Electronic Supplementary Information (ESI)

An Ultra-Stable Reference Electrode Development for Scaled All-

Vanadium Redox Flow Batteries

- Qian Huang ^a*, Chaojie Song ^b, Alasdair Crawford ^c, Zhengming Jiang ^b, Alison Platt ^b, Khalid Fatih ^b, Christina Bock ^d, David Reed ^a
- ^a Battery Materials & Systems Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- ^b Energy, Mining & Environment, National Research Council Canada, Vancouver BC V6T 1W5, Canada
- ^c Electricity Infrastructure & Building Group, Pacific Northwest National Laboratory, Richland,
 WA 99352
- ^d Energy, Mining & Environment, National Research Council Canada, Ottawa ON K1A 0R6, Canada
- * Corresponding author Email Address: <u>Qian.Huang@pnnl.gov</u>

R.E.	Type (Location)	Stability	Application	Advantage	Disadvantage
Ag/AgCl	*External	Good	To determine the individual overpotentials in each half-cell	Relatively stable, not influenced by the internal electrolyte environments.	 Potential chloride contamination. A large IR drop due to a large distance between RE and electrode.
Pt wire					
Carbon cloth /fiber	**Internal	Poor	To decouple the cathode and anode potential or impedance	Easy to assemble	The potential of RE continued to shift .
DHE (Conventional)					

*External: inserted in the inlet or outlet tubing of the cell

**Internal: inserted between membranes

Figure S1 Surface roughness of the Pt foils measured by a profilometer: (a) Pt foil with smooth surface in *DHE* $_{Gen2}$, and (b) Pt foil with rough surface in *DHE* $_{Gen3}$.

Figure S2 A scheme of an all-vanadium redox flow battery with a DHE based internal reference electrode (inserted between two membranes) and two Ag/AgCl based external reference electrodes (placed in the inlet of catholyte or anolyte respectively).

Figure S3 Voltage profiles (vs. time) with internal and external reference electrodes: individual electrode (cathode or anode) voltage vs. (a) DHE for the initial 2 cycles, (b) DHE, (c) Ag/AgCl (+) (in the catholyte inlet), and (c) Ag/AgCl (-) (in the anolyte inlet) for the initial 80 cycles.

Figure S4 Total vanadium ion concentration of catholyte and anolyte as a function of cycle number, measured by inductively coupled plasma (ICP) after discharge.

Figure S5 OCV at the top of charge (TOC) and bottom of discharge (BOD) as a function of cycle numbers for the full cell and individual electrode (cathode or anode) vs. different reference electrodes (DHE, Ag/AgCl (+) and Ag/AgCl (-)).

Figure S6 Polarization curves as a function of cycle numbers for (a) cathode vs. Ag/AgCl (+) and (b) anode vs. Ag/AgCl (+).