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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

In this manuscript, Hawkins et al. proposed a new approach to standardizing annotations of -omics 
samples through an analysis of their textual metadata. The core methodology described in this work is 
well supported by the community; there is an adaptable foundation for metadata standardization. 

Incorporation of embeddings is a technical advancement on this front but the exact benefits conferred 
by this approach remain opaque. The primary advantages of this approach remain to be defined (e.g., 

as compared to MetaSRA, its improved speed and accuracy?) Is NLP-ML more flexible in terms of its 
ready applicability to more -omics data types beyond gene expression? Some further benefits are 

noted in the Results regarding NLP-ML vs. MetaSRA; the potential impact of these improvements 
warrants further analyses and investigations. 

Issues/Comments: 

1) How does this new NLP-ML method address the high false positive issue of NER-based methods 
(without manual curation step) when one dataset contains multiple tissue/cell-type experimental data? 

2) In the Abstract as well as in the Introduction, the authors refer to -omics data as a whole but only 
the study itself only concerns two resources and primarily on genomic/transcriptomic datasets. Please 

replace the wording of “-omics” throughout the manuscript, as this project focused on 1 or 2 types of 
data sources, and it is not applicable to a variety of -omics data types. Additionally, there is a lack of 
evidence/data to demonstrate NLP-ML’s capacity to tackle other sorts of -omics data. Each type of -

omics data presents its own inherent technical challenges; we do not see that they are necessarily 
commonly comparable to genomic or transcriptomic data. 

3) An online demonstration, beyond that provided by the example scripts on the project’s GitHub 

repository, would be very useful for understanding potential use cases for NLP-ML. 

4) The Zotero reference import process appears to have created some reference issues, e.g., the 

references for ZOOMA (as internet resource) and ConceptMapper (as conference proceedings) are 
missing dates and other info. Some hyperlinks embedded in references lead to incorrect locations. 

5) Knowing the time factor necessary for down-loadeding PubMed corpus, as described in “Creating 
text-based sample embeddings”, is critical to reproducibility. It is important for the authors to consider 

high/low frequency; were they excluded when building embeddings? 

6) Expression based tissue classifications use distinct features; alternative methods, other than L1-
regularized logistic regression, may support a fair comparison. 

7) Is averaging auPRC weighted? The sample size of the 3-5 CV is different. 

8) Page 2, paragraph 2. “While they often provide high-quality annotations, automated high-
throughput methods are needed to …”: This transition here is a bit confusing. Here, “they” refers to 

the “manual curation”, not a more grammatically natural “automated high-throughput methods”. Some 
rephrasing might improve the clarity and flow. 

9) Page 3, paragraph 1. “NER-based methods suffer from several false positives”: Is “several” a typo 
for “severe” or meant “ a certain level” of false positives? 

10) As described in the methods: “We obtained tissue and cell-type annotations of human gene-
expression samples from Lee et. al., 2013 (Lee et al. 2013).” Are those samples including situations 

where varied and conflicting pieces of information exist in sample descriptions (e.g., mentioning more 
than one tissue/cell-type)? Are these samples from Lee’s publication limited to blood cells and 

lymphoid tissue-derived cells (Suppl. Fig 2 in Lee’s publication), or the URSA’s >14,000 diverse 



samples representing over 244 tissue/cell-type terms? Please clarify which one was used for training. 

Reviewer #2 (Remarks to the Author): 

There are millions of publicly available -omics samples, but much of their metadata consists of 
unstructured free-text fields. Converting unstructured biological metadata into structured metadata 

has been done in the past largely via text-matching and graph-based annotation. Some authors have 
used neural networks to attempt to label samples, but so far such methods have struggled to predict 

tissue and cell type information. 

In this work, Hawkins et al. develop a model (txt2onto) by fine-tuning a transformer on text from 
PubMed, embedding sample and dataset-level metadata using the transformer, and using l1-
regularized logistic regression to predict terms in the UBERON-CL ontology for individual samples. 

They then evaluate txt2onto in a number of ways. They compare their model’s performance against 

competing tools, MetaSRA and Tagger, finding that their model outperforms these methods. The 
authors also find that txt2onto predicts tissues of expression samples almost as well as models 
trained directly on the expression data. Further, they validate that the model is learning something 

biologically meaningful by showing that it maps anatomically related tissues close together in t-SNE 
space, and that the model generalizes well enough to predict tissue-specific biological processes. 

While the paper is convincing, a few comments remain: 

Minor comments: 

1) While the authors have published the code required to run the pretrained version of txt2onto, they 

do not make the code required to train the models available. 

2) It is unclear why the word ‘musculus’ would cause false positives for muscle as mentioned in the 

“Using NLP-ML to annotate samples from multiple experiment types” section. The original ELMo 
paper shows that ELMo embeddings can disambiguate between different definitions of the word “play” 

based on context, so I wouldn’t expect words to have similar embeddings caused by similar spelling. 
Is it possible that the mouse samples in the training set are frequently annotated as being muscle 
samples? 

3) I appreciate the authors’ use of dataset-aware train/validation set splitting to avoid data leakage 

and overoptimistic estimates of performance 

4) Table 2 may not be a representative sample of the models’ predictions? Most of the models do well 

for the predictions they’re most confident in, but would the results for, e.g., ten random predictions 
with predicted probability > .9 show the same distribution? This experiment may be infeasible to run 

due to the manual evaluations required though. 

5) It is unclear why the authors decided on a one-vs-rest formulation for the logistic regression model 
instead of using multi-class logistic regression. 

Reviewer #3 (Remarks to the Author): 

Hawkins et al present a method "NLP-ML" to infer tissue and cell type annotations from free text 
metadata, and compare the performance of their system to two well established approaches, 

TAGGER and MetaSRA, as well as direct tissue annotation from expression data. Demonstrated 
performance is better than the other two text-based methods, but slightly less good than the 

expression database based approach. The authors argue that NLP-ML nevertheless improves on the 



state of the art, as the method 
a) helps to improve performance overall in combination of multiple approaches, and 

b) is relatively easy to apply, and might be useful for the annotation of multiple omics data types, as it 
relies only on free text metadata, rather than highly structured expression data. 

The method is well described and documented, including source code and available/referenced 
datasets. 

* Major concerns: 

The authors claim, even in the title, a potential to generalise the method to "omics" samples, which is 
the major claim to progress beyond state of the art, compared to expression based methods. 

However, this is only demonstrated based on data from two databases (Geo, ArrayExpress) and five 
relatively "related" methods. To support this claim of potential to generalise, it would be helpful to 
apply the method to data from a different database and field. Proteomics would be a potential 

example, as there are enough public datasets available, and the sample character is still related. 
Metabolomics would be a more challenging demonstrator, both in terms of data availability and 

divergence of sample types. 

Minor concerns: 

Somewhere early on, "available samples" should be defined, it might be interpreted as physical 
samples available from providers. The subject of this manuscript are "available sample descriptions". 

On a side note, not a mandatory revision, a really interesting extension of the manuscript might be to 
map the samples to actually available samples from biobanks etc. 

P2: "continues to grow exponentially". Do available samples really grow exponentially? 

P2: ArrayExpress ref might be updated. 

On pages 3 and 14, the authors mention that MetaSRA is "slow", "low throughput" in comparison to 
NLP-ML. This should be supported by objective measures. 

P3, line 3: "...several false positives". Several is an odd quantification here. 

P4: Add literature reference for Ontology Lookup Service. 

P18: "perform similarly overall" is a bit of an idealising statement. 

Fig 6, panel A, top row; fig S10, panel B, top row: The boxplots show a strange artifact at the right 

border, exceeding "1". While probably a problem of the underlying library, it would be nice to correct 
this for a potential next version. 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this manuscript, Hawkins et al. proposed a new approach to standardizing annotations of
-omics samples through an analysis of their textual metadata. The core methodology described
in this work is well supported by the community; there is an adaptable foundation for metadata
standardization.

Comment 1.1:
Incorporation of embeddings is a technical advancement on this front but the exact benefits
conferred by this approach remain opaque. The primary advantages of this approach remain to
be defined (e.g., as compared to MetaSRA, its improved speed and accuracy?) Is NLP-ML more
flexible in terms of its ready applicability to more -omics data types beyond gene expression?
Some further benefits are noted in the Results regarding NLP-ML vs. MetaSRA; the potential
impact of these improvements warrants further analyses and investigations.

Response: We agree with the reviewer that the advantages of NLP-ML can be discussed in
more detail. Hence, we have now included a new paragraph in the Discussion section:

“Our NLP-ML method has a number of specific advantages compared to existing text
and expression-based solutions to annotating samples for tissues and cell types. Our models
are able to make predictions for any genomics sample given a plain-text sample description,
which lends itself to predictive flexibility compared to methods that use the underlying molecular
data to make tissue or cell type annotations. These descriptions can be any unstructured plain
text. This is a key advantage over MetaSRA, which was designed for leveraging structured
key-value data (particularly the ‘Characteristics’ field) in order to construct knowledge graphs for
annotating samples. NLP-ML is also computationally lightweight: predictions for >300 fully
trained models can be made on dozens of pieces of text in a matter of minutes on a modest
local computer. This is significantly faster than MetaSRA, which takes on the order of hours for
sample descriptions and needs to be executed for each individual piece of text, and Tagger,
which needs to load large dictionaries into memory before doing an exhaustive, exact-string
matching to the dictionary. MetaSRA was especially designed to operate on very small pieces of
text (key-value pairs). Our method outperforms other text-based methods while maintaining
biological interpretability both in terms of how the models are trained (taking into account
ontology structure when assigning training labels) and in how the models perform (Figure 4 and
5), which when combined with the other benefits of NLP-ML – predominantly scalability,
efficiency, and the ability to work on unstructured text from any source – set it apart from
existing text-based methods. Further, because NLP-ML addresses a more general problem, i.e.,
annotating large collections of unstructured text, it can easily be applied to any text data
including descriptions of more –omics data types beyond gene expression.”

Issues/Comments:



Comment 1.2:
How does this new NLP-ML method address the high false positive issue of NER-based
methods (without manual curation step) when one dataset contains multiple tissue/cell-type
experimental data?

Response: This is a good question. We, in general, control for false positives by optimizing our
models for area under the precision recall curve (auPRC) when selecting our machine learning
models (Figure S2). By doing so, we are optimizing for a high precision, which in turn directly
reduces our false positive rate. In terms of how the natural language processing part minimizes
false positives, we have a couple of working hypotheses. We examined all of the cases where
for a given sample and for a particular tissue or cell type, the true label according to our gold
standard is negative, and our method (NLP-ML) correctly labels the sample as such (true
negative) but either MetaSRA or Tagger labels the sample as a positive (false positive). We then
filtered these instances to ones where the predicted probability from NLP-ML is < 0.05 to
examine cases where our models were confident in assigning a negative label, and further
filtered these cases to instances pertaining to a tissue or cell types whose auPRC from cross
validation is > 0.80 to only consider tissues and cell types where the predicted probabilities from
NLP-ML are most likely to be accurate. Below, we describe our observations from three specific
tissues or cell types along with a count of the number of samples that fulfilled the above criteria.

For brain (N = 12), for all of the cases where NLP-ML correctly identified a non-brain
sample correctly as a negative but the other text-based methods did not, the samples in
question came from liver or blood, but all came from either patients who are brain dead or
patients with brain cancer. For liver (N = 26), the true label for the samples were either blood or
colon (specifically samples from colon adenocarcinoma tumors), but the patients were either
liver transplant patients in the case of the true label being blood, or the word “liver” just appears
in the sample description. For intestine (N = 23), all samples were from stomach stromal tumor,
but terms like “gastrointestinal” and “small intestine” are mentioned throughout.

These instances point to one hypothesis about how NLP-ML might have been able to
correctly label these samples as negatives for the appropriate tissues. In almost all cases where
NLP-ML correctly predicts a negative and the other text-based methods incorrectly assign a
positive label, the true label tissue name appears more times than any other tissues or cell
types in the description. This hypothesis is supported by how we generate a text-based feature
vector for a sample based on its ‘bag-of-words’ (from the description) where more frequently
appearing words directly contribute more strongly to the final feature vector, making it more
associated with the correct tissue name and less associated with the incorrect ones. We also
suspect that there may be some words present in the description’s bag of words that provide
additional contextual clues that can additionally point NLP-ML to the true tissue of origin, thus
contributing to NLP-ML’s lower false positive rate.

Having made these observations based on careful manual inspection, because the
predictions are made based on dense vectors that combine signals from all the words in a
description, explaining individual prediction results of NLP-based models remains an open area
of investigation in our work (and in others’ research as well) and we will pursue it in the future.



Comment 1.3:
In the Abstract as well as in the Introduction, the authors refer to -omics data as a whole but
only the study itself only concerns two resources and primarily on genomic/transcriptomic
datasets. Please replace the wording of “-omics” throughout the manuscript, as this project
focused on 1 or 2 types of data sources, and it is not applicable to a variety of -omics data
types. Additionally, there is a lack of evidence/data to demonstrate NLP-ML’s capacity to tackle
other sorts of -omics data. Each type of -omics data presents its own inherent technical
challenges; we do not see that they are necessarily commonly comparable to genomic or
transcriptomic data.

Response: This is a fair point that is also made by Reviewer 3. In principle, our method is
general and can be applied to annotate samples from any –omics experiment type beyond
genomics/transcriptomics. The reviewer is right that each –omics molecular data presents its
own technical challenges. However, as our approach annotates each sample only based on its
text description and not based on the recorded molecular data (e.g., expression profile or
methylation profile), these technical variations will not affect NLP-ML. If there are systematically
different ways in which researchers describe samples from different –omics types, that might
affect our method, but currently there is no evidence for such systematic textual differences.

Nevertheless, as we have detailed below (‘Validation on other omics types’), without a
gold standard to evaluate our model predictions against and the infeasible manual curation
effort required to validate predictions based on external information (e.g., information hidden
away in the papers describing the datasets), it is not possible to unequivocally claim that our
method works well across all –omics types.

Therefore, we have revised the wording in our manuscript to now only make claims
pertaining to predicting tissues and cell types for genomics data rather than -omics data in
general. The term “-omics” remains in the manuscript in a few areas where the discussion is
broader than just the results conveyed from our work, but claims pertaining to our NLP-ML
models have been revised.

Validation on other omics types: In an effort to validate our NLP-ML predictions on samples from
other omics data types, we examined proteomics data from two databases: PrideDB
(https://www.ebi.ac.uk/pride/) and OmicsDI (https://www.omicsdi.org/), which contain metadata
for a large number of proteomics and -omics experiments, respectively. PrideDB not only
contains plain text metadata for each proteomics experiment, but in many cases, the
experiments also include tissue annotations. These annotations, presumably, are submitted by
experimenters with their submission to the database. However, PrideDB does not include any
sample-level information. Instead, the database contains sample protocol information, which is
more akin to a paragraph from the Methods section of an accompanying manuscript and less
indicative of actual sample-level information. We sought to use OmicsDI for doing a broader
-omics evaluation, but the proteomics data from OmicsDI is pulled directly from PrideDB, and
many larger -omics types lack gold standard labels like we would have working with PrideDB
metadata. Evaluating our approach on experiment protocol description –  which are more similar
to text in Methods sections describing the full experiment and less to descriptive sample
metadata – will be unfair. Conducting a fair evaluation entails a substantial manual curation

https://www.ebi.ac.uk/pride/
https://www.omicsdi.org/


process. Therefore, we have revised the wording of our manuscript to only make claims about
genomics samples.

Comment 1.4:
An online demonstration, beyond that provided by the example scripts on the project’s GitHub
repository, would be very useful for understanding potential use cases for NLP-ML.

Response: This is a good idea. We have included a number of different tools in the repository
as per the reviewer’s suggestion.
1. Training custom NLP-ML models: Users can now train their own NLP-ML models using

labeled text of their choosing using our method
(https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nl
p-ml-models). This means that users can either train new models by subsetting from our
gold standard for a particular tissue or cell type, or they can create their own curated dataset
for their own text classification problem of interest and use our code to train brand-new
NLP-ML models.

2. Running predictions using custom or pre-trained models on any text: Users can make
predictions on any new piece of text using either their own trained models or our pre-trained
models
(https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-1-making-predicti
ons-on-unstructured-text-using-nlp-ml).

The repository README has been updated to reflect these changes and new scripts have been
included.

Comment 1.5:
The Zotero reference import process appears to have created some reference issues, e.g., the
references for ZOOMA (as internet resource) and ConceptMapper (as conference proceedings)
are missing dates and other info. Some hyperlinks embedded in references lead to incorrect
locations.

Response: This has been fixed. We have double checked and corrected all hyperlinks in the
bibliography.

Comment 1.6:
Knowing the time factor necessary for down-loadeding PubMed corpus, as described in
“Creating text-based sample embeddings”, is critical to reproducibility. It is important for the
authors to consider high/low frequency; were they excluded when building embeddings?

Response: These are important points. We have now included in the Methods section the dates
when our PubMed corpus was downloaded (16 August 2020) and when the corpus used to train

https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nlp-ml-models
https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nlp-ml-models
https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-1-making-predictions-on-unstructured-text-using-nlp-ml
https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-1-making-predictions-on-unstructured-text-using-nlp-ml


the ELMo models (used by Flair) were potentially downloaded (to the best of our knowledge,
based on the ELMo publication: https://aclanthology.org/N18-1202/) (2018).

Comment 1.7:
Expression based tissue classifications use distinct features; alternative methods, other than
L1-regularized logistic regression, may support a fair comparison.

Response: This is certainly true. Therefore, we already evaluated 4 different machine learning
algorithms for expression-based tissue classification: XGBoost, Random Forest, Support Vector
Machine, and both L1- and L2-regularized Logistic Regression. These results were presented in
our Supplemental Figure 9. For XGBoost, Random Forest, and Support Vector Machine, the
default parameters from scikit learn were used. We compared the performance of these 5
classifiers and examined the model performances without considering training size (Figure S9.
A) and considering training size (Figure S9. B-E). In all cases, the classifier performances were
nearly identical with some slight variation depending on sample size. Based on this comparison,
we chose to use L1-regularized Logistic Regression for expression-based classification, same
as the choice we made for text-based classification (Figure S2).

Comment 1.8:
Is averaging auPRC weighted? The sample size of the 3-5 CV is different.

Response: For each tissue and cell type, we split the available data in our gold standard into a
variable number of folds depending on the number of experiments with positively annotated
samples in it. To ensure our models do not learn any dataset-specific signals, we never split
samples from the same experiment across different folds. Therefore, to train a model for the
purposes of evaluating NLP-ML performance for annotating for a particular tissue or cell type,
we needed that tissue or cell type to have a minimum number of experiments with positively
annotated samples in it. In general, a larger number of folds in CV lends itself to better
generalizability on unseen data because overfitting to the training data is averaged out between
the different folds. However, to train models for as many tissues as possible, we set the
minimum number of experiments with positively annotated samples to 3. Since some tissues
and cell types have a large amount of positively labeled training data, we also wanted to set a
maximum number of folds in CV for computational purposes alone. Therefore, we ended up
choosing to do a variable number of folds ranging from 3 to 5 for each tissue. When reporting
the final results, we average the auPRC values across the k folds for each tissue or cell type to
show the average performance (where k is 3, 4, or 5). The auPRC values from different k’s are
not weighted when calculating an aggregate model performance. Instead, we first split the terms
into four bins where terms within each bin had similar training set sizes (and, hence, identical or
similar k’s) and then assessed the relative performance of methods within these bins. Examples
include Figures S2, S5, S6, and S7. Also, when assessing the overall performance of methods,
we performed paired tests that compare methods on a term-by-term basis (each with a
particular k) when estimating statistical significance (Figure S3).



Comment 1.9:
Page 2, paragraph 2. “While they often provide high-quality annotations, automated
high-throughput methods are needed to …”: This transition here is a bit confusing. Here, “they”
refers to the “manual curation”, not a more grammatically natural “automated high-throughput
methods”. Some rephrasing might improve the clarity and flow.

Response: We have revised the language to the following: “While curation efforts often lead to
high-quality gold standards, automated high-throughput methods are needed to keep up with
the scale of available samples, which already totals to more than a million and continues to
grow exponentially (Krassowski et al. 2020; Conesa and Beck 2019; Perez-Riverol et al. 2019;
Stephens et al. 2015).”

Comment 1.10:
Page 3, paragraph 1. “NER-based methods suffer from several false positives”: Is “several” a
typo for “severe” or meant “ a certain level” of false positives?

Response: We have revised the sentence to the following: “However, without an additional step
of manual curation, NER-based methods suffer from high false-positive rates due to the
presence of varied and conflicting pieces of information in sample descriptions.”

Comment 1.11:
As described in the methods: “We obtained tissue and cell-type annotations of human
gene-expression samples from Lee et. al., 2013 (Lee et al. 2013).” Are those samples including
situations where varied and conflicting pieces of information exist in sample descriptions (e.g.,
mentioning more than one tissue/cell-type)?

Response: As noted in our response to Comment 1.2, the sample descriptions included here
did indeed contain varied and conflicting pieces of information, including mentions of more than
one tissue/cell-type terms within a given description.

Comment 1.12:
Are these samples from Lee’s publication limited to blood cells and lymphoid tissue-derived cells
(Suppl. Fig 2 in Lee’s publication), or the URSA’s >14,000 diverse samples representing over
244 tissue/cell-type terms? Please clarify which one was used for training.

Response: The language has been changed to clarify this point: “We obtained tissue and cell
type annotations of human gene-expression samples from Unveiling RNA Sample Annotation’s
(URSA’s) >14,000 diverse samples representing over 244 tissues/cell types (Lee et al. 2013).”

https://www.zotero.org/google-docs/?ERIniQ
https://www.zotero.org/google-docs/?ERIniQ
https://www.zotero.org/google-docs/?UhZTuX


Reviewer #2 (Remarks to the Author):

There are millions of publicly available -omics samples, but much of their metadata consists of
unstructured free-text fields. Converting unstructured biological metadata into structured
metadata has been done in the past largely via text-matching and graph-based annotation.
Some authors have used neural networks to attempt to label samples, but so far such methods
have struggled to predict tissue and cell type information.

In this work, Hawkins et al. develop a model (txt2onto) by fine-tuning a transformer on text from
PubMed, embedding sample and dataset-level metadata using the transformer, and using
l1-regularized logistic regression to predict terms in the UBERON-CL ontology for individual
samples.

They then evaluate txt2onto in a number of ways. They compare their model’s performance
against competing tools, MetaSRA and Tagger, finding that their model outperforms these
methods. The authors also find that txt2onto predicts tissues of expression samples almost as
well as models trained directly on the expression data. Further, they validate that the model is
learning something biologically meaningful by showing that it maps anatomically related tissues
close together in t-SNE space, and that the model generalizes well enough to predict
tissue-specific biological processes.

While the paper is convincing, a few comments remain:

Minor comments:

Comment 2.1:
While the authors have published the code required to run the pretrained version of txt2onto,
they do not make the code required to train the models available.

Response: We agree that this would be useful. We have now included code to train custom
NL-ML models in our github repository
(https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nlp-m
l-models). We have included two files for this particular application. The first set of tools will
enable users to create a training set input in the correct format for any tissue or cell type in our
gold standard. This will allow users to retrain all the full models included as a part of our work.
Alternatively, users can provide their own correctly-formatted, labeled text to train models for
their own purposes using our methodology. Such models could be for any text classification task
with sufficient labeled data with the caveat that our framework has been tested only within the
scope of annotating biomedical text for tissues and cell types. When making predictions on new
text, users can now specify whether to use the available fully-trained models from our work or
their own, custom models.

https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nlp-ml-models
https://github.com/krishnanlab/txt2onto/blob/main/README.md#use-case-2-training-new-nlp-ml-models


Comment 2.2:
It is unclear why the word ‘musculus’ would cause false positives for muscle as mentioned in the
“Using NLP-ML to annotate samples from multiple experiment types” section. The original ELMo
paper shows that ELMo embeddings can disambiguate between different definitions of the word
“play” based on context, so I wouldn’t expect words to have similar embeddings caused by
similar spelling. Is it possible that the mouse samples in the training set are frequently annotated
as being muscle samples?

Response: We use the pre-trained ELMo model as part of the flair pipeline, which creates word
embeddings from characters and not the entire word. Then, word embeddings are created by
aggregating character-level information. The reviewer is right in pointing out that ELMo is able to
differentiate between different meanings of the same word, it is able to do so only when the final
task is integrated with the embedding phase of these neural network models. In our application,
however, we use flair (which includes ELMo) only to create word embeddings and later, in a
separate step, use these embeddings to design a machine learning model that associates these
embeddings to tissue/cell-type terms. Hence, we get one embedding per word and not multiple
ones based on different contexts. The only way different words in a sample’s description
influence each other is during the creation of sample embeddings by taking a weighted average
of the individual words in the sample description. To reiterate, this averaging considers all the
words together without retaining any context of the words ‘surrounding’ a given word.

Second, the embedding of each word encodes information from the characters in that
word. This allows us to create embeddings for any piece of text without issues that could be
posed by misspellings or out of vocabulary words. Therefore, it remains possible that similarly
spelled words could be introducing noise into the predictions from our models by ending up with
similar word embeddings generated from their similar spellings.

We have now revised the language of the manuscript to reflect these nuances: “The low
performance of the muscle model (precision = 0.58) could be explained by the presence of the
word “musculus” (indicative of a mouse sample) in the majority of samples incorrectly annotated
for muscle tissue. This could be the result of a character-level embedding method like flair
yielding similar embeddings for similarly spelled words, which may not be an issue for
token-level embedding methods that consider the full word.”

We examined the cosine similarity between the embedding for the word “muscle” and
the word “musculus” and found the similarity to be 0.43. A value of 0 would indicate no similarity,
and a value of 1 would indicate the embeddings are perfectly similar (since embedding
dimensions can be negative, the cosine similarity can be -1 for perfect dissimilarity). A value of
0.43, while not exceedingly large, is non-negligible and could support our hypothesis. In regards
to the training set, there are no samples in our gold standard where “mouse” or “musculus” are
co-mentioned in samples positively annotated for muscle tissue.

Nevertheless, the reviewer brings up a very good point, which is: how does one explain
any given prediction by a model like NLP-ML that uses abstract word embedding vectors that
are then averaged across tens/hundreds of words within a sample text? Investigating this
problem is a worthwhile endeavor and is part of our future research.



Comment 2.3:
I appreciate the authors’ use of dataset-aware train/validation set splitting to avoid data leakage
and overoptimistic estimates of performance

Response: Thank you!

Comment 2.4:
Table 2 may not be a representative sample of the models’ predictions? Most of the models do
well for the predictions they’re most confident in, but would the results for, e.g., ten random
predictions with predicted probability > .9 show the same distribution? This experiment may be
infeasible to run due to the manual evaluations required though.

Response: This is a good point and we wish to begin by highlighting an observation about
sample descriptions. It is typical for samples in the same experiment to have very similar text
descriptions and, based on our manual inspection, the samples with the top predicted
probability for each tissue or cell type are unlikely to all come from the same experiment
because their descriptions were not similar to each other. It is therefore highly likely that the
majority of samples with predicted probabilities > 0.9 in these cases  come from a small number
of experiments. As a result, sampling 10 random samples from the highest predicted
probabilities would most likely lead to samples from the same experiments as the top predicted
samples that we manually evaluated, which we feel to be representative. As mentioned by the
reviewer, it might be more robust to sample multiple sets of samples with high predicted
probabilities, evaluate each set manually, and average the metrics, but the manual curation
effort required to conduct that evaluation makes this analysis very challenging. Nevertheless,
when a researcher uses our method to identify samples from their tissue/cell-type of interest, the
sample ranking will be accompanied by the original sample descriptions, which the researcher
can easily examine to make an assessment on a case-by-case basis.

Comment 2.5:
It is unclear why the authors decided on a one-vs-rest formulation for the logistic regression
model instead of using multi-class logistic regression.

Response: We agree with the reasoning behind this question: a single multi-class classifier
would be ideal. However, we chose one-vs-rest classifiers rather than multi-class logistic
regression because it allows us to impose ontological structure into our training step. To
elaborate, a multi-class classifier would be sufficient if all the samples in our gold standard were
either a positive or a negative for every tissue or cell type (just like, say, an animal image
classification task where each image is marked with each animal being present or not in an
image). However, that is not the case in our application. For a particular tissue or cell type term,
we have ‘positive’, ‘negative’, and ‘neutral’ samples from our gold standard based on the tissues
those samples are directly annotated to and the relationship of those tissues to the given term of



interest in the underlying tissue ontology. ‘Positive’ samples are those that are directly annotated
to the term of interest or any of that term’s descendents in the ontology. For example, for kidney
(UBERON:0002113), samples labeled for kidney would be marked as positives along with
samples annotated for terms like kidney cell (CL:1000497), kidney epithelium
(UBERON:0004819), or nephric duct (UBERON:0009201), which are all descendant terms of
‘kidney’ in the UBERON ontology. We then identify all samples that are annotated to the
ancestors of the term of interest in the ontology and mark them as ‘neutral’ because these
samples could belong to the tissue under consideration. In the instance of kidney, any sample
annotated to upper urinary tract (UBERON:0011143), for example, would be a neutral because it
is unclear whether it should be labeled a positive or a negative for kidney without further
information because either could be true. All other samples in the gold standard are declared as
‘negatives’. This label structure, which fully respects our incomplete knowledge and the ontology
structure, is difficult to provide as target label vectors within multi-class logistic regression, which
expects either a ‘positive’ or a ‘negative’ label at each output. Hence, we chose one-vs-rest
classifiers.

Reviewer #3 (Remarks to the Author):

Hawkins et al present a method "NLP-ML" to infer tissue and cell type annotations from free text
metadata, and compare the performance of their system to two well established approaches,
TAGGER and MetaSRA, as well as direct tissue annotation from expression data.
Demonstrated performance is better than the other two text-based methods, but slightly less
good than the expression database based approach. The authors argue that NLP-ML
nevertheless improves on the state of the art, as the method
a) helps to improve performance overall in combination of multiple approaches, and
b) is relatively easy to apply, and might be useful for the annotation of multiple omics data types,
as it relies only on free text metadata, rather than highly structured expression data.

The method is well described and documented, including source code and available/referenced
datasets.

* Major concerns:

Comment 3.1:
The authors claim, even in the title, a potential to generalise the method to "omics" samples,
which is the major claim to progress beyond state of the art, compared to expression based
methods. However, this is only demonstrated based on data from two databases (Geo,
ArrayExpress) and five relatively "related" methods. To support this claim of potential to
generalise, it would be helpful to apply the method to data from a different database and field.
Proteomics would be a potential example, as there are enough public datasets available, and
the sample character is still related. Metabolomics would be a more challenging demonstrator,
both in terms of data availability and divergence of sample types.



Response: This is a fair point that is also made by Reviewer 3. In principle, our method is
general and can be applied to annotate samples from any –omics experiment type beyond
genomics/transcriptomics. The reviewer is right that each –omics molecular data presents its
own technical challenges. However, as our approach annotates each sample only based on its
text description and not based on the recorded molecular data (e.g., expression profile or
methylation profile), these technical variations will not affect NLP-ML. If there are systematically
different ways in which researchers describe samples from different –omics types, that might
affect our method, but currently there is no evidence for such systematic textual differences.

Nevertheless, as we have detailed below (‘Validation on other omics types’), without a
gold standard to evaluate our model predictions against and the infeasible manual curation
effort required to validate predictions based on external information (e.g., information hidden
away in the papers describing the datasets), it is not possible to unequivocally claim that our
method works well across all –omics types.

Therefore, we have revised the wording in our manuscript to now only make claims
pertaining to predicting tissues and cell types for genomics data rather than -omics data in
general. The term “-omics” remains in the manuscript in a few areas where the discussion is
broader than just the results conveyed from our work, but claims pertaining to our NLP-ML
models have been revised.

Validation on other omics types: In an effort to validate our NLP-ML predictions on samples from
other omics data types, we examined proteomics data from two databases: PrideDB
(https://www.ebi.ac.uk/pride/) and OmicsDI (https://www.omicsdi.org/), which contain metadata
for a large number of proteomics and -omics experiments, respectively. PrideDB not only
contains plain text metadata for each proteomics experiment, but in many cases, the
experiments also include tissue annotations. These annotations, presumably, are submitted by
experimenters with their submission to the database. However, PrideDB does not include any
sample-level information. Instead, the database contains sample protocol information, which is
more akin to a paragraph from the Methods section of an accompanying manuscript and less
indicative of actual sample-level information. We sought to use OmicsDI for doing a broader
-omics evaluation, but the proteomics data from OmicsDI is pulled directly from PrideDB, and
many larger -omics types lack gold standard labels like we would have working with PrideDB
metadata. Evaluating our approach on experiment protocol description –  which are more similar
to text in Methods sections describing the full experiment and less to descriptive sample
metadata – will be unfair. Conducting a fair evaluation entails a substantial manual curation
process. Therefore, we have revised the wording of our manuscript to only make claims about
genomics samples.

Comment 3.2:
Minor concerns:
Somewhere early on, "available samples" should be defined, it might be interpreted as physical
samples available from providers. The subject of this manuscript are "available sample
descriptions". On a side note, not a mandatory revision, a really interesting extension of the
manuscript might be to map the samples to actually available samples from biobanks etc.

https://www.ebi.ac.uk/pride/
https://www.omicsdi.org/


Response: Thank you. In the first line of our Introduction, we now say “data from >1.3 million
human –omics samples and >26,000 –omics datasets that are publicly available”. And, yes,
connecting samples to actually available samples in biobanks would be valuable and this is the
work two large data repositories BioSample (  https://www.ncbi.nlm.nih.gov/biosample/) and
BioSamples (https://www.ebi.ac.uk/biosamples/) are attempting to address in a comprehensive
manner.

Comment 3.3:
P2: "continues to grow exponentially". Do available samples really grow exponentially?

Response: Yes, omics samples are indeed growing exponentially! We have included the
following references to support this statement:
Krassowski, Michal, Vivek Das, Sangram K. Sahu, and Biswapriya B. Misra. 2020. “State of the

Field in Multi-Omics Research: From Computational Needs to Data Mining and Sharing.”
Frontiers in Genetics 11: 1598. https://doi.org/10.3389/fgene.2020.610798.

Conesa, Ana, and Stephan Beck. 2019. “Making Multi-Omics Data Accessible to Researchers.”
Scientific Data 6 (October): 251. https://doi.org/10.1038/s41597-019-0258-4.

Perez-Riverol, Yasset, Andrey Zorin, Gaurhari Dass, Manh-Tu Vu, Pan Xu, Mihai Glont, Juan
Antonio Vizcaíno, et al. 2019. “Quantifying the Impact of Public Omics Data.” Nature
Communications 10 (1): 3512. https://doi.org/10.1038/s41467-019-11461-w.

Stephens, Zachary D., Skylar Y. Lee, Faraz Faghri, Roy H. Campbell, Chengxiang Zhai, Miles J.
Efron, Ravishankar Iyer, Michael C. Schatz, Saurabh Sinha, and Gene E. Robinson.
2015. “Big Data: Astronomical or Genomical?” PLOS Biology 13 (7): e1002195.
https://doi.org/10.1371/journal.pbio.1002195.

Comment 3.4:
P2: ArrayExpress ref might be updated.

Response: We have updated the references to include the following: Sarkans, Ugis, Anja
Füllgrabe, Ahmed Ali, Awais Athar, Ehsan Behrangi, Nestor Diaz, Silvie Fexova, et al. 2021.
“From ArrayExpress to BioStudies.” Nucleic Acids Research 49 (D1): D1502–6.
https://doi.org/10.1093/nar/gkaa1062.

Comment 3.5:
On pages 3 and 14, the authors mention that MetaSRA is "slow", "low throughput" in
comparison to NLP-ML. This should be supported by objective measures.

Response: The text on page 14 has been changed to the following: “Secondly, the method is
low throughput, requiring a large amount of time and computational resources to process a
single piece of text. The full MetaSRA pipeline needs to be executed for each unique input. For
instance, annotating our >11,000 samples meant generating a unique input for each description
and running the full computation pipeline for each input individually. The average runtime for

https://www.ncbi.nlm.nih.gov/biosample/
https://www.ebi.ac.uk/biosamples/
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://doi.org/10.1038/s41467-019-11461-w
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW


annotating each sample was approximately 1 hour. The average runtime for dataset
descriptions often exceeded 3 hours.”

We have also updated a paragraph in Discussion to include additional points related to
the comparison between NLP-ML and MetaSRA: “Our NLP-ML method has a number of specific
advantages compared to existing text and expression-based solutions to annotating samples for
tissues and cell types. Our models are able to make predictions for any genomics sample given
a plain-text sample description, which lends itself to predictive flexibility compared to methods
that use the underlying molecular data to make tissue or cell type annotations. These
descriptions can be any unstructured plain text. This is a key advantage over MetaSRA, which
was designed for leveraging structured key-value data (particularly the ‘Characteristics’ field) in
order to construct knowledge graphs for annotating samples. NLP-ML is also computationally
lightweight: predictions for >300 fully trained models can be made on dozens of pieces of text in
a matter of minutes on a modest local computer. This is significantly faster than MetaSRA,
which takes on the order of hours for sample descriptions and needs to be executed for each
individual piece of text, and Tagger, which needs to load large dictionaries into memory before
doing an exhaustive, exact-string matching to the dictionary. MetaSRA was especially designed
to operate on very small pieces of text (key-value pairs). Our method outperforms other
text-based methods while maintaining biological interpretability both in terms of how the models
are trained (taking into account ontology structure when assigning training labels) and in how
the models perform (Figure 4 and 5), which when combined with the other benefits of NLP-ML –
predominantly scalability, efficiency, and the ability to work on unstructured text from any source
– set it apart from existing text-based methods. Further, because NLP-ML addresses a more
general problem, i.e., annotating large collections of unstructured text, it can easily be applied to
any text data including descriptions of more –omics data types beyond gene expression.”

Comment 3.6:
P3, line 3: "...several false positives". Several is an odd quantification here.

Response: This language has been changed: “However, without an additional step of manual
curation, NER-based methods suffer from high false-positive rates due to the presence of varied
and conflicting pieces of information in sample descriptions.”

Comment 3.7:
P4: Add literature reference for Ontology Lookup Service.

Response: Thank you. We added the following reference for OLS: Jupp, S., T. Burdett, C.
Leroy, and H. Parkinson. 2015. “A New Ontology Lookup Service at EMBL-EBI.” In SWAT4LS.
This is one of the first works to outline the platform in detail. In combination with the URL for
OLS, we feel this is sufficiently cited.

https://www.zotero.org/google-docs/?OzuVZW
https://www.zotero.org/google-docs/?OzuVZW


Comment 3.8:
P18: "perform similarly overall" is a bit of an idealising statement.

Response: The language has been changed to “the performances of expression-based models
and NLP-ML models are comparable in terms of overall performances.” This statement is based
on the comparison of the distributions of model performances between expression-based
predictions and NLP-ML predictions, which results in a corrected Wilcoxon rank sum test
p-value of 0.12, indicating that there is not a statistically significant difference between their
overall auPRC values.

Comment 3.9:
Fig 6, panel A, top row; fig S10, panel B, top row: The boxplots show a strange artifact at the
right border, exceeding "1". While probably a problem of the underlying library, it would be nice
to correct this for a potential next version.

Response: The area of the plot that exceeds 1 is a statistical artifact from how the notch on the
boxplot is calculated and not a reflection of the true data. The notch is a visual indicator of the
confidence interval around the median, which is calculated as follows: , where𝑚𝑒𝑑𝑖𝑎𝑛 ± 𝐼𝑄𝑅

𝑛

IQR is the interquartile range and n is the sample size of the boxplot. Depending on the values
of the IQR and n, it is possible for the notch to exceed the maximum auPRC of 1, and should be
treated as a piece of visual information about the estimate of the median rather than a true
datapoint. The statements made in the paper are based on robust statistical tests.



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Comments for Author:

The efforts made by Hawkins et al. in their revised manuscript are appreciated, as these updates 

address some of the primary concerns with the original submission. The primary research goal 
remains sound; an unification of NLP methods with ontology-driven metadata standardization has the 

potential to offer noticeable benefits to all researchers seeking to use and re-use omics data. 

However, the manuscript itself remains challenged on providing specific details regarding the domain 
that NLP-ML (and txt2onto) has been tested on (i.e., for “genomics” vs. all omics); this is not a small 
but rather crucial concern. Several essential aspects of the manuscript also remain inadequately 

addressed. All of these severely limit the potential impact of the described methods. Though the 
authors have claimed that their method can handle variations in sample type within and across data 

sets, they offered limited evidence to support their speculation, at least partially due to a dearth of 
sufficiently labeled training data. Another absolutely essential detail remains missing: is there a 
specific use case where these advantages apply? Is slow software causing a bottleneck in omics 

metadata creation? Is a lack of flexibility serving to limit the number of accurately annotated data 
sets? The answer to all of these questions may be a resounding ‘yes’, but the authors must clearly 

identify why and how. These and additional concerns are elaborated upon below. 

This proposed approach is new but supporting evidence remains very preliminary. For this reason, 

adequately detailed use cases with demonstrated positive improvement/ebenefits are essential. 

Issues/Comments:

(1) The inclusion of further details regarding advantages as compared to MetaSRA are helpful for 
providing justification and context. These improvements are considerable, and should certainly be 
acknowledged, not the least because of the clear improvement in application flexibility provided by 

NLP on free text vs. small key-value pairs. The expected broader impact on those downstream 
applications remains unclear. As the authors clearly delineate in their introduction, well over a million 

omics samples exist, but is NLP-ML an effective solution for considerably improving metadata 
amongst these datasets? 

(2) The authors’ response to concerns regarding false positives in NER is informative. More of the 
details regarding this analysis should be provided in the manuscript itself. 

(3) Regarding the replacement of “-omics” with “genomics”, this appears to be a reasonable change 
reflecting the extent to which the current methods may be tested with any degree of confidence. The 

lack of sample-level information in proteomics databases is an open challenge and certainly limits the 
extent to which proteomics metadata may be extended. This may be a case in which careful human 

annotation may be effective (yet, as is often the case, demanding of considerable time and labor). 
The authors also state in their response that “...there is no evidence for such systematic textual 

differences” in descriptions of different omics types. This is a difficult claim to support without a direct 
comparison of the vocabulary of different omics metadata. 

(4) Availability of code to train NLP-ML models is appreciated. While creation of a more 
comprehensive resource may extend beyond the scope of the manuscript, the requested online 

demonstration was more along the lines of that provided for MetaSRA at 
https://metasra.biostat.wisc.edu/, or a publicly available demonstration allowing advantages of NLP-
ML to be shown without the necessary programming skill or environment setup prerequisites. In 

practice, even a Docker image may be sufficient. 



Reviewer #2 (Remarks to the Author): 

All of my comments have been addressed by the authors. 

Reviewer #3 (Remarks to the Author): 

The authors have appropriately addressed my concerns, with the exception of 3.9, the inaccuracy in 
figure S10. I guess it's now an editorial decision on if/how this should be fixed, I'd just crop away the 

part beyond 1 with a standard graphics tool. 



Reviewer #1 (Remarks to the Author) 

Comment: The efforts made by Hawkins et al. in their revised manuscript are appreciated, as 

these updates address some of the primary concerns with the original submission. The primary 

research goal remains sound; an unification of NLP methods with ontology-driven metadata 

standardization has the potential to offer noticeable benefits to all researchers seeking to use 

and re-use omics data. 

However, the manuscript itself remains challenged on providing specific details regarding 

the domain that NLP-ML (and txt2onto) has been tested on (i.e., for “genomics” vs. all omics); 

this is not a small but rather crucial concern. Several essential aspects of the manuscript also 

remain inadequately addressed. All of these severely limit the potential impact of the described 

methods. Though the authors have claimed that their method can handle variations in sample 

type within and across data sets, they offered limited evidence to support their speculation, at 

least partially due to a dearth of sufficiently labeled training data. Another absolutely essential 

detail remains missing: is there a specific use case where these advantages apply? Is slow 

software causing a bottleneck in omics metadata creation? Is a lack of flexibility serving to limit 

the number of accurately annotated data sets? The answer to all of these questions may be a 

resounding ‘yes’, but the authors must clearly identify why and how. These and additional 

concerns are elaborated upon below. 

This proposed approach is new but supporting evidence remains very preliminary. For 

this reason, adequately detailed use cases with demonstrated positive improvement/benefits 

are essential. 

Response: 

Domain that NLP-ML has been tested on: 

We have already made this change in our previous resubmission of the manuscript, 

amending our claims to pertain only to genomics data and not –omics data as a whole. Hence, 

now, the term “–omics” is mentioned only in the sections of the manuscript where general 

discussions are appropriate. All claims based on our analyses and results are restricted to 

making predictions on “genomics” data alone. To make the domain of our application clearer, we 



have also added a paragraph in the Discussion section that outlines how our approach (or any 

other approach for sample annotation) cannot be used on other –omics data such as 

proteomics (from databases like PRIDE) due to the lack of sample-level information. Therefore, 

together, we believe that this concern has been addressed. 

Cases where advantages apply: 

Substantially better accuracy: The single biggest advantage of our approach is its 

substantial increase in sample annotation accuracy over and above approaches such as 

MetaSRA. We have demonstrated this advantage throughout the manuscript based on: i) 

rigorous evaluation based on a high-quality gold standard (Figures 2, 3, 6, S1–8, and S10–12), 

ii) application to completely independent samples from other genomics samples not part of the 

gold standard (Table 2), and iii) Manual inspection of several sample and dataset descriptions 

that highlights specific cases where our approach mitigates false positives and false negatives 

(compared to existing methods) to result in accurate sample annotations (Supp. Notes 1 and 

2). Together, the overall improvement in sample annotation accuracy makes our approach 

broadly usable to annotate samples across the board. 

Flexibility: The second major advantage of our approach is its flexibility, that is, its ability 

to take as input any unstructured sample description without requiring structured key-value 

pairs. This is a well-recognized problem discussed in many other studies (cited in our 

manuscript, including [i] Byrd et. al., (2020) “Responsible, Practical Genomic Data Sharing That 

Accelerates Research.” Nature Reviews Genetics; and [ii] Rajesh et. al., (2021) “Improving the 

Completeness of Public Metadata Accompanying Omics Studies.” Genome Biology). We have 

also highlighted several examples in Supp. Notes 1 and 2 where samples lack structured 

sample descriptions. Therefore, the flexibility of our approach makes it applicable to all 

genomics samples irrespective of the format of their text descriptions. 

Software speed: High accuracy, flexibility, and generalizable software design makes our 

approach perfect for incorporation into existing computational sample annotation workflows that 

bioinformaticians, computational biologists, and data analysts will run on hundreds/thousands 

of sample descriptions. The substantial software speed (few seconds per sample/dataset for 

our method compared to 1–3 hours for MetaSRA) is a major advantage both in the context of 

re-annotating millions of existing samples and for annotating the exponentially growing number 

of new samples that are being deposited in public databases. This high speed is even more 

vital in a futuristic setting where our NLP-ML models are used on-the-fly to suggest structured 

annotations to samples as-and-when their descriptions are being entered into online forms by 

data submitters. 

Comment 1.1: The inclusion of further details regarding advantages as compared to MetaSRA 

are helpful for providing justification and context. These improvements are considerable, and 

should certainly be acknowledged, not the least because of the clear improvement in application 

flexibility provided by NLP on free text vs. small key-value pairs. The expected broader impact on 

those downstream applications remains unclear. As the authors clearly delineate in their 

introduction, well over a million omics samples exist, but is NLP-ML an effective solution for 

considerably improving metadata amongst these datasets? 



Response 1.1: NLP-ML is an effective solution for considerably improving metadata amongst 

millions of omics samples for the following reasons: 

1) Substantially better accuracy: The single biggest advantage of our approach is its 

substantial increase in sample annotation accuracy over and above approaches such as 

MetaSRA. We have demonstrated this advantage throughout the manuscript based on: i) 

rigorous evaluation based on a high-quality gold standard (Figures 2, 3, 6, S1–8, and S10–12), 

ii) application to completely independent samples from other genomics samples not part of the 

gold standard (Table 2), and iii) Manual inspection of several sample and dataset descriptions 

that highlights specific cases where our approach mitigates false positives and false negatives 

(compared to existing methods) to result in accurate sample annotations (Supp. Notes 1 and 

2). Together, the overall improvement in sample annotation accuracy makes our approach 

broadly usable to annotate samples across the board. 

2) Flexibility: The second major advantage of our approach is its flexibility, that is, its 

ability to take as input any unstructured sample description without requiring structured key-

value pairs. This is a well-recognized problem discussed in many other studies (cited in our 

manuscript, including [i] Byrd et. al., (2020) “Responsible, Practical Genomic Data Sharing That 

Accelerates Research.” Nature Reviews Genetics; and [ii] Rajesh et. al., (2021) “Improving the 

Completeness of Public Metadata Accompanying Omics Studies.” Genome Biology). We have 

also highlighted several examples in Supp. Notes 1 and 2 where samples lack structured 

sample descriptions. Therefore, the flexibility of our approach makes it applicable to all 

genomics samples irrespective of the format of their text descriptions. 

2) Software speed: High accuracy, flexibility, and generalizable software design makes 

our approach perfect for incorporation into existing computational sample annotation workflows 

that bioinformaticians, computational biologists, and data analysts will run on 

hundreds/thousands of sample descriptions. The substantial software speed (few seconds per 

sample/dataset for our method compared to 1–3 hours for MetaSRA) is a major advantage both 

in the context of re-annotating millions of existing samples and for annotating the exponentially 

growing number of new samples that are being deposited in public databases. 

This high speed is even more vital in a futuristic setting where our NLP-ML models are 

used on-the-fly to suggest structured annotations to samples as-and-when their descriptions are 

being entered into online forms by data submitters. 

The immediate expected broad impact of our approach will be through its incorporation into 

existing computational sample annotation workflows that bioinformatics and computational data 

analysts will run on hundreds/thousands of sample descriptions. Therefore, to ensure that our 

approach can be easily used by computational biologists, we have released a well-documented 

Python software (txt2onto) and have provided two use cases on our github repository: i) to train 

custom text-based machine learning models using our approach (to predict any sample attribute 

based on the sample description), and ii) to apply the trained model to predict the desired 

sample annotations on a large number of new samples. 

The way in which our approach empowers new discoveries is by providing structured 

annotations to publicly available genomics samples so that biologists can easily find the samples 

(and datasets) relevant to their question of interest from the ocean of hundreds of thousands of 

samples. Without the annotations provided by our approach, searching based only 



on the original sample description text will lead to numerous false positives and false negatives. 

Even with annotations provided by a competitive method like MetaSRA (compared to in this 

study), biologists will find several false positive samples (i.e., samples not really related to the 

tissue/cell-type of their interest). Using the annotations provided by our approach will enable 

researchers to more accurately find the samples they want. 

We have highlighted many such cases of samples correctly identified by our approach 

(overcoming false positive and false negative predictions by other methods) in the 

Supplemental Notes 1 and 2. 

Once biologists have found their samples of interest, the analyses they subsequently 

carry out may lead to novel discoveries of various forms. Thus, ultimately, our approach 

helps democratize data-driven biology by enabling biologists to easily discover publicly 

available genomics data. 

Comment 1.2: The authors’ response to concerns regarding false positives in NER is 

informative. More of the details regarding this analysis should be provided in the manuscript 

itself. 

Response 1.2: As per the suggestion of the reviewer, the following text has been included 

in the manuscript: 

Examining specific sample descriptions (Supplemental Note 2) also showcases how NLP-ML is 

able to achieve lower false positive rates by taking advantage of the overrepresentation of the 

true tissue name (compared to mentions of other, non-source tissues or cell types) in the 

descriptions. 

We have also included the following text (from our previous reviewer responses) as 

Supplemental Note 2: 

To elucidate our method’s behavior for controlling for false positives over NER, we examined all 

of the cases where for a given sample and for a particular tissue or cell type, the true label 

according to our gold standard is negative, and our method (NLP-ML) correctly labels the 

sample as such (true negative) but either MetaSRA or Tagger labels the sample as a positive 

(false positive). We then filtered these instances to ones where the predicted probability from 

NLP-ML is < 0.05 to examine cases where our models were confident in assigning a negative 

label, and further filtered these cases to instances pertaining to a tissue or cell types whose 

auPRC from cross validation is > 0.80 to only consider tissues and cell types where the 

predicted probabilities from NLP-ML are most likely to be accurate. Below, we describe our 

observations from three specific tissues or cell types along with a count of the number of 

samples that fulfilled the above criteria. 

For brain (N = 12), for all of the cases where NLP-ML correctly identified a non-brain 

sample correctly as a negative but the other text-based methods did not, the samples in 

question came from liver or blood, but all came from either patients who are brain dead or 

patients with brain cancer. For liver (N = 26), the true label for the samples were either blood or 

colon (specifically samples from colon adenocarcinoma tumors), but the patients were either 

liver transplant patients in the case of the true label being blood, or the word “liver” just appears 



in the sample description. For intestine (N = 23), all samples were from stomach stromal 

tumor, but terms like “gastrointestinal” and “small intestine” are mentioned throughout. 

These instances point to one hypothesis about how NLP-ML might have been able to 

correctly label these samples as negatives for the appropriate tissues. In almost all cases 

where NLP-ML correctly predicts a negative and the other text-based methods incorrectly 

assign a positive label, the true label tissue name appears more times than any other tissues or 

cell types in the description. This hypothesis is supported by how we generate a text-based 

feature vector for a sample based on its ‘bag-of-words’ (from the description) where more 

frequently appearing words directly contribute more strongly to the final feature vector, making 

it more associated with the correct tissue name and less associated with the incorrect ones. 

We also suspect that there may be some words present in the description’s bag of words that 

provide additional contextual clues that can additionally point NLP-ML to the true tissue of 

origin, thus contributing to NLP-ML’s lower false positive rate.” 

Comment 1.3a: Regarding the replacement of “-omics” with “genomics”, this appears to be a 

reasonable change reflecting the extent to which the current methods may be tested with any 

degree of confidence. The lack of sample-level information in proteomics databases is an open 

challenge and certainly limits the extent to which proteomics metadata may be extended. This 

may be a case in which careful human annotation may be effective (yet, as is often the case, 

demanding of considerable time and labor). 

Response 1.3a: We completely agree. We have now explicitly noted this point in our 

manuscript as follows: 

Further, because NLP-ML addresses a more general problem, i.e., annotating large collections 

of unstructured text, it can easily be applied to any text data including descriptions of more –

omics data types beyond genomics. However, a significant challenge faced by the biomedical 

community – an open challenge recognized by funding agencies such as NIH and data 

consortia such as NCI Data Commons – is the lack of sample-level information that methods 

like ours can utilize. For instance, databases such as PRIDE (Perez-Riverol 2019), the 

preeminent public database for proteomics datasets, only includes descriptions of entire 

datasets and experiments and not of individual samples. Addressing this challenge of lack of 

sample-level descriptions requires careful human annotation using semi-automated systems 

such as ZOOMA (https://www.ebi.ac.uk/spot/zooma/) based on descriptions about samples 

available elsewhere, including accompanying publications. 

Comment 1.3b: The authors also state in their response that “...there is no evidence for such 

systematic textual differences” in descriptions of different omics types. This is a difficult claim 

to support without a direct comparison of the vocabulary of different omics metadata. 

Response 1.3b: We would like to clarify the language of our previous response on this issue. 

Since our approach annotates each sample only based on its unstructured text description and 

not based on the recorded molecular data (e.g., expression profile or methylation profile), 

these technical variations will not affect NLP-ML. 

https://www.ebi.ac.uk/spot/zooma/)


Based on our experience and empirical observations, we expect that biomedical 

researchers, in general, tend to describe biological samples (i.e. attributes about their source 

such as tissue, cell type, phenotype, environment, and treatment) in a similar manner 

regardless of the type of –omics data being generated from those samples (e.g., gene 

expression vs. methylation vs. proteomics). 

Ascertaining this expectation one way or the other is hard due to the limited availability of 

sample-level information across –omics types (e.g., proteomics). A conclusive vocabulary-based 

analysis is, unfortunately, not feasible without substantial manual effort. We may undertake such 

an effort as part of our future work on extending our NLP-ML method to other –omics types, in 

which case we will establish any systematic differences in the vocabulary of sample-level 

information. 

Comment 1.4: Availability of code to train NLP-ML models is appreciated. While creation of a 

more comprehensive resource may extend beyond the scope of the manuscript, the 

requested online demonstration was more along the lines of that provided for MetaSRA at 

https://metasra.biostat.wisc.edu/, or a publicly available demonstration allowing advantages of 

NLP-ML to be shown without the necessary programming skill or environment setup 

prerequisites. In practice, even a Docker image may be sufficient. 

Response 1.4: Our method was designed with computational text annotation workflows in 

mind. By that, we mean that existing computational pipelines that aim to classify sample text 

descriptions (or any biomedical text) can readily use our source code to both train custom 

NLP-ML models and predict based on our pre-trained or newly-built custom models. 

Supplementing existing workflows this way will enable making predictions on hundreds of 

thousands of samples. 

Developing a solution that enables the use of NLP-ML without the necessary 

programming skill or environment setup is a valuable one. The issue here is that there is a 

substantial skill gap between a computational biologist wanting to use our software (txt2onto) and 

an experimental biologist wishing to retrieve relevant samples based on annotations by NLP-ML. 

Based on our experience, a containerized solution such as a Docker image falls somewhere in 

the middle of this gap because containerized solutions still require a significant amount of 

overhead to setup and execute, which in turn definitely requires knowledge of the unix command-

line. As the reviewer rightly points out, scientists without command-line or programming 

background are more likely to benefit from a queryable, interactive webserver with NLP-ML as 

the predictive backbone that allows enables them to query for a particular tissue/cell-type by 

typing in keywords in a text box and retrieve predictions (i.e. relevant samples and datasets) as 

output. Developing such a webserver is part of our future work and will allow users to explore the 

predictions of NLP-ML on thousands of publicly available genomics samples instantly without 

needing to execute any code in a programming environment. 

https://urldefense.com/v3/__https:/metasra.biostat.wisc.edu/__;!!HXCxUKc!jqKtOopRr9Va4qXcxCDSKo_CDC4_LI_BdqTPIM_xhn-AV7i6t0Cj_dLkm3Yg$


Reviewer #2 (Remarks to the Author): 

Comment 2.1: All of my comments have been addressed by the authors. 

Response 2.1: Thank you! 

Reviewer #3 (Remarks to the Author): 

Comment 3.1: The authors have appropriately addressed my concerns, with the exception of 

3.9, the inaccuracy in figure S10. I guess it's now an editorial decision on if/how this should be 

fixed, I'd just crop away the part beyond 1 with a standard graphics tool. 

Response 3.1: We appreciate the feedback of the reviewer on this matter. We would like to 

clarify that the aspect of Figure S10 in question is not an “inaccuracy,” but rather an explainable 

artifact of a well-established method for calculating the “notch” of a boxplot based on data to 

enable visual inference of significant differences between boxplots. For example, see 

https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/boxplot.stats, under 

section “Details”: 

“The notches (if requested) extend to +/-1.58 IQR/sqrt(n). This seems to be based on the 

same calculations as the formula with 1.57 in Chambers et al (1983, p.62), given in McGill et al 

(1978, p.16). They are based on asymptotic normality of the median and roughly equal sample 

sizes for the two medians being compared, and are said to be rather insensitive to the 

underlying distributions of the samples. The idea appears to be to give roughly a 95% 

confidence interval for the difference in two medians.” 

Nevertheless, to ensure that readers get the accurate picture of the underlying data, as part of 

the GitHub repository included with the manuscript (https://github.com/krishnanlab/txt2onto), we 

have included files containing the data underlying all our plots – including Figure S10 

https://github.com/krishnanlab/txt2onto/blob/main/paper_results/ExpressionComparisonsWithNL 

PPerformances.csv. This file shows that none of the auRPC values exceed 1.0. Hence, we 

believe that changes to Figure S10 are not necessary. 

https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/boxplot.stats
https://github.com/krishnanlab/txt2onto
https://github.com/krishnanlab/txt2onto/blob/main/paper_results/ExpressionComparisonsWithNLPPerformances.csv
https://github.com/krishnanlab/txt2onto/blob/main/paper_results/ExpressionComparisonsWithNLPPerformances.csv

