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Supplementary Material

Appendix A: Layered solutions in Steady-State

Table 1. Acronym and Symbol Legend

Term Description Term Description

DT Diffusion theory B Bromwich path

MRI Magnetic resonance imaging t Time

RTE Radiative transport equation g Anisotropic factor

SI Semi-infinite Gk Green’s function in kth layer

Φ Fluence n Number of terms in discrete Hankel
transform

D Diffusion coefficient nr Refractive index of medium

µa Absorption coefficient N Laplace space evaluations

µ ′
s Reduced scattering coefficient c Speed of light

a Cylindrical radius ω Angular frequency

ρ Source detector separation z Detector depth

Jm Bessel function of the first kind and
order m

We use the integral transform approach1 to solve the diffusion equation for a N-layered cylindrical model as shown in
Fig. S1. A collimated source-beam is approximated by an isotropic point source located at a distance of z0 = 1/µ ′

s1 from the
location of incidence of the beam and boundary with µ ′

s1 representing the reduced scattering coefficient in the first layer.
The steady-state diffusion equation can be given by

D∇
2
Φ(⃗r)−µaΦ(⃗r) =−S(⃗r) (A.1)

where Φ, D = 1/(3µ ′
s), and µa denote the fluence rate, the diffusion coefficient, and the absorption coefficient, respectively1.

The source function S(⃗r) can be expressed as a Dirac delta function in cylindrical coordinates. Eq. A.1 can then be rewritten
in cylindrical coordinates as

∂ 2

∂ρ2 Φ+
1
ρ

∂

∂ρ
Φ+

1
ρ2

∂ 2

∂φ 2 Φ+
∂ 2

∂ z2 Φ− µa

D
Φ =− 1

Dρ
δ (ρ −ρ0)δ (φ −φ0)δ (z− z0) (A.2)

with the abbreviation Φ = Φ(ρ,φ ,z). The derivative with respect to φ in Eq. A.2 can be eliminated using a cosine transform
and then reduced to an ordinary differential equation by using the finite Hankel transform of mth order2. These two transforms
can be expressed together by1
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Supplementary Figure 1. Schematic of the N−layered turbid medium with a source located onto the center of the cylinder
top.

Φ(sn,φ ,m) =

2π∫
0

a′∫
0

ρΦ(ρ,φ ′)Jm(snρ)cos(m(φ −φ
′))dρ dφ

′ (A.3)

using an extrapolated boundary condition at ρ = a′ for the upper limit of the integral transform with a′ = a+ zb1 where a is
the radius of the cylinder. The extrapolation length can be calculated with zbk = 2ADk where A is proportional to the fraction
of photons that are internally reflected at the boundary3. The subscript k signifies the kth layer of the cylinder with distinct
absorption µak and scattering µ ′

sk in each layer. Applying Eq. A.3 to Eq. A.2 yields an ordinary differential equation

∂ 2

∂ z2 Φ− (
µa

D
+ s2

n)Φ =− 1
D

Jm(snρ0)cos(m(φ −φ0))δ (z− z0) (A.4)

for Φ = Φ(sn,φ ,m,z) after applying a finite Hankel transform relation2. Jm is the Bessel function of first kind and order m
and each sn is determined from the roots of Jm such that Jm(a′sn) = 0, n = 1,2, ...,.

A Green’s function approach is used solve Eq. A.4 for the fluence in a specific layer assuming that the isotropic source
(from an incident pencil beam) is located within the first layer (0 ≤ z0 < l1). We then seek separate Green’s functions in each
layer where the solution for the first layer G1(sn,z) is composed of a homogenous and particular part while the solutions for the
remaining k layers have only a homogeneous solution. Therefore, the Green’s function G1(sn,z) in the top layer becomes

∂ 2

∂ z2 G1(sn,z)−α
2G1(sn,z) =− 1

D1
δ (z− z0) (A.5)

when z is within the first layer 0 ≤ z < l1. For the Nth layer, GN(sn,z) becomes

∂ 2

∂ z2 GN(sn,z)−α
2GN(sn,z) = 0 (A.6)
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when z is located in the bottom layer ∑
N−1
k=1 lk ≤ z < ∑

N
k=1 lk. These equations can be used to reduce Eq. A.4 to

Φk(sn,φ ,m,z) = Gk(sn,z)Jm(snρ0)cos(m(φ −φ0)) (A.7)

We use the boundary conditions previously described1 but provide solutions for G1(sn,z) and GN(sn,z) purely in terms of
exponentially decaying functions. This form of expression provides stability in numerical calculations and is in contrast to
previously derived expressions1 which contain hyperbolic trignometric functions that can easily produce overflow-errors. We
also note that the solutions we derive are exact and do not require any approximations for calculation, as is required by previous
reports4–6. Expanding hyperbolic functions as exponentials also allows for simplifying several other terms that serve to reduce
the computational time.

The Green’s function G1 in the first layer (0 ≤ z < l1) is given by

G1(sn,z) =
e−α1|z−z0|− e−α1(z+z0+2zb1)

2D1α1
+

eα1(z+z0−2l1)(1− e−2α1(z0+zb1))(1− e−2α1(z+zb1))

2D1α1

× D1α1n2
1β3 −D2α2n2

2γ3

D1α1n2
1β3(1+ e−2α1(l1+zb1))+D2α2n2

2γ3(1− e−2α1(l1+zb1))

(A.8)

where αk =
√

µak/Dk + s2
n. In general, the quantities β3 and γ3 are obtained by downward recurrence relations with start

values

βN = DN−1αN−1n2
N−1(1+ e−2αN−1lN−1)(1− e−2αN(lN+zb2 ))

+DNαNn2
N(1− e−2αN−1lN−1)(1+ e−2αN(lN+zb2 ))

γN = DN−1αN−1n2
N−1(1− e−2αN−1lN−1)(1− e−2αN(lN+zb2 ))

+DNαNn2
N(1+ e−2αN−1lN−1)(1+ e−2αN(lN+zb2 ))

(A.9)

with the downward recurrence given by

βk−1 = Dk−2αk−2n2
k−2(1+ e−2αk−2lk−2)βk +Dk−1αk−1n2

k−1(1− e−2αk−2lk−2)γk

γk−1 = Dk−2αk−2n2
k−2(1− e−2αk−2lk−2)βk +Dk−1αk−1n2

k−1(1+ e−2αk−2lk−2)γk
(A.10)

We note that we seek just the terms β3 and γ3 which must be determined recursively if the total number of layers N is larger
than 3. In that case, Eq. A.9 is used to generate starting values in the recurrence relation, then Eq. A.10 is used recursively
until β3 and γ3 are obtained. If N = 2, β3 = 1− e−2α2(l2+zb2) and γ3 = 1+ e−2α2(l2+zb2). For N = 3, only Eq. (A.9) is needed to
calculate β3 and γ3.

The solution to Eq. A.11 for GN is

GN(sn,z) =

n2
N2N−2

N−1

∏
i=2

(Diαin2
i )exp(α1(z0 − l1)+αN(LN + zbN − z)−ξ2)

D1α1n2
1β3(1+ e−2α1(l1+zb1))+D2α2n2

2γ3(1− e−2α1(l1+zb1))
(A.11)

The quantity ξ2 is computed with start values ξN = αN(lN + zb2) and with downward recurrence relations ξk−1 = ξk +
αk−1lk−1 such that for N = 2, ξ2 = α2(l2 + zb2) and for N = 3, ξ2 = α2l2 +α3(l3 + zb2) and so on. We note that our routine
has unrolled these relations completely for N = 4 to improve performance.

For solutions in real-space, Φ(ρ,z) we apply the inverse relation of Eq. A.3 to Eq. A.7 such that the fluence in real space
can be written as1

Φk(ρ,z) =
1

πa′2
∞

∑
n=1

Gk(sn,z)J0(snρ)J−2
1 (a′sn) (A.12)

for the special case of a point source that is incident at the center top of the cylinder.

Computing the real-space fluence
We note a few points that help to efficiently compute Eq. A.12. First, we determine sn such that J0(a′sn) = 0, n = 1,2, ...,.
Calculation of these roots at runtime significantly impacts performance. Instead n roots of J0(x) are precomputed and the
relation sn = j0,n/a′ where j0,n is the nth root of J0(x) is calculated at runtime. It is then also possible to remove the runtime
computation of J−2

1 (a′sn) because a′sn = j0,n such that J−2
1 ( j0,n) is constant and therefore can be precomputed. For results
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shown in this manuscript, we computed j0,n for n = 1...1,000,0000 in octuple precision which are loaded along with J−2
1 ( j0,n)

to be used in every simulation. We have observed that simply computing the Bessel functions account for over 50% of code
execution and removing a function call to J1(x) substantially reduced the total computation time. For the calculation of J0(x),
we developed an optimized routine7 that increased computation speed by 3x relative to the common Amos’ Fortran routines8.
This optimization is crucial for fast calculation of the fluence at multiple spatial locations. Loss of numerical precision in
calculation of J0(snρ) limits the accuracy of solutions typically to errors on the order of the machine precision. Though, we note
that our routine can be run in arbitrary precision at the cost of increased computational time. Lastly, it may also be advantageous
if computing the fluence at fixed spatial locations to precompute J0(ρ j0,n/a′) for several values of ρ by approximating that
a′ ≈ a if the cylinder radius is large. This would eliminate any calls within the loop to special function libraries which would
significantly improve performance while allowing for calculation at varying optical properties and layer thicknesses as required
in inverse problems.

Approximate solutions for z ≈ z0

n
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Supplementary Figure 2. We show the convergence of three separate terms in Eq. A.8 by showing the value of the nth term
in the sequence when summing over j0,n. Each term converges at a much different rate with the overall convergence being
highly dependent on µ ′

s1 when z = 0.

A limitation of computing Φ1(ρ,z) using G1(sn,z) in Eq. A.8 is the slow convergence when z ≈ z0. This is of particular
importance for reflectance measurements when we must compute Φ1(ρ,z) when z = 0. Unfortunately, when z = 0 and µ ′

s1 is
large, the routine is limited by slow convergence requiring thousands of terms in Eq. A.12. The convergence of Eq. A.12 for
Φ1(ρ,z) can be analyzed by separating Eq. A.8 into three terms

G(1)
1 (sn,z) =

e−α1|z−z0|

2D1α1
(A.13)

G(2)
1 (sn,z) =

−e−α1(z+z0+2zb1)

2D1α1
(A.14)

G(3)
1 (sn,z) =

eα1(z+z0−2l1)(1− e−2α1(z0+zb1))(1− e−2α1(z+zb1))

2D1α1

× D1α1n2
1β3 −D2α2n2

2γ3

D1α1n2
1β3(1+ e−2α1(l1+zb1))+D2α2n2

2γ3(1− e−2α1(l1+zb1))

(A.15)

where G1(sn,z) = G(1)
1 (sn,z)+G(2)

1 (sn,z)+G(3)
1 (sn,z). In Fig. S2, we show the value of the three terms an as we iterate

over the nth root of j0,n. Here, we show a specific example when µ ′
s1 = 20 cm−1, µ ′

s2 = 15 cm−1, µa1 = 0.1 cm−1, µa2 = 0.2
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cm−1, a = 10 cm, l1 = 0.5 cm, and l2 = 5 cm. We can see that G(3)
1 (sn,z) is rapidly decaying and just a few terms are needed

for accurate computation. It should also be noted that this term is the only term affected by the optical properties of deeper
layers k ≥ 2 and therefore the dominate convergence of Eq. A.8 is only affected by the optical properties of the first layer.
However, because the three terms decay at such a different rate, for the highest numerical accuracy it is recommended to sum
these terms separately and combine them once the infinite sum is terminated. As we can see, the convergence is dominated by
the slow decay of G(1)

1 (sn,z) when z = 0. This convergence becomes slower as µ ′
s1 becomes larger.

However, when z ≈ z0 we can sum the particular solution G(1)
1 (sn,z) over n exactly in closed form yielding the infinite

space Green’s function caused by an isotropic point source. This allows us to write the fluence Φ1(z ≈ z0) as

Φ1(ρ) =
e−κ1|r|

4πD1|r|
+Φ

(h)
1 (ρ) (A.16)

where r =
√

ρ2 +(z− z0)2 and κ1 =
√

µa1/D1. The first term in Eq. A.16 is the infinite space Green’s function. The
homogenous part Φ

(h)
1 (ρ) can be computed with Eq. A.12 and G(h)

1 (sn,z) computed with G1(sn,z) = G(2)
1 (sn,z)+G(3)

1 (sn,z).
We note that this solution is only approximate if we want to consider the fluence on the boundary z = 0, but to calculate the
fluence inside the first layer when z = z0 it represents the exact solution. This significantly reduces the number of terms needed
in Eq. A.12, however G(2)

1 (sn,z) now limits the overall convergence rate which also decays at a slow rate when z = 0 and for
increasing µ ′

s1. However, a similar approximation can be made which allows for the exact summation of G(1)
1 (sn,z) + G(2)

1 (sn,z)
in closed form which represents the steady-state solution for a semi-infinite medium. Therefore, it is appropriate to rewrite the
fluence as

Φ1(ρ,z = 0)≈ Φ
SI(ρ,z)+

1
πa′2

∞

∑
n=1

G(3)
1 (sn,z)J0(snρ)J−2

1 (a′sn) (A.17)

where ΦSI(ρ,z) is the steady-state fluence in a semi-infinite medium (Equation 3 given in Kienle and Patterson9). The
optical properties of ΦSI(ρ,z) are that of the first layer (µ ′

s1, µa1). We test this approximation in Fig. S3 as a function of µ ′
s1

and ρ by summing G(1)
1 (sn,z)+G(2)

1 (sn,z) for n = 50,000 in octuple precision using Eq. A.12 and comparing the absolute and
relative errors to the closed form semi-infinite Green’s function. Each of these forms only contain terms that represent the top
layer optical properties (µ ′

s1, µa1). In Fig. S4, we compare the approximation to the exact solution for two tissue models: (a)
µ ′

s1 = 10 cm−1, µ ′
s2 = 13 cm−1, µa1 = 0.1 cm−1, and µa2 = 0.2 cm−1 and (b) µ ′

s1 = 60 cm−1, µ ′
s2 = 40 cm−1, µa1 = 0.01 cm−1,

and µa2 = 0.08 cm−1. We use the same layer thicknesses, l1 = 1 and l2 = 5 cm with a cylinder radius of 20 cm.
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Supplementary Figure 3. The (left) relative and (right) absolute error between the closed-form semi-infinite Green’s
function and G(1)

1 (sn,z)+G(2)
1 (sn,z) when summed over 50,000 terms using Eq. A.12. This approximation also gives absolute

errors below the machine precision in double precision calculations when µ ′
s1 > 2 cm−1.

Theoretically, this solution becomes more accurate when z = 0 as µ ′
s1 → ∞. We find this approximation to be accurate for

relative errors greater than 10−14 for µ ′
s1 > 2 cm−1 which is within the relative errors provided by the exact forms when double

precision arithmetic is used. Even for very low µ ′
s1 = 0.1 cm−1, this approximation can give at least 3 digits of accuracy. The
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Supplementary Figure 4. Shows the steady-state fluence calculated with the semi-infinite space Green’s function (markers)
compared to summing G(1)

1 (sn,z)+G(2)
1 (sn,z) exactly using Eq. A.12 (lines) for two different tissue geometries. The absolute

error is shown in the below plot displaying that these solutions give absolute errors below the machine precision in double
precision calculations. The solutions were computed in octuple precision for accurate comparison.

advantage of this approach is that just 150 roots were used in the approximate form when µ ′
s = (10,13) cm−1 where 3,500 roots

were needed in the exact form. When µ ′
s = (60,40) cm−1 the approximation only needed 200 roots at all values of ρ compared

to 20,000 roots required in the exact form. However, if only a couple digits of accuracy are needed the approximate form can
give reasonable convergence in less than 50 roots even for very large scattering coefficients. This results in computational
times being 2-3 orders of magnitude faster allowing for computation in less than one microsecond for a wide range of optical
properties. Therefore, it is highly recommended to use such an approximation for µ ′

s1 > 2 cm−1.

Appendix B: Layered solutions in Time-Domain
Given a sinusoidally modulated source at frequency f , the real and imaginary parts of the fluence Φ(ρ,ω) can be calculated
using the same formula for Φ(ρ) and adding a complex absorption term10

αk =
√

µak/Dk + s2
n + iω/(Dkc) (A.18)

where c is the speed of light in the medium and i =
√
−1. The real and imaginary parts are used to calculate the phase angle

and modulation.
For solutions in the time-domain, the real and imaginary parts of the fluence in the frequency domain must be calculated at

many frequencies (400-4,000x)10, 11 and inverse Fourier transformed into the time-domain2. The Fourier integral is slowly
converging and the number of frequency evaluations needed is highly dependent on ρ , µ ′

s and t11.
Alternately, an inverse Laplace transform can be applied to Eq. A.1211, 12 by making the substitution iω → s̄ in Eq. A.18

and numerically integrating the Bromwich complex contour integral

f (t) =
1

2πi

∫
B

es̄tF(s̄)ds̄ (A.19)

In Eq. A.19, B denotes the Bromwich path where s̄ is a complex number along the contour. We note we use a bar s̄ to avoid
confusion with sn. The corresponding solution for the time-domain fluence is then

Φk(ρ, t) =
1

πa′2
∞

∑
n=1

1
2πi

[∫
B

es̄tGk(sn,z, s̄)ds̄
]
× J0(snρ)J−2

1 (a′sn) (A.20)
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The Bromwich line can be deformed into a Hankel contour that begins and ends in the left half-plane, such that Rez →−∞12.
On such a contour, the exponential in Eq. A.19 ensures that the integrand decays rapidly and renders the integral well-
suited for approximation using a simple trapezoidal rule. We utilized a hyperbola countour12 parameterized by s(θ) =
µ + iµ sinh(θ + imϕ) where s′(θ) = iµ cosh(θ + iϕ) to evaluate the time-domain solutions. For non-complex time-domain
signals, application of the midpoint rule gives:

f (t) =
h
π

[
N−1

∑
k=0

F(s̄k)exp(s̄kt)s̄′k

]
(A.21)

where s̄k = s̄(θk) for θk = (k+1/2)h and h being the uniform node spacing with N being the number of nodes along the
hyperbola in the upper half-plane Re(s)> 0.

The parameters µ and ϕ as well as node spacing h are obtained for computing f (t) across many time values in t ∈ (t1, t2)
by considering a single (fixed) integration path for all time values. The time-independent parameters are expressed by:

µ =
4πϕ −π2

A(ϕ)
N
t2

(A.22)

A(ϕ) = arcosh
[
(π −2ϕ)Λ+4ϕ −π

(4ϕ −π)sinϕ

]
(A.23)

where Λ = t2/t1. The uniform node spacing becomes h = A(ϕ)/N with the previously optimized11 parameter ϕ = 1.09.

Code example
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