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Supplemental Figures

Figure S1. NLP-ML models trained using sample embeddings created using three different
word-weighting schemes have similar performance in sample tissue classification. The three
word-weighting schemes are along the y-axis. Gold-standard TFIDF: weights are based on
term-frequency inverse-document-frequency (TFIDF) values calculated from descriptions for samples in
our gold standard. PubMed IDF: weights are based on IDF values calculated from the entirety of PubMed.
Unweighted: weights are all equal to 1. Performance is shown on the x-axis as the logarithm of the area
under the precision-recall curve (auPRC) over the prior, where the prior is the fraction of positive over
positive and negative training examples. This metric accounts for the variable number of annotated terms
per tissue. Each boxplot shows the distribution of this metric across tissues. Panel A shows the results for
124 tissues and panels B–E (31 tissues in each; sharing y-axis with panel A) show the same results
broken down by number of training examples per tissue (indicated at the top of each plot). In each boxplot
(in a different color), the bounds of the box correspond to the distribution’s first and third quartiles, the
center line is the median, the whiskers extend to the farthest data point within 1.5 times the interquartile
range from the bounds, and the separate dots are outliers. Source data are provided as a Source Data
file.
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Figure S2. Logistic regression provides the best performance among different machine learning
classifiers for building NLP-ML models. The five classifiers are along the y-axis. XGB: XGBoost. RF:
Random Forest. SVM: Support Vector Machine. LR_L1/L2: Logistic Regression with L1 or L2
regularization. Performance is shown on the x-axis as the logarithm of the area under the precision-recall
curve (auPRC) over the prior (where the prior is the fraction of positive over positive and negative training
examples) calculated as the average over 3-fold cross validation. Each boxplot (in a different color;
defined as in Fig. S1) shows the distribution of this metric across tissues. Panel A shows the results for
146 tissues and panels B–E (27, 45, 37, and 37 tissues, respectively; with the same shared y-axis) show
the same results broken down by number of training examples per tissue (indicated at the top of each
plot). Source data are provided as a Source Data file.
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Figure S3. NLP-ML and its combination with other methods provide substantial and statistically
significant improvements in sample tissue annotation. The heatmap shows the results of comparison
between all pairs of methods. The color of each cell shows the proportion of tissues where the method
along the row outperformed the method along the column. An asterisk in the cell for the upper-right
triangle of the matrix denotes a statistically significant difference between the row and column methods
(corrected p < 0.01) determined using a two-sided Wilcoxon rank sum test with Benjamini-Hochberg
correction for multiple hypothesis testing. The actual p-values are shown in the lower-left triangle.
Methods are ordered based on the number of other methods they differ significantly from. Source data
are provided as a Source Data file.
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Figure S4. Relative performance of NLP-ML and MetaSRA are nearly consistent across tissues in
various high-level anatomical systems. Each boxplot (defined as in Fig. S1) is the distribution of the
area under the precision-recall curve (auPRC) scores across tissues for MetaSRA (pale blue), NLP-ML
(light blue), and their combination (‘NLP-ML+MetaSRA’; dark blue). Each point in the boxplot is the
performance for a single tissue model averaged across cross validation folds. Each group of boxplots
corresponds to the set of tissues pertaining to a particular high-level anatomical system (y-axis). Source
data are provided as a Source Data file.
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Figure S5. The performance of NLP-ML over and above other text-based methods varies across
tissues with different training set sizes. Distribution of the area under the precision-recall curve
(auPRC) scores across tissues for each of the three individual text-based methods for sample
classification: TAGGER, MetaSRA, and NLP-ML. Also shown is the distribution of auPRC scores for
combining the predictions of NLP-ML and MetaSRA. The panels A–D (sharing the same y-axis) show the
same results in Figure 2 (boxplots defined there) broken down by number of training examples per tissue
(indicated at the top of each plot; n = 33, 39, 40, and 41, respectively). Source data are provided as a
Source Data file.

Figure S6. Despite variability in the relative performance of NLP-ML and MetaSRA across tissues
with different training set sizes, combining them consistently results in good performance. Each
scatterplot shows the area under the precision-recall curve (auPRC) scores of sample tissue predictions
by two methods labelled on the x- and y-axis. The panels show the comparison for tissues grouped by
number of training examples per tissue (indicated at the top of each plot). A–D) Comparison of MetaSRA
(x-axis) vs. NLP-ML (shared y-axis). E–H) Comparison of MetaSRA (x-axis) vs. the combination of
predictions from NLP-ML and MetaSRA (shared y-axis). Source data are provided as a Source Data file.
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Figure S7. The relative performance of NLP-ML predictions based on sample description, dataset
description, or their combination varies by training set size. The description sources are along the
y-axis. The combination of predictions from the dataset and the sample descriptions were done either by
summing the predictions (Sum) or by taking the maximum among the two (Max). Performance is shown
on the x-axis as the area under the precision-recall curve (auPRC). Each boxplot (in a different color;
defined as in Fig. S1) shows the distribution of this metric across tissues. Panel A shows the results for all
153 tissues and panels B–E (with the same shared y-axis) show the same results broken down by
number of training examples per tissue (indicated at the top of each plot; n = 33, 39, 40, and 41,
respectively). Source data are provided as a Source Data file.
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Figure S8. NLP-ML sample annotations based on sample description invariably outperforms
sample annotations based on dataset description. Scatterplot of the area under the precision-recall
curve (auPRC) scores of sample tissue predictions from sample text (x-axis) vs. predictions from dataset
text (y-axis) across 153 tissues. The dataset-based prediction is made by assigning the predicted
probability for the dataset description to all samples in that dataset. Each point in the scatterplot
correspond to a tissue/cell-type term. The solid line denotes equal performance between the two
methods. Source data are provided as a Source Data file.
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Figure S9. Logistic regression provides slightly better performance among different machine
learning classifiers for building expression-based tissue annotation models. The five classifiers are
along the y-axis. XGB: XGBoost. RF: Random Forest. SVM: Support Vector Machine. LR_L1/L2: Logistic
Regression with L1 or L2 regularization. Performance is shown on the x-axis as the logarithm of the area
under the precision-recall curve (auPRC) over the prior (where the prior is the fraction of positive over
positive and negative training examples) calculated as the average over 3-fold cross validation. Each
boxplot (in a different color; defined as in Fig. S1) shows the distribution of this metric across tissues.
Panel A shows the results for all 153 tissues and panels B–E (with the same shared y-axis) show the
same results broken down by number of training examples per tissue (indicated at the top of each plot; n
= 33, 39, 40, and 41, respectively). Source data are provided as a Source Data file.
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Figure S10. Relative performance of text-based and expression-based methods varies across
tissues with different training set sizes. Distribution of the area under the precision-recall curve
(auPRC) scores across tissues for the two top-performing text-based methods – MetaSRA and NLP-ML
– and for the method based on expression profiles (‘Expression’) for sample tissue classification. Also
shown are the distributions of auPRC scores for combining the predictions of Expression with NLP-ML
(‘NLP-ML+Expression’) and with NLP-ML and MetaSRA (‘NLP-ML+MetaSRA+Expression’). Each point in
the boxplot is the performance for a single tissue model averaged across cross validation folds. The
panels A–D (sharing the same y-axis) show the same results in Figure 6A (boxplots defined there)
broken down by number of training examples per tissue (indicated at the top of each plot; n = 33, 39, 40,
and 41, respectively). Source data are provided as a Source Data file.

Figure S11. Despite variability in the relative performance across tissues with different training set
sizes, combining text-based and expression-based models results in consistently good
performance. Each scatterplot shows the area under the precision-recall curve (auPRC) scores of
sample tissue predictions by expression-based models on the x-axis vs another model/method on the
y-axis. The panels show the comparison for tissues grouped by number of training examples per tissue
(indicated at the top of each plot; n = 33, 39, 40, and 41, respectively). A–D) Comparison to NLP-ML
(shared y-axis). E–H) Comparison to the combination of predictions from NLP-ML and Expression
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(shared y-axis). I–L) Comparison to the combination of NLP-ML, MetaSRA, and Expression (shared
y-axis). Source data are provided as a Source Data file.

Figure S12. Relative performance of text-based and expression-based models are nearly
consistent across tissues in various high-level anatomical systems. Each boxplot is the distribution
of the area under the precision-recall curve (auPRC) scores across tissues for Expression (orange),
MetaSRA, NLP-ML, and their combinations (‘Expression+NLP-ML’ in green and
‘Expression+NLP-ML+MetaSRA’ in purple). Each point in the boxplot is the performance for a single
tissue model averaged across cross validation folds. Each group of boxplots (defined as in Fig. S1)
corresponds to the set of tissues pertaining to a particular high-level anatomical system (y-axis). Source
data are provided as a Source Data file.
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Supplemental Tables

Table S1. Predictions from liver (UBERON:0002107) model on list of GOBP terms relevant to the liver.

GO biological process term Probability
hepatic immune response 0.99
liver regeneration 0.99
positive regulation of hepatocyte proliferation 0.99
hepatocyte apoptotic process 0.99
positive regulation of hepatic stellate cell activation 0.99
regulation of hepatocyte growth factor receptor signaling pathway 0.99
positive regulation of hepatocyte growth factor receptor signaling pathway 0.99
negative regulation of hepatocyte growth factor biosynthetic process 0.99

Table S2. Predictions from skeletal muscle tissue (UBERON:0001134) model on list of GOBP terms
relevant to the skeletal muscle tissue.

GO biological process term Probability
musculoskeletal movement 1.00
regulation of skeletal muscle contraction by action potential 1.00
voluntary musculoskeletal movement 1.00
regulation of skeletal muscle contraction 1.00
skeletal muscle tissue growth 1.00
regulation of skeletal muscle satellite cell proliferation 1.00
regulation of slow-twitch skeletal muscle fiber contraction 1.00
regulation of skeletal muscle cell differentiation 1.00
myofibril assembly 1.00
regulation of skeletal muscle tissue development 0.99
positive regulation of fast-twitch skeletal muscle fiber contraction 0.99
skeletal muscle myosin thick filament assembly 0.99
regulation of striated muscle contraction 0.99
negative regulation of skeletal muscle cell differentiation 0.98
regulation of the force of skeletal muscle contraction 0.98
regulation of skeletal muscle contraction via regulation of action potential 0.97
skeletal muscle thin filament assembly 0.97
skeletal muscle satellite cell differentiation 0.97

12



negative regulation of skeletal muscle tissue growth 0.96
positive regulation of skeletal muscle cell differentiation 0.96
negative regulation of skeletal muscle tissue development 0.94
positive regulation of skeletal muscle tissue development 0.94
diaphragm development 0.92
negative regulation of striated muscle contraction 0.90
striated muscle atrophy 0.86
regulation of muscle contraction 0.81
relaxation of skeletal muscle 0.74
skeletal muscle cell differentiation 0.49
regulation of smooth muscle cell proliferation 0.49
negative regulation of striated muscle tissue development 0.48
regulation of skeletal muscle adaptation 0.41
growth factor dependent regulation of skeletal muscle satellite cell proliferation 0.39
negative regulation of myoblast differentiation 0.38
myoblast proliferation 0.32
extraocular skeletal muscle development 0.31
positive regulation of myoblast differentiation 0.25
regulation of skeletal muscle contraction by regulation of release of sequestered calcium
ion 0.25

positive regulation of striated muscle tissue development 0.20
skeletal muscle tissue regeneration 0.19
positive regulation of skeletal muscle fiber development 0.19
myoblast migration 0.19
diaphragm contraction 0.15
myoblast fate commitment 0.13
positive regulation of skeletal muscle contraction by regulation of release of sequestered
calcium ion 0.11

striated muscle contraction 0.10
skeletal muscle contraction 0.09
myoblast fusion 0.08
myoblast differentiation 0.06
skeletal muscle fiber development 0.05
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Table S3. Predictions from brain (UBERON:0000955) model on list of DO terms relevant to the brain.

DO disease term Probability
neuronal ceroid lipofuscinosis 1.00
complex cortical dysplasia with other brain malformations 1.00
neurodegeneration with brain iron accumulation 1.00
hypomyelinating leukodystrophy 1.00
Parkinson's disease 1.00
Joubert syndrome 1.00
Ritscher-Schinzel syndrome 1.00
holoprosencephaly 1.00
autosomal dominant nocturnal frontal lobe epilepsy 0.99
advanced sleep phase syndrome 0.97
Warburg micro syndrome 0.67
Meckel syndrome 0.14
syndromic X-linked intellectual disability 0.11
amyotrophic lateral sclerosis 0.04
cold-induced sweating syndrome 0.01
Cornelia de Lange syndrome 0.00
multiple congenital anomalies-hypotonia-seizures syndrome 0.00
congenital disorder of glycosylation type II 0.00
autosomal dominant non-syndromic intellectual disability 0.00
Coffin-Siris syndrome 0.00
coenzyme Q10 deficiency disease 0.00
congenital disorder of glycosylation 0.00
mitochondrial DNA depletion syndrome 0.00

Table S4. Predictions from skin (UBERON:0002097) model on list of DO terms relevant to the skin.

DO disease term Probability
oculocutaneous albinism 0.91
Griscelli syndrome 0.18
Waardenburg's syndrome 0.01
tuberous sclerosis 0.00
dyskeratosis congenita 0.00
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Supplemental Note 1
Here we include instances of samples (GSM) and datasets (GSE) wherever their descriptions
illustrate points raised in Discussion. These instances are grouped into cases where different
methods have different performances.

1. Examples where only NLP-ML but not TAGGER or MetaSRA correctly
annotate samples
● 1.1. GSM139217 - “Cervical carcinoma: None. Age: 66 yrs Gender: Female Ethnicity:

Caucasian control_B1, empty vector synthetic_RNA biotin control_B1, empty vector Homo
sapiens E-GEOD-5993”

● 1.2. GSM280991 - “HEPG2: Performed by Operator 1 from Site10 at Proficiency stage.
HepG2 (liver carcinoma) cell line Proficiency_Site10_21 synthetic_RNA biotin
Proficiency_Site10_21 Homo sapiens E-GEOD-11135”

2. Examples where only NLP-ML correctly annotate samples but TAGGER,
MetaSRA, and expression-based ML do not
● 2.1. GSM267045 - “Genotype:normal well-differentiated primary airway bronchial culture:

Gene expression data from human airway epithelium treated as described.
Genotype:normal synthetic_RNA well-differentiated primary airway bronchial culture biotin
HBE_t0_code1 Homo sapiens E-GEOD-10592”

● 2.2. GSM280991 - “HEPG2: Performed by Operator 1 from Site10 at Proficiency stage.
HepG2 (liver carcinoma) cell line Proficiency_Site10_21 synthetic_RNA biotin
Proficiency_Site10_21 Homo sapiens E-GEOD-11135”

● 2.3. GSE11881 - "Immunosuppressive drugs can be completely withdrawn in up to 20% of
liver transplant recipients, commonly referred to as “operationally” tolerant. Immune
characterization of these patients, however, has not been performed in detail, and we lack
tests capable of identifying tolerant patients among recipients receiving maintenance
immunosuppression. In the current study we have analyzed a variety of biological traits in
peripheral blood of operationally tolerant liver recipients in an attempt to define a
multiparameter “fingerprint”� of tolerance. Thus, we have performed peripheral blood gene
expression profiling and extensive blood cell immunophenotyping on 16 operationally
tolerant liver recipients, 16 recipients requiring on-going immunosuppressive therapy, and 10
healthy individuals. Microarray profiling identified a gene expression signature that could
discriminate tolerant recipients from immunosuppression-dependent patients with high
accuracy. This signature included genes encoding for T-cell and NK receptors, and for
proteins involved in cell proliferation arrest. In addition, tolerant recipients exhibited
significantly greater numbers of circulating potentially regulatory T-cell subsets (CD4+CD25+
T-cells and Vd1+ T cells) than either non-tolerant patients or healthy individuals. Our data
provide novel mechanistic insight on liver allograft operational tolerance, and constitute a
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first step in the search for a non-invasive diagnostic signature capable of predicting
tolerance before undergoing drug weaning. Experiment Overall Design: The complete
database comprised the expression measurements of 54 675 genes for nine operationally
tolerant (TOL) and eight immunosuppression-dependent (ID) samples."

3. Examples where all text-based methods (TAGGER, MetaSRA, and
NLP-ML) correctly annotate samples
● 3.1. GSM306886 - “tissue: lymph node tumor DLBCL frozen biopsy: frozen biopsy of lymph

node tumor Gene expression data from primary DLBCL biopsy. tissue: lymph node tumor
synthetic_RNA DLBCL frozen biopsy biotin DLBCL biopsy, sample 2012 Homo sapiens
E-GEOD-12195”

● 3.2. GSM190876 - “Non-cancerous renal cortical tissue from nephrectomized kidney with
isolated renal cell carcinoma of patient 1, normal control tissue. PKD1 patient kidney
synthetic_RNA biotin normal renal cortical tissue_1 normal renal cell carcinoma Homo
sapiens E-GEOD-7869”

● 3.3. GSE10780 - “Analysis of 143 completely histologically-normal breast tissues resulted in
the identification of a “malignancy risk”� gene signature that may serve as a marker of
subsequent risk of breast cancer development. Experiment Overall Design: RNA was
extracted from microdissected frozen breast tissues for gene array analysis

● 3.4. GSE1145 - “To establish changes in cardiac transcription profiles brought about by heart
failure we collected myocardial samples from patients undergoing cardiac transplantation
whose failure arises from different etiologies (e.g. idiopathic dilated cardiomyopathy,
ischemic cardiomyopathy, alcoholic cardiomyopathy, valvular cardiomyopathy, and
hypertrophic cardiomyopathy) and from “normal” organ donors whose hearts cannot be used
for transplants. The transcriptional profile of the mRNA in these samples will be measured
with gene array technology. Changes in transcriptional profiles can be correlated with the
physiologic profile of heart-failure hearts acquired at the time of transplantation. Keywords:
other”

● 3.5. GSM1131542 - "srs478673 primary colorectal cancer primary colorectal cancer
amc_13-1 homo sapiens amc_13 colon colorectal cancer stage iv colorectal cancer primary
tumor extract 1 illumina hiseq 2000 paired cdna transcriptomic rna-seq total rna srx347896
illumina hiseq 2000 (homo sapiens) sequencing assay srr975560_1 srr975560 primary
tumor"

● 3.6. GSM882078 - “young vastus lateralis muscle non-exercised y18 20.0
26.697530864197503 homo sapiens male extract 1 genomic dna le 1 cy3 a-geod-13534
array assay norm 20.0 26.697530864197503”
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4. Examples where only expression-based ML correctly annotates samples
but all text-based methods (TAGGER, MetaSRA, and NLP-ML) do not
● 4.1. GSM318437 - “EFO_0001266 male bipolar disorder 42 amplified RNA total RNA human

neurons isolated from postmortem dorsolateral prefrontal cortex 32h 42 biotin neuronal
bipolar disorder neuron_rep12 male Homo sapiens neuronal E-GEOD-12679 Stanley
Medical Research Institute”

● 4.2. GSM318430 - “EFO_0001265 female schizophrenia 44 amplified RNA total RNA
human neurons isolated from postmortem dorsolateral prefrontal cortex 26h 44 biotin
neuronal schizophrenia neuron_rep5 female Homo sapiens neuronal E-GEOD-12679
Stanley Medical Research Institute”

● 4.3. GSE19625 - “Coenzyme Q10 (CoQ10) is an obligatory element in the respiratory chain
and functions as a potent antioxidant of lipid membranes. More recently, anti-inflammatory
effects as well as an impact of CoQ10 on gene expression have been observed. To reveal
putative effects of Q10 on LPS-induced gene expression, whole genome expression
analysis was performed in the monocytic cell line THP-1. 1129 probe sets have been
identified to be significantly up-regulated (p < 0.05) in LPS-treated cells when compared to
controls. Text mining analysis of the top 50 LPS up-regulated genes revealed a functional
connection in the NFκB pathway and confirmed our applied in vitro stimulation model.
Moreover, 33 LPS-sensitive genes have been identified to be significantly down-regulated by
Q10-treatment between a factor of 1.32 and 1.85. GeneOntology (GO) analysis revealed for
the Q10-sensitve genes a primary involvement in protein metabolism, cell proliferation and
transcriptional processes. Three genes were either related to NFκB transcription factor
activity, cytokinesis or modulation of oxidative stress. In conclusion, our data provide
evidence that Q10 down-regulates LPS-inducible genes in the monocytic cell line THP-1.
Thus, the previously described effects of Q10 on the reduction of pro-inflammatory
mediators might be due to its impact on gene expression. Whole genome expression
profiles were analysed from monocytes pre-incubated with ubiquinone (Q10) before
subsequent stimulation with LPS. Stimulated (+LPS) and unstimulated (-LPS) monocytes
were used as positive and negative controls, respectively. For every experimental group (3
groups in total), three Affymetrix Human Genome U133 Plus 2.0 arrays were used, thus
resulting in the analysis of 9 microarrays.”

● 4.4. GSE15935 - “Cyclophilin binding drugs, NIM811 and cyclosporin A (CsA), inhibit the
replication of HCV replicon. We investigated the mode of action of these drugs and identified
host factors essential for HCV replication in a subgenomic replicon model. Experiment
Overall Design: Cultured Huh7 cell were treated with CsA or NIM811 at different
concentrations. Cells were harvested after 12, 24 or 48 hours. The extracted mRNA were
hybridized on Affymetrix U133 Plus 2 microarrays.”
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5. Examples where all text-based methods (TAGGER, MetaSRA, and
NLP-ML) correctly annotate samples but expression-based ML does not
● 5.1. GSM299098 - “human: Evaluate gene expression profiles after inducing differentiation

in cultured interstitial cystitis (IC) and control urothelial cells.. Female, age 47; Disease
status: HB (control (stress incontinence, no bladder pain)); Culture medium: KM
(proliferating medium) bladder human cultured bladder HB KM, subject 8 47 synthetic_RNA
normal female human cultured bladder HB KM, subject 8 proliferation medium patient 8
biotin Homo sapiens urothelial cell E-GEOD-11839”

● 5.2. GSM300205 - “brain, hippocampus, male, 83 years: Brain from cognitively intact
individual.. Individual: 28, C; Brain region: hippocampus; Gender: male; Age: 83 years
Hippocampus_male_83yrs_indiv28 synthetic_RNA biotin
Hippocampus_male_83yrs_indiv28 Homo sapiens E-GEOD-11882”

● 5.3. GSE18696 - “Specific vulnerability of neurons in the human entorhinal cortex has been
associated with the onset of disease. Gene expression is analyzed to define the molecular
characteristic of those neurons. Experiment Overall Design: Human tissue collection and
dissection. Brain samples were collected from four individuals with no clinical evidence of
neurological disease and no neuropathological evidence of neurodegeneration. Tissue
samples were obtained from the neurological tissue bank (UIPA) and from the Neurological
Research Tissue Bank (BTIN, Madrid). The mean postmortem interval (PMI) of the tissue
was 6 h and each subject died in hospital due to either cardiac or infectious diseases. The
tissue was obtained according to local ethical and legal regulations concerning the use of
human post-mortem tissue for biomedical research. Frozen tissue samples were collected
from the entorhinal cortex [EC; Brodmann area (BA) 28], at coronal level 27 of the Atlas of
Paxinos. Tissue samples corresponded to either upper (CES), lower (CEI) or the entire EC
(CET). Two adjacent vertical columns comprising the full thickness of the EC were dissected
under magnification with a Leica M50 stereomicroscope. One of them was then divided into
two blocks, corresponding to CES and CEI, while the remaining column was processed as
CET. RNA sample preparation. Cerebral tissue was homogenised in liquid nitrogen with a
pestle and mortar, and the total RNA was isolated using the RNeasy Mini Kit and
QIAshredder (Qiagen). The total RNA concentration and purity were determined using an
Agilent2100 Bioanalyzer (Agilent Biotechnologies, Palo, Alto, CA) and by agarose gel
electrophoresis. Subsequently, cDNA was synthesized using the One-Cycle cDNA
Synthesis kit (Affymetrix), according to the protocol described in the Expression Analysis
Technical Manual. Biotinylated cRNA probes were generated from each cDNA sample
following the IVT Labeling kit instructions (Affymetrix), and the cRNA synthesized was
purified with the GeneChip Sample Cleanup Module (Affymetrix). The concentration and
purity of the biotinylated cRNA was determined using an Agilent2100 Bioanalyzer (Agilent
Biotechnologies, Palo, Alto, CA) and by agarose gel electrophoresis.”

● 5.4. GSE6257 - “The exit of antigen-presenting cells (APC) and lymphocytes from inflamed
skin to afferent lymph is vital for the initiation and maintenance of dermal immune
responses. How such exit is achieved and how cells transmigrate the distinct endothelium of
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lymphatic vessels is however unknown. Here we show that inflammatory cytokines trigger
activation of dermal lymphatic endothelial cells (LEC) leading to expression of the key
leukocyte adhesion receptors ICAM-1, VCAM-1 and E-selectin, as well as a discrete panel
of chemokines and other potential regulators of leukocyte transmigration. Furthermore, we
show that both ICAM-1 and VCAM-1 are induced in the dermal lymphatic vessels of mice
exposed to skin contact hypersensitivity where they mediate lymph node trafficking of DC
via afferent lymphatics. Lastly, we show that TNF_-stimulates both DC adhesion and
transmigration of dermal LEC monolayers in vitro and that the process is efficiently inhibited
by ICAM-1 and VCAM-1 adhesion-blocking mAbs. These results reveal a CAM-mediated
mechanism for recruiting leukocytes to the lymph nodes in inflammation and highlight the
process of lymphatic transmigration as a potential new target for anti-inflammatory therapy.
Experiment Overall Design: Global gene expression profile of normal dermal lymphatic
endothelial cells cultured in media alone (no TNF) compared to that of normal dermal
lymphatic endothelial cells stimulated with TNFalpha, 1 ng/ml for 48h.Triplicate biological
samples were analyzed from human lymphatic endothelial cells (3 x controls; 3 x TNF
treated) and a single sample analyzed from mouse lymphatic endothelial cells (1 x controls;
1 x TNF treated).”

6. Examples where combining expression-based ML and NLP-ML leads to
more correct sample annotations compared to either individual method
● 6.1. GSM103559 - “We examined the effects of 48h of knee immobilization on alterations in

mRNA and protein in human skeletal muscle. Biopsies were taken from the vastus lateralis
muscle of five men (20.4 + 0.5 years) before and after 48h immobilization. vastus lateralis
skeletal muscle knee PHI-CTR-4UP-S2 synthetic_RNA biopsy male PHI-CTR-4UP-S2
subject 4 biotin Homo sapiens E-GEOD-5110 pre-immobilization”

● 6.2. GSM101652 - “Brain tissue from patient NOB1228: Brain tissue from glioblastopma
patient NOB1228. primary NOB1228 synthetic_RNA biotin NOB1228 Homo sapiens
E-GEOD-4536”

● 6.3. GSE13671 - “Female BRCA1 mutation carriers have a nearly 80% probability of
developing breast cancer during their life-time. We hypothesized that the breast epithelium
at risk in BRCA1 mutation carriers harbors mammary epithelial cells (MECs) with altered
proliferation and differentiation properties. Microarray studies revealed that PMEC colonies
from BRCA1 mutation carriers anticipate expression profiles found in BRCA1-related
tumors, and that the EGFR pathway is upregulated in BRCA1 mutation carriers compared
ton non BRCA1 mutation carriers. Keywords: Class comparison and pathway analysis 10
colonies were collected and RNA was isolated using the Absolutely RNA Nanoprep kit,
Stratagene. The arrays included duplicates from four normal controls and from two BRCA1
mutation carriers and single arrays from another two BRCA1 mutation carriers.”

● 6.4. GSE25414 - “Genetic factors contribute to the development of ischemic stroke but their
identity remains largely unknown. We tested the association with ischemic stroke of 210
single nucleotide polymorphisms (SNPs) associated with pathways functionally related to
stroke. We observed an association between the rs7956957 SNP in LRP1 and next
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performed microarrays analysis in healthy individuals to investigate possible associations of
LRP genotypes with the expression of other genes. Twelve blood samples were obtained
from twelve different healthy subjects carrying different genotypes for the rs7956957 SNP of
the LRP1 gene (GG, CG or CC). Blood was extracted from 12 subjects. EDTA tubes were
centrifuged at 3500rpm for 15 min to obtain the white blood cell fraction and the samples
were stored at -80ºC until RNA isolation. RiboPureTM -Blood kit from Ambion (Ambion,
Woodward st. Austin, USA) was used to extract total RNA following manufacturer’s
instructions. Globin RNA from erythrocytes that causes interference was extracted using the
Globin-Clear kit (Ambion, Woodward st. Austin, USA).”

● 6.5. GSM456307 - "nan 8076-8077 homo sapiens universal human reference
total rna extract 1 total rna le 1 cy5 a-geod-9190 norm not
specified not specified not specified not specified not specified     not specified not specified"

● 6.6. GSM599874 - "saliva 10-016c cerebral palsy homo sapiens saliva proband male extract
1 genomic dna le 1 cy3 and cy5 a-geod-20641 array assay cerebral palsy proband male"

Supplemental Note 2
Reducing False Positives Compared to Other Text-Based Methods

To elucidate our method’s behavior for controlling for false positives over NER, we
examined all of the cases where for a given sample and for a particular tissue or cell type, the
true label according to our gold standard is negative, and our method (NLP-ML) correctly labels
the sample as such (true negative) but either MetaSRA or Tagger labels the sample as a
positive (false positive). We then filtered these instances to ones where the predicted probability
from NLP-ML is < 0.05 to examine cases where our models were confident in assigning a
negative label, and further filtered these cases to instances pertaining to a tissue or cell types
whose auPRC from cross validation is > 0.80 to only consider tissues and cell types where the
predicted probabilities from NLP-ML are most likely to be accurate. Below, we describe our
observations from three specific tissues or cell types along with a count of the number of
samples that fulfilled the above criteria.

For brain (N = 12), for all of the cases where NLP-ML correctly identified a non-brain
sample correctly as a negative but the other text-based methods did not, the samples in
question came from liver or blood, but all came from either patients who are brain dead or
patients with brain cancer. For liver (N = 26), the true label for the samples were either blood or
colon (specifically samples from colon adenocarcinoma tumors), but the patients were either
liver transplant patients in the case of the true label being blood, or the word “liver” just appears
in the sample description. For intestine (N = 23), all samples were from stomach stromal tumor,
but terms like “gastrointestinal” and “small intestine” are mentioned throughout.

These instances point to one hypothesis about how NLP-ML might have been able to
correctly label these samples as negatives for the appropriate tissues. In almost all cases where
NLP-ML correctly predicts a negative and the other text-based methods incorrectly assign a
positive label, the true label tissue name appears more times than any other tissues or cell
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types in the description. This hypothesis is supported by how we generate a text-based feature
vector for a sample based on its ‘bag-of-words’ (from the description) where more frequently
appearing words directly contribute more strongly to the final feature vector, making it more
associated with the correct tissue name and less associated with the incorrect ones. We also
suspect that there may be some words present in the description’s bag of words that provide
additional contextual clues that can additionally point NLP-ML to the true tissue of origin, thus
contributing to NLP-ML’s lower false positive rate.
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