

Before introducing the newly added experiment, we want to clarify that RAB11FIP5 is the
only DEG between the two conditions. In the original paper (see Figure 1, S1 from Bradley et
al. Cell, 2018), the researchers found about 300 DEGs (padj < 0.01) in bulk data, but those
DEGs were filtered out because they were identified as non-related genes for BNab
development. Those genes are probably differentially expressed because of age, sex,
country, auto-antibody status, and virus load. We understand your concern that if we only
study one DEG, the result may be “cherry-picking”, so we tried to reproduce the DEG
analysis procedure of the non-filter data using DESeq-2 (following the original study) and
found about 270 DEGs in the original bulk data without filtering. Then, to verify whether
these genes are DEGs detected by our method, we test the intersection of the 270 DEGs
and DEGs detected by TAPE (padj<0.05) for each cell type. The results show that the
intersection is none for CD4 T cell, CD8 T cell, B cell, and Monocyte. Only two genes are
shared by the DEGs of NK cells and bulk samples. One is NOP2, and the other is
RAB11FIP5 (Figure R19, NK from TAPE). So, this means that though there are many
pseudo-DEGs in bulk samples, our method can automatically filter them out and reduce the
possible DEGs number from 270 to 2. We think that this reduction of DEGs number and the
accurate DEGs’ source detection (distinguish DEG from which cell type) will accelerate the
biological discovery.

Following your comments, we have updated the manuscript with this detailed description to
clarify the experiment in the revision.

(section 2.7) “Considering that there are about 270 pseudo-DEGs in bulk samples, we
further validated whether TAPE can distinguish them as pseudo-DEGs by checking the
DEGs in each cell type. The results show that TAPE only predicts NOP2 and RAB11FIP5 as
DEGs in NK cell and no DEGs for other cell types (Supplementary Figure 5). We can see
that the prediction is not perfect, but our method can correctly predict that NK cells have
DEGs rather than other cell types and reduce the number of possible DEGs (including
pseudo-DEGs if there is not any filter) from 270 to 2. All the results displayed prove that our



methods can be applied to the real-life scenario and accelerate biological discoveries by
identifying which cell type has DEGs and reducing the number of possible DEGs.”

Figure R19. Volcano plots of DEGs were calculated from bulk GEPs and inferred GEPs. The orange
stars refer to the RAB11FIP5 gene. The upper right plot of HIV is produced from the DESeq2 package
(Love et al. Genome Biology, 2014) with original RNA-seq counts as input (pseudo-DEGs are not
filtered out). Other DEGs of inferred GEPs are calculated by a two-sided t-test.

In addition to that, following your awesome suggestions, in this revision, we added a new
series of simulated data with foldchange gradients and cell proportion gradients to test the
CIBERSORTx and our method’s ability to detect DEGs in bulk samples. We chose 100 cells
among CD8 T cell, Natural Killer, B cell, and Monocyte from PBMC single-cell data and
select 10 cells from the human brain single-cell dataset as noise. After that, we chose 100
up-regulated genes randomly from 10,000 genes in CD8 T cells to modify their expression.
There are 50 samples in each pseudo-bulk dataset, half of which are composed of CD8 T
cells that have been up-regulated. Then, we used two-sided t-test to detect DEGs (p < 0.05)
after obtaining the GEP of the CD8 T cell. The results show that TAPE can successfully
predict cell-type-specific DEGs correctly (with good sensitivity) and selectively (with good
specificity) when DEGs in one cell type if both the proportion of this cell type and foldchange
of DEGs are high, while CIBERSORTx almost fails (see Figure R20 e&f). For instance, the
AUROC of the bulk reference at foldchange=4 and cell proportion of CD8 T cells=0.2 is
0.8134 and TAPE’s AUROC value of this setting is 0.8274, while CSx only have an AUROC
of 0.503. CIBERSORTx shows its great ability in DEGs prediction when signature genes
have bigger statistical power and are easily detectable if they are differentially expressed.
However, when randomly selecting 100 genes that may contain insignificant genes, it is hard



for CIBERSORTx to infer the 100 DEGs properly. This shows TAPE’s broader application
potential than CIBERSORTx for its ability in predicting DEGs even though they are not
significant genes.

Following your great comment, we have added the additional experiments and the following
paragraph to section 2.7 in the manuscript to discuss the property of TAPE more
comprehensively.

“Since TAPE has shown its ability to predict cell-type-specific GEPs correctly and
selectively given a group of bulk samples, we continued to use TAPE to predict
cell-type-specific GEP per sample at high-resolution. To test TAPE’s capability under
“high-resolution” mode, we synthesized a series of pseudo-bulk samples with known
differentially expressed genes (DEGs) (Figure 4e). Following the settings in CIBERSORTx
[9], we selected 100 cells across four cell types (CD8 T cell, Natural Killer (NK) cell, B cell,
and Monocyte) from PBMC single-cell data and another 10 cells from human brain
single-cell dataset as noise to compose the pseudo-bulk data. Then we randomly selected
100 genes among 10,000 genes in CD8 T cells as up-regulated genes to adjust their
expression. Each pseudo-bulk dataset contains 50 pseudo-bulk samples and half of them
are composed of up-regulated CD8 T cells. The cell proportion of CD8 T cells in pseudo-bulk
data ranges from 5% to 30%, and the foldchange of up-regulated genes ranges from 1.5 to
5. In total, we created a series of pseudo-bulk datasets with foldchange gradients and cell
proportion gradients. After obtaining the GEP of CD8 T cells, we used a two-sided t-test to
detect DEGs (padj < 0.05). So, this task is essentially a binary classification task, and we
naturally chose area under receiver operating characteristic curve (AUROC) as the criterion.
The results show that (Figure 4f), TAPE can successfully predict cell-type-specific DEGs
correctly (with good sensitivity) and selectively (with good specificity) while CIBERSORTx
almost fails on this task. The overall trend is that algorithms can easily recognize DEGs in
one cell type if the proportion of this cell type or the foldchange of DEGs is high.
Interestingly, using DEGs in bulk as the reference, we can see that TAPE can even predict
DEGs not shown up in bulk samples but in CD8 T cells (the maximum AUROC of TAPE is
higher than the maximum AUROC of bulk samples in Figure 4e,f). In the original article [9],
CIBERSORTx has also demonstrated its great ability in DEGs prediction, the reason why it
failed in this task is that CIBERSORTx usually focuses on signature genes which have
bigger statistical power and are easily detectable if they are differentially expressed, but in
this task, we randomly selected 100 genes which are probably insignificant genes; therefore,
it is hard for CIBERSORTx to infer the 100 DEGs properly. In contrast, TAPE has shown its
ability in predicting DEGs even when they are not significant genes, which means TAPE has
a broader application potential than CIBERSORTx.”



Figure R20. Figure 4 in the manuscript

(6) As we know, major cell types, such and T cells, B cells and etc. can be further divided
into cell subtypes, I am curious to what extent can TAPE reach to, i.e. what is TAPE’s
limitation to predict the gene expression in smaller cell subtype, which can be referred to
“high-resolution”.



Answer: Thank you for asking this excellent question! This question is really interesting, and
we must do the related experiments since no one else has done it before.

Before examining the ability to distinguish similar cell types’ GEPs, we first want to show the
ability to distinguish the similar cell type’s fractions. Previously, we have done some
preliminary experiments to test TAPE’s performance on the subtype deconvolution. For
example, in PBMC data, we evaluated the subtypes of T cells (CD4 T cells and CD8 T cells)
separately. The CCC and MAE results (Figure R21) show that TAPE is the best algorithm on
these datasets.

Figure R21. show the ability to predict cell type fractions of similar cell types in real datasets.

In this revision, we performed more thorough experiments for this scenario. We carry out
further analysis of the highly-related cell types in the “similar” scenario of pseudo bulk data.
In the “similar” scenario, we use “Marrow” to compare the deconvolution performance with
other methods. This dataset has two types of B cell in it: “late-pro B cell” and “immature B
cell”, which satisfies the setting of highly related cell types. As expected, the calculated CCC
and MAE values show that TAPE is the best algorithm. In detail, TAPE can not only
distinguish each cell type when both kinds of the B cell are in the reference but also transfer
one B cell’s proportion to another if this B cell is missing from the reference (Figure R22).
And we added the corresponding statement accordingly:

(section 2.2) “As for the “similar” scenario, we investigate the performance of two kinds of B
cell in the “normal” scenario and what would happen if we delete one cell type from the
reference. The results show that TAPE is the best algorithm and can distinguish cell
subtypes when both kinds of the B cell are in the reference (Figure 2c, “similar
distinguishment”). Moreover, TAPE can transfer one B cell's proportion to another if this kind
of B cell is missing from the reference (Figure 2c, “similar transferring”).”



Figure R22. Figure 2c in the manuscript, “similar distinguishment” and “similar transferring” show the
ability to predict cell type fractions of similar cell types.

Here, we also use simulated data to test whether TAPE can distinguish similar cell types’
GEPs. The simulated process is similar to the process we mentioned before in question 5.
But here, the four cell types are CD8 T cells, CD4 T cells, Monocytes, and NK cells. Similar
cell types are CD4 T cell and CD8 T cell. We also randomly select 100 genes from CD8 T
cells and up-regulate them with different foldchanges. Then we simulated bulk samples with
different CD8 T cell’s fractions to compose a gradient. So, we totally create 30 tests and
each test has 50 bulk samples of which half are up-regulated and half are controls. We also
use CIBERSORTx and our method to test their ability to detect DEGs. Since this can be
seen as a classification task,  we use the index AUROC as we mentioned before.

The results show that both CIBERSORTx and TAPE can not distinguish the cell subtypes’
GEPs well. But TAPE still has better predictive power than CIBERSORTx. Also, we find that
TAPE can distinguish some DEGs from CD8 T cells as well but CIBSERSORTx always
detects DEGs from CD4 T cells rather than CD8 T cells (Figure R23). Specifically, for
CIBERSORTx and TAPE, the highest AUROC value in CD4 T cells are 0.75 and 0.86
respectively while the highest AUROC value in CD8 T cells are 0.53 and 0.84 respectively.
So, we conclude that TAPE has better predictive power than CIBERSORTx and both
methods will wrongly detect DEGs from similar cell types. Despite these methods having this
limitation, we also think these methods are useful because they can successfully distinguish
DEGs from T cells and exclude irrelated cell types like monocytes and NK cells. This can
reduce the potential candidates and accelerate biological research.



Figure R23. DEG detection ability of CIBERSORTx and TAPE when there are similar cell types in bulk
samples. The red color means the DEGs are detected well and the blue color means the DEGs are
not well detected. In this scenario, both CIBERSORTx and TAPE will detect DEGs from CD4 T cell
rather than CD8 T cell.

We really appreciate your constructive comments because we can not clearly find our
methods’ limitations without your suggestions. So, in the manuscript, we also add this
experiment in section 2.7 and discuss this issue as our main limitation in the discussion
section:

(section 2.7) “In addition to the positive results that TAPE has really good performance in
predicting cell-type-specific GEPs, we also found that TAPE has its limitation in predicting
cell subtypes’ GEPs. In detail, we set up a series of simulated bulk data to detect DEGs as
we mentioned before. But we used similar cell types in this test. Specifically, we used similar
cell types like CD4 T cells and CD8 T cells together with two other cell types, namely
monocytes and NK cells. We also benchmarked CIBERSORTx and TAPE to see whether
they can distinguish DEGs from CD8 T cells and DEGs from CD4 T cells. The results show
that (Supplementary Figure 6) both methods can not correctly distinguish DEGs but TAPE
still shows a better performance than CIBERSORTx because TAPE can distinguish some
DEGs from CD8 T cells correctly, but CIBERSORTx always detects DEGs as from CD4 T
cells rather than from CD8 T cells. Furthermore, the AUROC value of TAPE is still higher
than CIBERSORTx. These results clearly show the shortage of both methods, which will be
examined in more detail in the Discussion part.”

(section 3) “Secondly, we notice that both CIBERSORTx and our method can not distinguish
DEGs from cell subtypes correctly (Supplementary Figure 6) which means that their
resolution is still limited. Though our method cannot precisely predict DEGs from cell
subtypes, it still reduces the potential candidates by excluding irrelated cell types. So, our
method is still useful and can be applied in the real-life scenarios to accelerate biological
research.”

(7) Fig. 5 is yet another very rough and premature result. Without solid evidence of the
predictive power of TAPE, any TAPE prediction with biological implications can be wrong.
Even if predictions from TAPE is right, what are the enriched pathways shown in Fig. 5a?
What does this mean biologically (related to virus infection) if these pathways are enriched?
How could people know whether these predictions were right? Are there any positive or
negative controls? Without these detailed information, how can I be convinced?

Answer: Thank you very much for the comment! We fully understand your concerns. Indeed,
in the original manuscript, our discussion about Fig. 5 was too short, which could lead to
misunderstanding. In the revision, following your comments, we have discussed it in much
more detail, clarifying what you were concerned about. Below are the details.

Essentially, in that part, what we show is a potential application of TAPE. That is, by
combining it with ssGSEA, we can study which pathway may be enriched in different cell
types rather than the whole bulk sample. In other words, with the help of TAPE, we can



study the biological pathways in a cell-specific resolution, which other methods have not
achieved. For example, CIBERSORTx is usually restricted to predict a small number of
significant genes in cell-type-specific GEPs.

Your concern about the positive and negative controls is very reasonable. In the bulk sample
pathway analysis, we usually need to have the controls. But as we are doing the pathway
analysis in the single-sample condition, that traditional analysis is unsuitable. Thus, we
combined TAPE with single-sample gene set enrichment analysis (ssGSEA) (Barbie et al.,
Nature, 2009). Unlike GSEA, ssGSEA can analyze a single sample by evaluating the gene
expression rank and allows one to define an enrichment score that represents the degree of
absolute enrichment of a gene set in each sample within a given dataset (see the original
article, methods online, signature projection method, Barbie et al. Nature, 2009). It
eliminates the necessity of controls, which is suitable for our case. Therefore, we choose
ssGSEA to obtain the gene set enrichment score. Of note, in all the results, we only consider
the statistically significant results, and the p-value of ssGSEA is calculated by testing the
hypothesis that the Spearman correlation between the enrichment score of gene set of
interest was greater than zero.
To clarify that part, following your comments, we have added the description to the
manuscript.

(section 2.8) “Besides the differential expressed genes, we also investigated the functions of
each cell type by incorporating cell-specific GEPs and ssGSEA [16]. The ssGSEA algorithm
only needs the gene rank, which our cell-type-specific GEPs could provide, we could predict
the activities of each function pathway for each sample without positive or negative controls.”

It also makes perfect sense that we should try to verify the prediction and detected enriched
pathways. To clarify, usually, people can verify their results by directly checking whether the
pathway function description is related to the experimental results (Grimes & Grimes.
Journal of Molecular and Cellular Cardiology, 2020, cited by 125). The pathway description
can be found on the MSigDB website
(https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp). And the experimental results
usually demonstrate that one key protein in a pathway is inhibited/activated by some
molecules. If the key protein exists in the pathway and is inhibited/activated under the virus
infection condition, and the gene set analysis results also show that this pathway is
inhibited/activated, people can conclude that this gene set enrichment analysis is correct.
The same analysis procedure can be found in this article (Grimes & Grimes. Journal of
Molecular and Cellular Cardiology, 2020, cited by 125). The results from those papers are
usually considered as ground truth. Here, what we have done is to compare our results,
which were obtained using the more efficient algorithm proposed by us, with the ground truth
from those works.

Regarding the pathways detected by our method as well as their biological meanings, in
Figure 5, the subfigure a shows the overview of our results and we can not list or investigate
all of these pathways since it is too complex to be clearly understood. Therefore, in the
subfigure b, we provide an easy way to interpret the statistically significant pathways (padj <
0.05) by finding some special pathways in one virus-infected dataset but not in others. This
is a useful analysis method when we have to face 200 pathways in 200 samples. In this way,

https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp


we could find some uniquely activated pathways, and naturally, these pathways would have
interesting biological meaning by reflecting the different effects caused by different viruses.

Specifically, when we compared the enriched functional pathways in each cell type in
different virus infections, we found that most of the commonly activated pathways within the
three infections in the B cell are general immune response pathways, including
BIOCARTA_IL2_PATHWAY, BIOCARTA_IL4_PATHWAY, BIOCARTA_IL6_PATHWAY, and
BIOCARTA_IL7_PATHWAY, representing the typical immune response in the three
infections. Also, we identified some specific activated functional pathways in B cell with
SARS-CoV-2 infections: BIOCARTA_MAPK_PATHWAY and
BIOCARTA_LONGEVITY_PATHWAY. BIOCARTA_MAPK_PATHWAY (MAPKinase Signaling
Pathway) activation has proved to cause an overwhelming inflammatory response in
SARS-CoV-2 infection (Grimes & Grimes. Journal of Molecular and Cellular Cardiology,
2020, cited by 125). The blockage of the BIOCARTA_LONGEVITY_PATHWAY (The IGF-1
Receptor and Longevity) has also been reported to mitigate lung injury and decrease the risk
of death in patients with SARS-CoV-2 (Winn. Medical Hypotheses, 2020, cited by 20).
Recent studies also found the coronavirus would induce cell cycle arrest, which did not exist
in other kinds of virus infection, which was also discovered by our algorithm (Su et al.
Frontiers in Veterinary Science, 2020, cited by 25). These specific activated pathways in
SARS-CoV-2 samples were consistent with previous studies, representing the capability of
interpreting cell-type-specific dysfunctional pathways by the GEPs.

Following your questions and comments, we have added this more detailed discussion and
analysis into the revision.

(section 2.8) “Combining with prior knowledge, some pathways we found are highly
correlated with these diseases. For instance, most of the commonly activated pathways
within the three infections in the B cell are general immune response pathways, including
BIOCARTA_IL2_PATHWAY, BIOCARTA_IL4_PATHWAY, BIOCARTA_IL6_PATHWAY, and
BIOCARTA_IL7_PATHWAY. Interestingly, we identified some specific activated functional
pathways in SARS-CoV-2 infections: BIOCARTA_MAPK_PATHWAY,
BIOCARTA_LONGEVITY_PATHWAY, and BIOCARTA_CELLCYCLE_PATHWAY which have
been reported before. BIOCARTA_MAPK_PATHWAY (MAPKinase Signaling Pathway)
activation has proved to cause an overwhelming inflammatory response in SARS-CoV-2
infection [38]. The blockage of the BIOCARTA_LONGEVITY_PATHWAY (The IGF-1
Receptor and Longevity) has also been reported to mitigate lung injury and decrease the risk
of death in patients with SARS-CoV-2 [39]. Recent studies also found the coronavirus would
induce the cell cycle arrest, which did not exist in other kinds of virus infection, which was
also discovered by our algorithm [40]. Generally, these examples show that the combination
of TAPE and ssGSEA can indeed discover some significant pathways as clues for further
experimental validation.”

In summary, we have shown that TAPE can be used to study the pathways in high
resolution. Although TAPE’s prediction is not perfect, our results have been partially proved
by the related publications based on experiments. Moreover, since more and more biologists
start using the GSEA results as a guide to design their experiments, combining ssGSEA with
our method is helpful for biologists to make some ex-ante analyses and can help them make
biological discoveries in an efficient way.



We understand our previous discussion is indeed premature and unclear, as you have
pointed out. Following your insightful comments, we have added the following discussion
into the revision to clarify the potential usage of our method.

(section 3) “Benefited from the predicted cell-type-specific GEPs of the TAPE in the
“high-resolution” mode, we could identify specific activated functional pathways in each cell
type for each sample, which could be another potential advantage of our algorithm.
According to the results above, we could identify cell types involved in the dysfunctional
pathways. Combining ssGSEA and TAPE could help identify the specific dysfunctional
pathways in particular cell types using the bulk RNA-seq data, which will essentially make
use of previous population transcriptome datasets.”

(8) I am curious, if TAPE is applied to analyze clinical bulk RNA-seq data, does the model
needs to be re-trained? In other words, if the authors trained TAPE with normal
bulk/single-cell RNA-seq data, can TAPE be applied to predict the proportion of cell types or
the expression of genes in disease state? Because I suspect genes are usually differentially
expressed in disease samples, even in the same cell subtypes, and wonder if the model
needs to be re-trained based on disease data. If “Yes”, then the application of TAPE to
“enable and accelerate the precise analysis of high-throughput clinical data in a wide range”
will be limited.

Answer: Thanks for asking about the re-training and speed! In fact, the training process and
speed are advantages of TAPE over the other methods. In the previous version, we showed
in section 2.5 that TAPE has a good performance in predicting the cell-type proportions in
disease state and we also mentioned that “TAPE only needs simulated data from healthy
samples to train, but it can predict the cell-type-specific gene expression in pathological
conditions if the corresponding bulk RNA-seq data is given.” This task is relatively difficult
and only a few methods have considered it before. But we realized that we didn’t clarify the
re-training process in the two tasks enough. Following your suggestion, we explain it in
detail:

(section 4.2.5) “The adaptive training stage is more like the fine-tuning step in deep learning
rather than being re-trained with new single-cell data. The adaptive-training time is 3
seconds per sample with GPU acceleration.”

When predicting the proportion of cell types, TAPE does not need to be re-trained. Being
trained with normal single-cell RNA-seq data, TAPE can be applied to predict the proportion
of cell types of disease tissues directly and robustly. Although we do expect there to exist
some genes that are differentially expressed between disease states, the proportion of
differentially expressed genes is usually small in real applications. Thus, we can expect the
performance of TAPE will not be affected much, and indeed TAPE shows a good
performance in predicting the cellular compositions, which is often the key signal to many
diseases. For example, TAPE can predict the tendency of neuron loss and have a good
prediction of microglia activation and deactivation among 532 samples with clinical
information, see more details in Figure R24 and response point 4.



Figure R24. Figure 3 in the manuscript

Even when it is applied to predict the gene expression profiles in a disease state, TAPE will
just be further trained in an adaptive way (using real bulk data to train the model in an
unsupervised manner, like the fine-tuning step in deep learning) rather than being re-trained
with single-cell data from the disease state. The adaptive-training time is 3 seconds per
sample. What is more, in section 2.7 and response point 5, we have proved that this
adaptive stage is useful for predicting differentially expressed genes (also see Figure R25).



Figure R25. Figure 4 in the manuscript

Furthermore, even if the users want to re-train everything from scratch for their own
completely different in-house applications, it is not a time-consuming task to do so. Below,
we show the training time of TAPE.



Table R12. source data of Figure 2b in our manuscript. Time consumption on the test of “Lung
umi2counts” task for each method, unit is second

tested on Lung
umi2counts,
sample size 100 200 300 400 500 600 700 800

TAPE 112.72 107.58 110.45 106.56 114.79 146.63 157.50 122.82

Scaden 340.16 352.71 358.82 353.40 347.19 351.96 393.23 342.95

RNAsieve 120.20 158.52 198.18 231.03 275.40 315.85 348.13 398.68

CIBERSORTx
(web) 821.68 1664.05 2595.24 NA NA NA NA NA

DWLS 267.85 530.96 839.19 1064.65 1314.96 1581.76 1913.18 2133.69

MuSiC 14.74 17.21 21.20 26.13 28.73 34.15 39.23 44.02

Bisque 12.39 12.42 12.81 13.45 13.87 14.67 14.99 15.14

We can see that, including the process to generate 5000 pseudobulk training data, it only
takes about 2 mins to train TAPE from scratch. This light method could be potentially useful
to users without plenty of computational resources.

Following your comments, we have added the following description and figure about our
training time in the revision.
(section 2.4) “Among all the methods tested (Figure 2b), Bisque is the fastest algorithm, and
it can deconvolve 800 samples in 15 seconds. For TAPE, it takes about 120 seconds in total
to construct the training data and train the deep learning model for 5,000 iterations. But its
inference speed is very fast and its time complexity is O(n) with a very small coefficient due
to the inherent advantage of using deep learning. Thus, TAPE’s time consumption would not
increase markedly with a larger cohort size. Besides the time complexity, TAPE only needs
about 1900MB GPU memory during the training stage. When deconvolving new bulk
samples, the memory consumption will increase along with the number of samples, but this
increment is really small in practice. Comparing with Scaden, another deep learning method,
TAPE is faster because of its highly optimized training data simulation procedure and a
smaller model size. Of note, the deconvolution step of DWLS is not slow, but the step of
constructing signature matrix using MAST is really time- and memory-consuming. As for
CIBERSORTx, its slow prediction speed is not justified because its speed is limited by the
web server. We would expect a much better performance if users can acquire the source
program from the developers. Generally, within the test settings, algorithms that do not
require complicated preprocessing steps (Bisque and MuSiC) achieve a better performance
on speed.”



Figure R26. Figure 2b in the manuscript, Log time consumption of each method. Source data is Table
R12.

(9) Fig. 4b is problematic and needs to be further clarified. The author claimed “Interestingly,
comparing the relative NRGN expression value in bulk GEP, single-cell GEPs, and predicted
GEPs (Fig 4b), we found that TAPE can successfully predict a high expression value of
NRGN in neurons while a low expression value of NRGN in endothelial cells.” I am not able
to draw this conclusion by looking at this figure. Besides, why OPC, Oligodendrocytes and
Unknown have either the blue or red bar, instead of both? What does “unknown” mean in
this figure? Fig. 4e, very seldom people will use –log10(P-value) in a box-plot to show the
significance, and it should not be p=xx in the box-plot, otherwise p=0.00 is considered as
“very significant”.

Answer: We appreciate the reviewer for pointing out the blurring of Figure 4 in the
manuscript and other detailed comments! Following your suggestions, to make things
clearer, in this revision, we have updated the subfigures of Figure 4 and changed the
structure of Figure 4.

(a) In the original figure and the revised figure (see Figure R27 below), the blue columns
represent the NRGN expression value predicted by our model. In contrast, the red columns
represent the NRGN expression value from healthy human brain single-cell profiles. Here,
we want to say that, for the predicted value (blue columns), compared to the high-level gene
expression column in ExNeurons, InNeurons, and Astrocytes, the gene expression in
Endothelial is low. In contrast, for the healthy single-cell profiles (red columns), expression
values of NRGN in these four cell types don’t have such big differences. Thus, we draw the
conclusion that the predicted gene expression value from our model can selectively allocate
gene expression to its corresponding cell types rather than simply allocating the same gene
expression value to all the cell types.
To avoid confusion from the readers, following your question, we have revised the
manuscript as below.

(section 2.6) “Interestingly, for the predicted values (Fig 4g, blue columns), the gene
expression value in Endothelial is low compared with the high-level gene expression values
in ExNeurons, InNeurons, and Astrocytes. In contrast, for the healthy single-cell profiles (Fig
4g, red columns), expression values of NRGN in these four cell types don’t have such big



differences. Thus, TAPE can successfully predict a high expression value of NRGN in
neurons while a low expression value of NRGN in endothelial cells.”

(b) For your information, we changed the label of the original Figure 4b to Figure 4g in the
revised manuscript. The reason why “OPC, Oligodendrocytes and Unknown have either the
blue or red bar, instead of both” is that when a certain bar is missing, it shows that the
corresponding gene expression value is equal to zero. And “unknown” represent cell types
that have no specific definition in the single-cell data. To make it clear, we remove “unknown”
from the results and change the appearance of Figure 4b (Figure 4g (Figure R27) in the
revised version). Also, to avoid causing misunderstanding and confusion, following your
question, we have revised the manuscript as below.

(caption Figure 4g) “The relative gene expression value of NRGN from different sources.
The dashed line represents the total relative NRGN expression value in the AD patients’
brain tissue. The missing blue or red column means the relative gene expression value of
prediction or single-cell data is zero.”

Figure R27. Figure 4g in the manuscript

(c) In the original manuscript, we used -log10(P-value) following (Fury et al. 2006
International Conference of the IEEE Engineering in Medicine and Biology Society, 2006).
Following your suggestion, we replace -log10(P-value) with P-value and the revised figure is
below.

Figure R28. Figure 4h in the manuscript
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Thanks to the authors for addressing some of my concerns. While I really like the general premise of 
the manuscript, there are some ambiguities in the experiments that make it hard to estimate if TAPE 
improves over SOTA methods in cell fraction or gene expression estimation. There are several main 

and minor points that I would deem important to address. 

Main points: 

1) The authors presented figure R1 (Figures 2c and 2d in the updated manuscript) to demonstrate 
performance per cell type. From this, it is difficult to say that TAPE improves over Scaden for 
prediction of cell type composition on real bulk datasets. Monaco is the only real bulk dataset there 

where the median CCC of tape seems higher than Scaden. 

2) Similar is the case for figure R3, where it is really hard to compare TAPE and Scaden. On 
umi2counts, TAPE definitely seems a lot better in MAE but substantially worse in CCC, indicating 
poor correlation or predictions and ground truth. 

3) Given points 1 & 2, it seems that there are many overstatements of TAPE’s performance compared 

to SOTA methods. If the author cannot show significant improvement of existing methods, they need 
to tone down many of their claims throughout the manuscript. 

4) For Figure R4, I would have appreciated going deeper into cellular subsets rather than evaluating 
performance on just CD4 and CD8 T cells, which are very broad T cell subtypes. To provide useful 

cell type deconvolution to biologists (or immunologists) it would be nice to know if TAPE can predict 
naive and memory subsets well, for instance. 

5) Since TAPE doesn’t show clear improvement in the estimation of cell proportions, the novelty of 
TAPE lies in the fact that it can estimate gene expression at scale (i.e. of all genes present in the 

single-cell data). However experiments presented by authors still seem cherry-picked. If TAPE can 
predict all genes, what is the need to select only 100 genes, especially on simulated data where 

TAPE has access to the ground truth? 

6) Thank you for adding an experiment in estimation of gene expression (Figure R9). I would be 

interested in knowing if the correlation of relative expression at gene level is also good. 

7) By design CibersortX only imputes genes that are likely to be significant in at least one cell type. It 
is therefore improper to compare TAPE and CibersortX on genes that are insignificant as authors did 
for simulated dataset. Could you please compare using significant genes. In addition, the evaluation 

of CibersortX on AD brains is missing. 

8) To evaluate gene expression estimation, it would be necessary to know how cell type-specific gene 
expression from highly resolved samples cluster? Are similar cell types closer to each other? 

9) Thank you for the clear explanation of the reasoning behind usage of Gaussian noise. The authors 
added “Here, we add noise to the simulated data because we want to make this pseudo-bulk test 

more difficult and closer to the real cases, instead of toy simulations.” As far as I know adding 
Gaussian noise may not necessarily mimic real bulk data better. Further explanation/experiment is 

necessary to show that Gaussian noise indeed makes simulations closer to real bulks. 

Minor points: 

10) The authors responded with “In this paper, we add Gaussian noise and dropouts.” However, it is 

unclear how adding dropouts to single-cell data makes simulations better or closer to the real bulks. If 



anything, real bulk contains more non-zero genes. 

11) Without looking at the source code, it is difficult to follow the training procedure of TAPE. It would 
be nice if the authors explain it more clearly. 

12) Since the output of the encoder does not sum to 1 and can be negative, the authors apply ReLU 
activation and normalize the result to sum to 1 using a scaling function. 

However, from the code in train.py and model.py in 
https://github.com/poseidonchan/TAPE/tree/main/TAPE, it seems that ReLU and scaling functions are 

only used during prediction (and adaptive stage). Am I wrong? Are ReLU and scaling functions 
always included in the model (i.e. in forward propagations)? If not, does it not violate entirely the 

assumption that the signature matrix is visible in the decoder since the proportions have to sum to 1 
for XS=B to be valid? Or is the decoder meant to represent the signature matrix only at the adaptive 
stage? This should be clearly stated in the manuscript. 

Best of luck and kind regards, 

Stefan Bonn 

Reviewer #2 (Remarks to the Author): 

All my concerns have been fully addressed in an awesome way. 



------------------------------------------------------
Reviewer #1. (Remarks to the Author):

Thanks to the authors for addressing some of my concerns. While I really like the general

premise of the manuscript, there experiments that make it hard to estimate if TAPE improves

over SOTA methods in cell fraction or gene expression estimation. There are several main

and minor points that I would deem important to address.

It’s nice to hear your supportive comments! We truly appreciate your thorough and
constructive review of the paper and for taking the time to go through many of the details! In
this revision, following your comments, we mainly made the following three revisions to
further improve the clarity of our manuscript.:

1. We evaluate different methods more comprehensively and elaborate on their
advantages and shortcomings under various scenarios. We summarize all the resutls
in Table R1 and R3 in this reply letter. For your convenience, we also put them below.
Understandably, no method, including TAPE, could outperform all the other methods
constantly across all the datasets. For example, Scaden shows good CCC
performance on microarray dataset. Meanwhile, TAPE has satisfactory performance
on monaco’s and ROSMAP_human datasets (accurate and robust with a small
interquartile range). To make the comparison clear, we vote for the method that
performs the best in most scenarios. To sum up, TAPE has the most frequent
occurrences as the top3 methods under all the scenarios (as shown in Table R1 and
R2). Furthermore, it is the best method for 16 out of 20 evaluation scenarios on the
real-bulk datasets.

2. We design a set of comprehensive experiments to test the DEG detection ability of
TAPE and CIBERSORTx. We show that each method has its own advantages and
shortages in different scenarios, as shown in below Table R3. To sum up, TAPE
performs better than CIBERSORTx when DEGs are randomly selected, which is the
real scenario.

3. In the writing part, for readability, we use a pseudo-code table to explain how we train
the model in the adaptive stage. For other misleading/unclear claims, we rewrite and
explain them more comprehensively.

Please find below for the point-to-point response to your comments and concerns.



Table R1. Performance summary of TAPE and SOTA methods. Here, we list the top3 methods in
order for different scenarios and datasets. The performance comparison between box plots is
evaluated by two-sided t-test. The order is based on the p-value, a small p-value represents better
performance. In some scenarios with only two data points, we only compute the average value for
comparison.

*only compute the average performance of all available data points because of the small number of data points

Table R2.  Statistical table of the number of occurrences in Table R1.



Table R3.  Performance summary of TAPE and CIBESORTx on the DEG detection task. The
performance is evaluated by the average AUROC in CD8 T cells. Since DEGs are only associated
with different conditions, which are not related to cell types’ signature genes, we usually care about
the case when DEGs are randomly selected. In real cases, the number of DEGs is usually smaller
than 1000.

Main points:

1) The authors presented figure R1 (Figures 2c and 2d in the updated manuscript) to

demonstrate performance per cell type. From this, it is difficult to say that TAPE improves

over Scaden for prediction of cell type composition on real bulk datasets. Monaco is the only

real bulk dataset there where the median CCC of tape seems higher than Scaden.

Answer: We thank the reviewer for this comment! We totally understand your concern about

the performance comparison. To make a clearer and more comprehensive comparison in

this revision, we summarized all the results and showed the top3 methods in Table R1 for

each evaluation scenario. Table R2 summarizes the numbers of occurrences in Table R1, in

which TAPE appears most frequently not only when taking all the scenarios into

consideration but also when considering real-bulk and pseudo-bulk separately. Additionally,

TAPE occurs most frequently as the best method for real-bulk datasets.

Regarding your comments on specific datasets and experiments with specific evaluation

criteria, in the beginning, we followed the performance evaluation metrics (overall CCC)

used in Scaden (Menden et al., 2020) to test each method’s performance. In our first version

manuscript, from our experiments, TAPE has the best overall performance on 4 of 5 real



datasets and is also among the top methods evaluated on the cell-type level. Following the

evaluation criteria in SOTA methods, we calculated the overall CCC and MAE values in

real-bulk datasets. As shown in Figure R1, TAPE raises up to 48.9% of the CCC and

reduces up to 40.6% of the MAE in comparison with Scaden.

Figure R1. Supplementary figure 5. Overall performance of all tested methods on five real datasets.
The overall performance is calculated by all the data points of a dataset.

But in the last revision, following your suggestions, we realized that overall CCC is not as

informative as CCC for each cell type, and we should go through the details of performance

for each cell type. Therefore, we changed the evaluation criteria to cell-type level in the last

revision. But since the previous SOTA method Scaden uses the overall performance as

evaluation metrics, we still maintain the overall performance in our supplementary files

(Supplementary figure 5). At the cell type level, our results show that TAPE achieves the

best MAE and the smallest variance. As for the CCC metric, even though the median CCC

of TAPE isn’t ranked first in sdy67 and microarray datasets, TAPE still shows comparable

performance with relatively small variance, indicating the performance of TAPE is robust for

all the cell types (Figure R2d). To be specific, TAPE has a median CCC of 0.275 (not as

good as Scaden’s 0.348), while TAPE’s interquartile range on sdy67 is 0.169 (smaller than

0.205 of Scaden on sdy67). Also, we admit that TAPE’s median CCC performance (0.386)



on microarray is below the 0.441 of Scaden. However, TAPE’s interquartile range of 0.089

shows the robustness of TAPE’s prediction among different cell types in comparison to

Scaden (0.209). For monaco and ROSMAP_human dataset, not only the median CCC of

TAPE is higher than Scaden’s (TAPE’s median CCC: 0.386 and 0.140; Scaden’s median

CCC: 0.326 and 0.121), but the interquartile range is also smaller (TAPE’s interquartile

range: 0.178 and 0.113; Scaden’s interquartile range: 0.237 and 0.155). TAPE and Scaden

show comparable performance on ROSMAP_mouse dataset. It is worth noticing that TAPE’s

MAE performance is remarkable in comparison to SOTA methods.

Figure R2. Figure 2c&d in the manuscript. c Deconvolution results on simulated data. CCC represents
the Lin’s concordance correlation coefficient, measuring the concordance between the predicted



fraction and the ground truth. MAE represents mean absolute error, measuring the accuracy of
prediction. Higher CCC and lower MAE are better. Each box contains metric values for all the cell
types considered in all the tissues. Different color refers to different methods. d Deconvolution results
on real data. The columns’ labels refer to the datasets. CCC and MAE are used as metrics.

Considering  your suggestion, we modify our claims in the abstract of TAPE as:

(Abstract) “Compared with popular methods on several datasets, TAPE has the best overall

performance and comparable accuracy at cell type level. Additionally, it is more robust

among different cell types, faster, and sensitive to provide biologically meaningful

predictions.”

and we added more detailed description about the performance in the manuscript:

(section 2.3) “To be specific, for ROSMAP_human dataset, the median CCC of TAPE is the

best (0.140). While Scaden achieves the best median CCC of 0.326 and 0.202 on SDY67

dataset and ROSMAP_mouse dataset, and CIBERSORTx achieves the best median CCC

on Monaco’s PBMC dataset and microarray PBMC dataset. Though TAPE’s median CCC on

these four datasets is not the highest, the values are comparable with the difference smaller

than 0.07. Considering the interquartile range, we can see that the performance of DWLS is

close to the best on SDY67 dataset and ROSMAP_mouse dataset. Detailed comparison

results are available in the Supplementary Table 8.”

2) Similar is the case for figure R3, where it is really hard to compare TAPE and Scaden. On

umi2counts, TAPE definitely seems a lot better in MAE but substantially worse in CCC,

indicating poor correlation or predictions and ground truth.

Answer: We thank the reviewer again for the comments related to performance. The overall

performance comparison has been discussed extensively in other questions and comments.

Regarding this specific experiment, we are sorry for the misunderstanding caused. As this

experiment was added during the first revision, perhaps we did not make the logic behind

this experiment clear enough. We further clarify it below and have revised the manuscript to

increase the readability of the paper.



In Figure R3, we carried out an additional experiment to explore the cell-type level

performance of TAPE and other popular methods in the “rare” scenario. Since we do not

force TAPE to specifically overfit the pseudo-bulk data but design it to solve practical

problems, we admit that TAPE is not the best method in this scenario. Unfortunately, all the

methods can not achieve an appealing prediction power for rare cell types on Limb Muscle,

Lung, and Marrow datasets as well. Since we only consider rare cell types in this scenario

and the data points are not enough for systematic comparison using a t-test, we calculated

the average CCC and MAE among different cell types. We found that the top methods

evaluated by CCC on umi2counts datatype are Scaden (0.215 on Limb_Muscle), Music

(0.238 on Lung), and DWLS (0.150 on Marrow). And the top methods evaluated by MAE on

umi2counts datatype are TAPE (0.013 and 0.047 on Limb_Muscle and Marrow) and Music

(0.011 on Lung) (Table R1). We admit that TAPE is worse in CCC in comparison with

Scaden on umi2counts, which indicates that “TAPE has an obvious limitation in predicting a

good correlation for rare cell types” as we mentioned in the caption of Supplementary

Figure 2. However, a CCC value below 0.3 seems inadequate to prove to solve the

deconvolution problem in the “rare” scenario. Also, we need to mention that even though

TAPE shows a relatively good MAE performance in the “rare” scenario, we don't think we

resolve this problem. This statement is consistent with what we have mentioned in the last

revision:

(section 2.2) “In the ‘rare’ scenario, we only display the metrics for pre-defined rare cell

types. The results show that all the methods can not result in a satisfying concordance

between prediction and ground truth in this scenario (Figure 2c). Interestingly, although the

CCC values are pretty low with those methods, their MAEs are comparable to those in the

‘normal’ scenario, which indicates that those methods can predict a value near ground truth

but are not correlated with each other.”

Therefore, the intuition behind this part is not for performance comparison, but to

demonstrate a situation remaining to be tackled by TAPE and all SOTA methods.

For clearer illustration, we revised the following statement to the caption of Supplementary



Figure 2:

“All the methods can not achieve an appealing prediction power for rare cell types. Even

though TAPE can achieve a relatively good performance on MAE (for example on

umi2counts datatype, TAPE has the smallest average MAE on Limb_Muscle(0.013) and

Marrow(0.047)), TAPE has worse performance on CCC in comparison with other methods,

which indicates that TAPE needs further improvement in predicting a good correlation for

rare cell types. Meanwhile, we have to point out that, for all the methods, a CCC value below

0.3 seems inadequate to show the deconvolution problem being resolved in the ‘rare’

scenario.”

Figure R3.  Appendix Figure 2 in the manuscript

3) Given points 1 & 2, it seems that there are many overstatements of TAPE’s performance

compared to SOTA methods. If the author cannot show significant improvement of existing

methods, they need to tone down many of their claims throughout the manuscript.

Answer: Thank you for the comments! We totally understand your concern related to

performance comparison. And we will clarify it.



Essentially, in the manuscript, we evaluate different methods comprehensively and elaborate on

their advantages and shortcomings under various scenarios. Understandably, no method,

including TAPE, could outperform all the other methods constantly across all the datasets. For

your information, we sum up all the deconvolution experiments carried out in this work, hoping to

demonstrate TAPE’s performance.

1. Evaluation on the pseudo bulk datasets. To fully exploit the advantages of pseudo-bulk

data, we defined three deconvolution scenarios: “normal”, “rare”, and “similar”.

a. “normal”: DWLS achieves the best performance on both metrics and TAPE is

comparable to DWLS.

b. “rare”: The results show that all the methods can not result in a satisfying

concordance between prediction and ground truth in this scenario. Though TAPE

is not the best algorithm in this scenario, its performance is comparable to DWLS,

which focuses on rare cell types.

c. “similar”: TAPE’s performance is the best. It has the best median CCC and median

MAE with small interquartile range.

2. Evaluation on the real bulk datasets. TAPE’s MAE is the smallest on all the datasets and it

achieves the best median CCC value on ROSMAP_human dataset. For other datasets,

Scaden is the best on SDY67 and ROSMAP_mouse and CIBERSORTx is the best on

Monaco’s PBMC and microarray dataset. In detail, the median CCC value of TAPE on

ROSMAP_mouse and Monaco’s PBMC datasets are very close to the best. Specifically,

the difference between TAPE and Scaden is only 0.0001 on ROSMAP_mouse dataset,

and the difference between TAPE and CIBERSORTx is 0.02 on Monaco’s dataset.

Please kindly refer to the following Table R1 and R2. Essentially, TAPE has the most frequent

occurrences as the top3 methods under all the scenarios. More importantly, it is the best method

for 16 out of 20 evaluation scenarios on the real-bulk datasets.

Table R1. Performance summary of TAPE and SOTA methods. Here, we list the top3 methods in
order in different scenarios and datasets. The performance comparison between box plots is
evaluated by two-sided t-test. The order is based on the p-value, a small p-value represents higher
performance. In some scenarios with only two data points, we only compute the average value for
comparison.



*only compute the average performance of all available data points because of the small number of data points

Table R2.  Statistical table of the number of occurrences in Table R1.

We totally agree with your suggestion that we should not overclaim the manuscript, which

may cause reader’s abuse and incorrect usage of the proposed method. We toned down in

the last revision when we found that TAPE’s CCC performance is not superior at the

cell-type level. Since the last revision, following your suggestions, we have rewritten the



results section and we describe the results with a fair description. Though TAPE’s overall

CCC performance is better than other methods, we have admitted TAPE’s medium CCC

value on cell-type level is not always the best on all real datasets as (section 2.3) “For the

CCC metric, although other methods like DWLS and Scaden surpass TAPE,”

However, it is still worth noticing that TAPE shows comparable performance with relatively

small variance, indicating that

(section 2.3) “the prediction performance of TAPE is similar for all the cell types and hence

robust”.

Additionally, TAPE’s clinical performance is what we attached great importance to.

Experiments demonstrate TAPE’s sensitivity to biological changes as well as its ability to

predict cell-type-specific GEP tissue-adaptively.

We toned down our claims on the cell-type level performance of TAPE in this revision:

(section 1) “Empirically, our method could achieve a better overall performance than

previous state-of-the-art methods. When evaluated on cell-type level, TAPE has the best

performance of MAE, and comparable CCC with relatively small variance on real datasets.”

4) For Figure R4, I would have appreciated going deeper into cellular subsets rather than

evaluating performance on just CD4 and CD8 T cells, which are very broad T cell subtypes.

To provide useful cell type deconvolution to biologists (or immunologists) it would be nice to

know if TAPE can predict naive and memory subsets well, for instance.

Answer: Thank you for raising the question about the problem of going deeper into cellular

subsets of TAPE. According to the datasets we used, we find that Monaco’s PBMC datasets

are appropriate for the subset deconvolution task since it contains many subtypes in the flow

cytometer file. To annotate the single-cell data with subtypes labels, we use the newly

published immune cells annotator CellTypist (Domínguez Conde et al., 2022) to label the cell

subtypes for data8k dataset. The reason why we choose CellTypist is that the training data

contains nearly one million hand-labeled immune cells with clear cell subtypes, and in

practice, it can achieve very good results on many datasets. Moreover, in order to obtain a

plausible annotation, we only select the cells with a confidence score greater than 0.8.

According to the results of CellTypist, we obtain the annotated data8k datasets with 17



immune cell types (Figure R4 a). Combining the cell types in Monaco’s dataset and cell

types in the single-cell dataset, we finally define 13 cell types. The relations are displayed in

the following table:

Table R4.  Relations between defined cell types and existing cell types in original datasets. Notice that
we merge some cell types to make the categories identical.

After this preparation, we test the deconvolution performance for each method. The results

show that all the methods can not deal with these detailed cell type deconvolution tasks

since the CCC is pretty low and some cell types’ CCC is negative. The probable reason



contains two points: 1. many cell types’ ratio is pretty low and we have shown that all the

methods can not deal with the “rare” scenario well; 2. there exist many similar cell types and

the signal (signature gene) / noise (cross-protocol sequencing error) ratio may decrease and

leads to failure. From Figure R4, we can tell that TAPE has higher CCC and lower MAE than

SOTA methods. However, we would not claim that TAPE can resolve the problem of

predicting cell subtypes due to the low absolute CCC values.

Figure R4. Deconvolution of immune cell subsets. a. The annotated cell types of data8k datasets.

This is produced from the pipeline of CellTypist. Only cells with a confidence score greater than 0.8

were selected. b,c. Deconvolution performance of current methods on Monaco’s dataset. Only TAPE

predicts positive CCC for all cell types.

Following your insightful comment, we have added this phenomenon to the manuscript and

point out it as a common limitation of current methods:

(section 2.3) “Moreover, we test all the methods' ability of deconvolving immune cell

subtypes. With 13 defined cell subtypes, all the methods can not achieve satisfying results

(Supplementary Figure 4, median CCC < 0.1), which clearly shows the common limitation of

current methods.”



(section 4.1) “When we used it to test whether deconvolution methods can achieve good

performance with immune cell subtypes, we merged all 30 cell types into 13 cell subtypes

(Supplementary Table 1). The similar subtypes are defined as ‘mDC’ and ‘pDC’, ‘naive CD4

T cell’ and ‘non-naive CD4 T cell’, ‘naive CD8 T cell’ and ‘non-naive CD8 T cell’, and ‘naive B

cell’ and memory B cell’.”

5) Since TAPE doesn’t show clear improvement in the estimation of cell proportions, the

novelty of TAPE lies in the fact that it can estimate gene expression at scale (i.e. of all genes

present in the single-cell data). However experiments presented by authors still seem

cherry-picked. If TAPE can predict all genes, what is the need to select only 100 genes,

especially on simulated data where TAPE has access to the ground truth?

Answer: Thank you for your comment. Firstly, we would like to clarify TAPE’s performance in

the estimation of cell proportions. To make things clearer, please refer to the following table

for a comprehensive comparison.

Table R1. Performance summary of TAPE and SOTA methods. Here we list the top3 methods in
order in different scenarios and datasets. The performance comparison between box plots is
evaluated by two-sided t-test. The initial assumption is TAPE’s performance is better than other
methods. If p > 0.5, TAPE’s performance is not better than other methods. The order is based on the
p-value, a small p-value represents higher performance. In some scenarios with only two data points,
we only compute the average value for comparison.

Your concern about the selection of genes is reasonable. There are two main reasons for



selecting 100 genes.

Firstly, by randomly selecting 100 genes among 10,000 genes in CD8 T cells as

up-regulated genes, the picked genes are unbiased. And in many real cases, the number of

DEGs is around 100 (data from Table2 of Zhao et al., 2018, where the max number of

detected DEGs is 833 and the average number of DEGs is around 100).

Secondly, in the ROC graph, the horizontal axis FPR is only concerned with negative

samples; the vertical axis TPR is only concerned with positive samples. Therefore, the

horizontal and vertical axes are not affected by the proportion of positive and negative

samples, and the integration, which is AUC (Area Under The Curve) ROC (Receiver

Operating Characteristics) curve, is certainly not affected by them. Thus, AUROC is

insensitive to the prevalence. Hence, we assume that our setting is reasonable.

In this revision, we consider all your related questions (including Q7 and Q8) about the DEG

detection task and design a comprehensive test with four scenarios to test both methods’

ability to detect DEGs. In Figure R5, the four scenarios are “randomly selected DEGs without

similar cell type”, “randomly selected DEGs with similar cell type”, “signature genes as DEGs

without similar cell type” and “signature genes as DEGs with similar cell type”. In this

question, since you mainly concern that testing on only 100 genes may be biased, following

your suggestion, we carried out additional experiments in the settings with more genes

selected as DEGs. In this revision, we mainly test the scenario with 1,000 DEGs instead of

using all the genes as DEGs because the number of DEGs is usually under 1000 (data

from Table2 of Zhao et al., 2018, where the max number of detected DEGs is 833 and the

average DEGs is around 100). For your interest, we also design an experiment with 5,000

DEGs as an extreme case to show the prediction ability of TAPE.and CIBERSORTx. In

FigureR5, we notice that when the number of DEGs is under 1,000, TAPE has better

predictive power than CIBERSORTx. The average AUROC in CD8 T cell for CSx and TAPE

are 0.5578 and 0.6538, respectively. But in the extreme case, when there are 5,000 DEGs,

the performance of CIBERSORTx increases and is better than TAPE. The main reason why



TAPE’s performance drops in the extreme case is that TAPE intends to predict normal genes

as DEG when the up-regulated gene ratio increases. Since the extreme case is not expected

to appear in usual studies, we still draw the conclusion that TAPE’s performance is better

than CIBERSORTx when the DEGs are randomly selected, and there are not any similar cell

types.

Following your comments, we have revised the below section in the manuscript.

(section 2.7) “In addition to the normal scenario that there are only 100 randomly selected

DEGs with four non-similar cell types in simulated bulk samples, we designed

comprehensive tests with four scenarios to benchmark TAPE and CIBERSORTx's

performances. The four scenarios are: ‘randomly selected DEGs without similar cell type’,

‘randomly selected DEGs with similar cell type’, ‘signature genes as DEGs without similar

cell type’, and ‘signature genes as DEGs with similar cell type’. In detail, we set up a series

of simulated bulk data to detect DEGs as we mentioned before. However, we used similar

cell types or changed the number of randomly selected genes, or used signature genes as

DEGs in this test. Specifically, for the ‘similar’ scenario, we used similar cell types like CD4 T

cells and CD8 T cells together with two other cell types, namely monocytes and NK cells. In

the scenarios where DEGs are randomly selected, the number of DEGs ranges from 100 to

5,000. For the ‘signature genes as DEGs’ scenario, we up-regulated the signature genes of

CD8 T cells produced by CIBERSORTx in the simulated bulk samples. From the results

(Supplementary Figure 10), we can have four conclusions: 1. TAPE's predictive power is

better than CIBERSORTx when the randomly selected DEGs are less than 1,000; 2. both

methods can achieve good performance when the DEGs are signature genes and there are

not any similar cell types; 3. both methods can not distinguish DEGs from CD8 T cell rather

than CD4 T cell if the DEGs are randomly selected; 4. CIBERSORTx is better than TAPE if

the DEGs are signature genes and there exist similar cell types. Interestingly, from points 2

and 4, it seems that TAPE can learn the signature genes between distinguished cell types

but not exactly enough to distinguish similar cell types. In all, considering all the scenarios,



we display that each method has its own advantages and disadvantages and it can be seen

as a guide for researchers to decide which method to use.”

We added this additional experiment to the Supplementary of the manuscript:

Figure R5. Comprehensive tests for TAPE and CIBERSORTx in four scenarios. The upper left

scenario uses randomly selected DEGs and it does not contain similar cell types in single-cell profiles.

The number of DEGs ranges from 1,00 to 5,000. However, the number of DEGs is usually below

1,000 (Zhao et al., 2018). The second one is the “signature genes as DEGs without similar cell types”

scenario which is located in the upper right. The bottom left area is the “randomly selected DEGs with

similar cell types” scenario, and the bottom right one is the ”signature genes as DEGs with similar cell

types” scenario. All the tests use AUROC as criteria, and the high AUROC value is expected to only

appear in CD8 T cells. In the first scenario, TAPE is better than CIBERSORTx when the number of

DEGs is below 5,000 (average AUROC in CD8 T cells for CSx and TAPE are 0.5578 and 0.6538



respectively). In the second scenario, both methods can achieve a good predictive power (average

AUROC in CD8 T cells for CSx and TAPE are 0.7639 and 0.7611 respectively). In the third scenario,

both methods can not distinguish DEGs from similar cell types well but TAPE’s performance is a little

better (average AUROC in CD8 T cells for CSx and TAPE are 0.5146 and 0.5249 respectively). In the

last scenario, CIBERSORTx behaves better than TAPE because of the incorporation of the signature

matrix (average AUROC in CD8 T cell for CSx and TAPE are 0.7466 and 0.5336 respectively).

We also summarize the experimental results below for the reader’s quick reference.

Table R3.  Performance summary of TAPE and CIBESORTx on the DEG detection task. The
performance is evaluated by the average AUROC in CD8 T cells. Since DEGs are only associated
with different conditions which are not related to cell types’ signature genes, we usually care about the
case that DEGs are randomly selected.

6) Thank you for adding an experiment in estimation of gene expression (Figure R9). I would

be interested in knowing if the correlation of relative expression at gene level is also good.

Answer: Thank you very much for the insightful suggestion! Following your comment, we

calculated the relevant CCC values of TAPE and compare the performance with

CIBERSORTx at the gene level in this revision. Though our performance in adapt2real

scenario (median CCC 0.2127) is better than CIBERSORTx (median CCC 0.0627), there is

still a large room for improvement. To be specific, we first added an experiment to show

gene concordance of CIBERSORTx and then calculate the CCC at the cell type level and

label them in Figure R6 a&b. Except for the similar result of TAPE and CIBERSORTx on

monocytes, the CCC values of TAPE were significantly higher than CIBERSOTx on the other

five cell types. Then, we rearrange the data from Figure R6 a&b at the gene level. That is,

we calculate the correlation for each gene with the gene expression value from 6 cell types.



Here, we use an enhanced box plot to show the results (Figure R6 c). We can see that about

half of the genes’ CCC is lower than 0.25 and about 25% of genes’ CCC are negative. The

main reason is that some gene expression values are predicted as zero while they should

not be zero in reality (Figure R6 c). For your information, we also use CIBERSORTx’s group

mode to analyze the genes’ concordance between predicted gene expression value and real

gene expression value from single-cell profiles. For CCC comparison at the gene level, we

do not use the filtered inferred GEP of CIBERSORTx (because gene numbers will be

different in different cell types). We can see that, for CIBERSORTx, many genes are

predicted as zero and the CCC values at the gene level are not satisfying (Figure R6 b). We

think that CIBERSORTx still shows its shortage in using single-cell profiles as references.

Because in the original article (Figure 3 b,d from Newman et al., 2019), the authors of

CIBERSORTx only display the value from microarray data (note the x-axis label is MAS5).

We can easy to tell from Figure R6 c that the correlation of relative expression of TAPE at

gene level in  adapt2real scenario is better than CIBERSORTx’s.

Really thanks for your constructive comments, we have added the gene-level CCC results to

the supplementary files and mentioned them in the manuscript.

(section 3) “Firstly, when we study the correlation at the gene level using ‘overall’ mode

(Supplementary Figure 7), about 30% of the predicted genes have a negative correlation.

Although our method's performance ( median CCC 0.2127) is better than CSx (median CCC

0.0627), there is still large room for improvement.”



Figure R6. Gene concordance of TAPE and CSx. a Figure 4b in the manuscript. Concordance

between the predicted relative gene expression value in real bulk data and the relative gene

expression value in single-cell data of TAPE. b Concordance between the predicted relative gene

expression value in real bulk data and the relative gene expression value in single-cell data of CSx. c

Gene level CCC of TAPE and CSx (median CCC of TAPE and CSx in adapt2real scenario are 0.2171

and 0.0627, respectively).

7) By design CibersortX only imputes genes that are likely to be significant in at least one

cell type. It is therefore improper to compare TAPE and CibersortX on genes that are

insignificant as authors did for simulated dataset. Could you please compare using

significant genes. In addition, the evaluation of CibersortX on AD brains is missing.

Answer: Thanks for the comment. We totally understand your concerns and design new

experiments following your awesome suggestion.



First, we want to clarify that the significant genes are not really significant in practice

because they are the DEGs among all the cell types in single-cell datasets. When the cell

types are changing in a single-cell dataset, the calculated DEGs between cell types will

change. So, they should be called signature genes instead of significant genes. We

apologize for using misleading words. Actually, we did not consider comparing TAPE and

CIBERSOTx on signature genes because the actual DEGs might not be the signature gene

of one cell type. For example, in our manuscript section 2.7, the DEG between HIV PBMC

samples under two conditions is RAB11FIP5 which is not a signature gene in any cell type

(calculated by CIBERSORTx). Therefore, we think that only considering the signature gene

may not be actually useful in real applications. But, for your information, we also test both

methods in this situation. We designed two scenarios (Figure R7), the first is “signature

genes as DEGs without similar cell type”, and the second one is “signature genes as DEGs

with similar cell type (CD4 T cell and CD8 T cell)”. Of note, the signature genes are the

signature genes of CD8 T cells calculated by CIBERSOTx, and the number of signature

genes is about 200 in the first scenario and 130 in the second scenario. In the first scenario,

we can see that both methods can achieve a really good performance. Comparing this result

with the scenario “randomly selected DEGs without similar cell type”, we can see that the

predictive power of both methods increases a lot (with 100 randomly selected DEGs, the

average AUROC value of CIBERSORTx increases from 0.53 to 0.76, the average AUROC

value of TAPE increases from 0.67 to 0.76). This phenomenon indicates that although TAPE

is not designed by using signature genes as input, the deep learning model may still learn

the signature genes during the training process with simulated bulk data. However, in the

second scenario, CIBERSORTx shows its superior performance over TAPE. This means that

TAPE can not distinguish the signature genes between similar cell types and CIBERSORTx

can handle this scenario pretty well since it is designed by using signature genes. But

considering that the actual DEGs may not be the signature genes, we think that this scenario

is not as common as the scenario with randomly selected DEGs, and TAPE can achieve a

better performance in a common scenario.



In this revision, we have modified what we discussed in the last revision:

(section 3) Thirdly, we notice that both CIBERSORTx and our method can not distinguish

DEGs from similar cell subtypes correctly if the DEGs are not signature genes

(Supplementary Figure 9) which means that their resolution is still limited. But CIBERSORTx

has displayed its advantages in distinguishing signature DEGs from similar cell types

because of the incorporation of the signature matrix (Supplementary Figure 10). Though our

method cannot precisely predict DEGs from cell subtypes or have better performance than

CIBERSORTx if all signature genes are DEGs which probably does not occur in the real

world, it still reduces the potential candidates by excluding irrelated cell types. So, our

method is still useful and can be applied in real-life scenarios to accelerate biological

research.

Thanks for your comments regarding the performance of CIBERSORTx. In our manuscript

Figure 4g, we want to establish the correctness of our method firstly, that is showing our

method can be adaptive, and that this adaptation is reasonable. Thus, we did not display the

predicted value of CIBERSORTx. For your information, we use the “group” mode of

CIBERSORTx to predict the gene expression value of each cell type (Figure R8). The results

show that, though CIBERSORTx can predict a high NRGN value in Inhibited Neurons it can

not predict a high NRGN value in excited Neurons. We have added this comparison in the

manuscript and modify the caption:

(section 2.6) “In this test, we also used the ‘group’ mode of CIBERSORTx to predict the

expression value of NRGN in different cell types. The results show that although

CIBERSORTx can predict high expression value of NRGN in InNeurons, it can not predict an

expected high value in ExNeurons.”



Figure R7. Comprehensive tests for TAPE and CIBERSORTx in four scenarios. The upper left

scenario uses randomly selected DEGs and it does not contain similar cell types in single-cell profiles.

The number of DEGs ranges from 1,00 to 5,000. However, the number of DEGs is usually below

1,000 (Zhao et al., 2018). The second one is the “signature genes as DEGs without similar cell types”

scenario which is located in the upper right. The bottom left area is the “randomly selected DEGs with

similar cell types” scenario and the bottom right one is the ”signature genes as DEGs with similar cell

types” scenario. All the tests use AUROC as criteria, and the high AUROC value is expected to only

appear in CD8 T cells. In the first scenario, TAPE is better than CIBERSORTx when the number of

DEGs is below 5,000 (average AUROC in CD8 T cells for CSx and TAPE are 0.5578 and 0.6538

respectively). In the second scenario, both methods can achieve a good predictive power (average

AUROC in CD8 T cells for CSx and TAPE are 0.7639 and 0.7611 respectively). In the third scenario,

both methods can not distinguish DEGs from similar cell types well but TAPE’s performance is a little

better (average AUROC in CD8 T cells for CSx and TAPE are 0.5146 and 0.5249 respectively). In the

last scenario, CIBERSORTx behaves better than TAPE because of the incorporation of the signature

matrix (average AUROC in CD8 T cell for CSx and TAPE are 0.7466 and 0.5336 respectively).



Figure R8. The relative gene expression value of NRGN from different sources. Figure 4g in the

manuscript. The dashed line represents the total relative NRGN expression value in the AD patients’

brain tissue. The missing column means the relative gene expression value is zero.

8) To evaluate gene expression estimation, it would be necessary to know how cell

type-specific gene expression from highly resolved samples cluster? Are similar cell types

closer to each other?

Answer: Thank you for asking this excellent question! This question is really interesting. In

the last revision, when we compare the DEG detection ability, we have already included a

set of experiments with similar cell types CD4 T cell and CD8 T cell (section 2.7, last

paragraph). The results show that both TAPE and CIBERSORTx can not distinguish DEGs

from CD8 T cells rather than CD4 T cells when the DEGs are randomly selected. So, we

think the predicted GEPs between similar cell types are close. In this revision, considering

your questions 5 and 7, we have added more experiments to compare these two methods in

the “similar” scenario. Firstly, in the scenario “randomly selected DEGs with similar cell type”,

we increase the number of selected DEGs to 1,000, and the results show that both methods

still mix the DEGs from CD8 T cell up with CD4 T cell (Figure R9). Secondly, considering



your suggestion in question 7, we test their performance in the “signature genes as DEGs

with similar cell type” scenario. As we expected, CIBERSORTx can distinguish the DEGs

from CD8 T cells well, but TAPE can not (Figure R9). The reason is that CIBERSORTx was

designed to use the signature genes, and the signature genes are calculated by the

CIBERSORTx. We really appreciate your advice. Now, we clearly know the advantages and

limitations of both methods in different scenarios. We have rewritten section 2.7 with the

comprehensive experiments and discussed the limitations as well in the manuscript.

(section 2.7) In addition to the normal scenario that there are only 100 randomly selected

DEGs with four non-similar cell types in simulated bulk samples, we designed

comprehensive tests with four scenarios to bechmark TAPE and CIBERSORTx's

performances. The four scenarios are: “randomly selected DEGs without similar cell type”,

“randomly selected DEGs with similar cell type”, “signature genes as DEGs without similar

cell type” and “signature genes as DEGs with similar cell type”. In detail, we set up a series

of simulated bulk data to detect DEGs as we mentioned before. But we used similar cell

types or changed the number of randomly selected genes or used signature genes as DEGs

in this test. Specifically, for the similar scenario, we used similar cell types like CD4 T cells

and CD8 T cells together with two other cell types, namely monocytes and NK cells. In the

scenarios where DEGs are randomly selected, the number of DEGs ranges from 100 to

5,000. For the ``signature genes as DEGs" scenarios, we up-regulated the signature genes

of CD8 T cells produced by CIBERSORTx in the simulated bulk samples. From the results

(Supplementary Figure 10), we can have four conclusions: 1. TAPE's predictive power is

bigger than CIBERSORTx when the randomly selected DEGs are below 1,000; 2. both

methods can achieve a good performance when the DEGs are signature genes and there is

not any similar cell types; 3. both methods can not distinguish DEGs from CD8 T cell rather

than CD4 T cell if the DEGs are randomly selected; 4.CIBERSORTx is better than TAPE if

the DEGs are signature genes and there exists similar cell types. Interestingly, from point 2

and 4, it seems that TAPE can learn the signature genes between distinguished cell types

but not exactly enough to distinguish similar cell types. In all, considering all the scenarios,



we display that each method has its own advantages and disadvantages and it can be seen

as a guide for researchers to decide which method to use.

(section 3) Thirdly, we notice that both CIBERSORTx and our method can not distinguish

DEGs from similar cell subtypes correctly if the DEGs are not signature genes

(Supplementary Figure 9) which means that their resolution is still limited. But CIBERSORTx

has displayed its advantages in distinguishing signature DEGs from similar cell types

because of the incorporation of the signature matrix (Supplementary Figure 10). Though our

method cannot precisely predict DEGs from cell subtypes or have better performance than

CIBERSORTx if all signature genes are DEGs which probably does not occur in the real

world, it still reduces the potential candidates by excluding irrelated cell types. So, our

method is still useful and can be applied in real-life scenarios to accelerate biological

research.



Figure R9. Comprehensive tests for TAPE and CIBERSORTx in four scenarios. The upper left

scenario uses randomly selected DEGs, and it does not contain similar cell types in single-cell

profiles. The number of DEGs ranges from 1,00 to 5,000. However, the number of DEGs is usually

below 1,000 (Zhao et al., 2018). The second one is the “signature genes as DEGs without similar cell

types” scenario which is located in the upper right. The bottom left area is the “randomly selected

DEGs with similar cell types” scenario and the bottom right one is the ”signature genes as DEGs with

similar cell types” scenario. All the tests use AUROC as criteria, and the high AUROC value is

expected to only appear in CD8 T cells. In the first scenario, TAPE is better than CIBERSORTx when

the number of DEGs is below 5,000 (average AUROC in CD8 T cells for CSx and TAPE are 0.5578

and 0.6538 respectively). In the second scenario, both methods can achieve a good predictive power

(average AUROC in CD8 T cells for CSx and TAPE are 0.7639 and 0.7611 respectively). In the third

scenario, both methods can not distinguish DEGs from similar cell types well but TAPE’s performance

is a little better (average AUROC in CD8 T cells for CSx and TAPE are 0.5146 and 0.5249

respectively). In the last scenario, CIBERSORTx behaves better than TAPE because of the

incorporation of the signature matrix (average AUROC in CD8 T cell for CSx and TAPE are 0.7466

and 0.5336 respectively).

9) Thank you for the clear explanation of the reasoning behind usage of Gaussian noise.

The authors added “Here, we add noise to the simulated data because we want to make this

pseudo-bulk test more difficult and closer to the real cases, instead of toy simulations.” As

far as I know adding Gaussian noise may not necessarily mimic real bulk data better. Further

explanation/experiment is necessary to show that Gaussian noise indeed makes simulations

closer to real bulks.

Answer: Thanks for raising this concern. We totally agree with your opinion. The problem is

that the description in our last response is ambiguous. Here, “the real case” doesn’t refer to

“the real bulk data” but refers to “the methods’ performances when deconvolving real data”.

We do not mean to make the pseudo-bulk gene expression pattern to be exactly like the real

bulk gene expression pattern, which is almost impossible for now. What we want to do is



increase the difficulty for deconvolution methods to deal with pseudo-bulk data. If the

pseudo-bulk data does not contain any noises, almost all the methods can achieve an

overall CCC over 0.95, while on the real datasets, many of them can only achieve an overall

CCC around 0.4. Therefore, we want to add some noise to make the pseudo-bulk data as

difficult as real bulk data. That’s why we said, “closer to the real cases, instead of toy

simulation”. Specifically, we choose Gaussian noise because it is common modeling of the

batch effect of bulk gene expression. For example, the famous batch effect correction

method ComBat (Johnson et al., 2006, cited by 5567) models the additive batch effect using

Gaussian distribution as prior and achieves a good performance. We are sorry for the

unclear response, and we really appreciate your suggestions. In this revision, we rewrite this

sentence in the manuscript as:

(section 2.2) “To make this pseudo-bulk test as difficult as the real bulk test instead of trivial

linear regression task, we added Gaussian noise [17] (0.01 times random value generated

from a Gaussian distribution with gene expression mean and variance for each gene) and

randomly masked 20% genes for each pseudo-bulk sample.”

Minor points:

10) The authors responded with “In this paper, we add Gaussian noise and dropouts.”

However, it is unclear how adding dropouts to single-cell data makes simulations better or

closer to the real bulks. If anything, real bulk contains more non-zero genes.

Answer: Thanks for your comments. Principally, we use the pseudo-bulk test because we

follow the original article of Scaden (Menden et al., 2020) and use the pseudo-bulk test as

an initial estimation of each method’s performance in different scenarios.

(section 2.2) “Since a real bulk dataset with its corresponding cell type fractions assessed by

traditional experimental methods (e.g., flow cytometry) is rare, and it is hard to analyze how

the batch effect would affect deconvolution performance, it is necessary to conduct a

pseudo-bulk test…”



We understand your concern that adding noise does not make pseudo-bulk data closer to

real bulk data. Also, we do not aim at making the expression pattern of pseudo-bulk data

closer to the real bulk one. We apologize for the misleading response. In our setting, adding

noise to the pseudo-bulk data makes the task more difficult and is not trivial.

As we know, the relationship between the real bulk data and single-cell data is very complex

and highly non-linear. Thus, it is almost impossible to truly simulate the real bulk data by

simply adding many single-cell profiles. Specifically, pseudo-bulk data has already contained

many zeros. For example, the pseudo-bulk data we synthesized in the manuscript usually

have 20,000 genes, but 5,000 gene expression values are zero. In contrast, as you

mentioned, real bulk only contains about 2% zero-value genes (monaco’s dataset). That is, it

is impossible to mimic pseudo-bulk data as real-bulk data. In our experiments, after adding

20% dropouts, there are about 8000 zero-value genes in the pseudo-bulk, and we still

consider it as pseudo-bulk data rather than real bulk data. Therefore, adding dropout into the

pseudo-bulk RNA samples means that we increase the dropout rate ratio in single-cell

profiles since the pseudo-bulk RNA-seq data is the sum of many single-cell profiles and this

scenario is quite common when the quality of single-cell data is not good enough. Although

pseudo-bulk data is still pseudo-bulk data after adding dropouts, the deconvolution

performance of each method drops. What we want is “making the difficulty of

pseudo-bulk test closer to the real bulk test”. Because most methods can achieve quite

good performance without adding noise and it would be better for us to distinguish the

differences between each method’s performance after adding noise.

Sorry again for the misleading response. In this revision, we modify the starting of section

2.2:

“Since a real bulk dataset with its corresponding cell type fractions assessed by traditional

experimental methods (e.g., flow cytometry) is rare, and it is hard to analyze how the batch

effect would affect deconvolution performance, it is necessary to conduct a pseudo-bulk test

for an initial estimation. The pseudo-bulk data are generated in silico from single-cell GEPs

with ground truth (pre-defined cell type proportions). That is, pseudo-bulk data are the



summation of many single-cell profiles. To make this pseudo-bulk test as difficult as the real

bulk test instead of a trivial linear regression task, we added Gaussian noise (0.01 times

random value generated from a Gaussian distribution with gene expression mean and

variance for each gene) and randomly masked 20% genes for each pseudo-bulk sample.”

11) Without looking at the source code, it is difficult to follow the training procedure of TAPE.

It would be nice if the authors explain it more clearly.

Answer: Thank you for pointing out our unclearness in describing the training procedure of

TAPE. To make things clear, we arrange the training procedure as the following

pseudo-code. We also add it to section 4 of the manuscript.

12) Since the output of the encoder does not sum to 1 and can be negative, the authors

apply ReLU activation and normalize the result to sum to 1 using a scaling function.

However, from the code in train.py and model.py in

https://github.com/poseidonchan/TAPE/tree/main/TAPE, it seems that ReLU and scaling

functions are only used during prediction (and adaptive stage). Am I wrong? Are ReLU and



scaling functions always included in the model (i.e. in forward propagations)? If not, does it

not violate entirely the assumption that the signature matrix is visible in the decoder since

the proportions have to sum to 1 for XS=B to be valid? Or is the decoder meant to represent

the signature matrix only at the adaptive stage? This should be clearly stated in the

manuscript.

Answer: Thank you very much for your detailed review! Your understanding of our code is

right, ReLU and scaling function are not always included in the model. In the training stage,

the summation of cell fractions of training data equals 1, and we think the model can learn

the pattern if it is well-trained. But, considering the differences between training data and real

bulk data, we also add the ReLU and scaling function to guarantee the prediction result is

meaningful. Your concerns are right, XS=B is not always valid during the training stage

because we do not constrain the X. But we expect that XS=B should be valid after the initial

training with labeled pseudo-bulk data. Since the decoder is also learned from the training

data, it can only be a signature matrix after the training stage, that is, the adaptive stage.

Thanks again for pointing out the misleading part of our manuscript! We have added one

more sentence in the model part:

(section 4.2.3) Of note, the decoder matrix is expected to represent a meaningful signature

matrix only after the training with simulated data.
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

I would like to congratulate the authors for their very thorough revision. All my concerns were 
addressed.


