Supplementary Information: Suppl. Figs. 1, 2, 3 and 4

Suppl. Figure 1. Modeling of the D_1R in the D_1R-D_3R heteromer. a. The inactive model of D_1R was constructed from the structures of inactive β_1 adrenergic receptor (61% and 42% of sequence similarity and identity, respectively) and active D_1R . ECLs 2 (blue) and 3 (green) are important to remark because they might participate in the TM 5/6 interface. The bottom panel (right) shows ECL 3 in the model (gray) and in the structure of active D₁R (green). However, ECL 2 is not solved in any of the known structures of D_1R and was modeled using the structure of the β_1 adrenergic receptor as template. The bottom panel (left) shows ECL 2 in the model (gray), in the β_1 adrenergic receptor (dark blue), and the solved part in D_1R (light blue). The sequence alignment between D_1R (7JOZ only shows the amino acids solved in the structure) and β_1 adrenergic receptor is also shown. **b.** The stability of this computational model of D_1R was tested in 1 µs unbiased MD simulation. RMSD plots show that, as expected, the modeled ECL 2 is more flexible than the TM domain. However, ECL 2 seems stabilized in the last 150 ns of simulation. Evolution of the structures of D_1R (gray) and ECL 2 (blue) along the MD simulation is shown in the middle panel and a detailed view of the structures of ECL 2 during the last 150 ns is shown in the bottom panel. c. A representative structure of the D_1R obtained during the last 150 ns was respawned in three replicas of 1 us unbiased MD simulation of the D_1R - D_3R heteromer. RMSD values for D_1R and D_3R and for the ECL 2 are shown in the top panel. Average root-mean-square fluctuation (RMSF) of the D_1R-D_3R heteromer is shown in the bottom panel. RMSF accounts for the average fluctuation of the structure along the simulation. A close-up of the ECL 2 is shown for one of the replicas.

Suppl. Figure 2. Molecular dynamic simulations of the D₃R monomer bound to PG01042, PG01037, and VK4-116. a. Rmsd of three replicas of 1 μ s unbiased MD simulations. Representative structures (solid sticks) and evolution (lines) of PG01042 (green), PG01037 (orange) and VK4-116 (red) in complex with D₃R (white cylinders, only the initial structure is shown) during the MD simulations. b. Comparison of these representative structures in the initial structure of D₃R. Distribution of the distances between the center of mass of the terminal ring in the second pharmacophore unit of these ligands and N352^{6.58} in TM 6 (blue dot) and G93^{2.68} in TM 2 (red dot). PG01042 and VK4-116 remained stable at the ECD near TM 2, whereas PG01037 favors its interaction with TM 6. c. Detailed view of I183 of D₃R during MD simulations with no ligand bound (gray) and PG01042 (green), PG01037 (orange) and VK4-116 (red) bound to D3R. Distributions of the Z coordinate (see legend of Fig. 2) corresponding to the C_{\alpha} atom of I183^{ECL2} during MD simulations. The range of the Z coordinate during the MD simulations are shown by the rectangles, color-coded according to the ligand bound. No significant differences in the position of I183^{ECL2} between ligands are observed.

Suppl. Figure 3. Distribution of dihedral angles of PG01042, PG01037, and VK4-116 in the simulations of their complexes with D_3R . The dihedral angles are calculated for the chain linking both pharmacophore units. Each plot accounts for the accumulated distribution of the three replicates. Atoms involved in the angles are referenced in red in the 2D structures.

Suppl. Figure 4. Differential effects of PG01042, PG01037, and VK4-116 on pramipexole-induced β -arrestin recruitment in HEK-293T cells transfected with D₃R alone or with D₁R. Results from β -arrestin recruitment experiments in HEK-293T cells transfected with β -arrestin-1-Rluc cDNA (0.5 µg), D₃R-YFP cDNA (1 µg cDNA) with or without D₁R cDNA (1.5 µg cDNA) (D₁R-D₃R cells and D₃R cells, respectively). Cells are treated for 10 min with the D₂-like receptor agonist pramipexole (30 nM) or the D₃R ligands PG01042, PG01037 and VK4-116 (10 nM). Coelenterazine H (5 µM) was added before pramipexole or the selective D₃R ligands for 7 minutes and β -arrestin-1 recruitment was measured by BRET (see Material and Methods). Values are mean ± S.D. (n = 8). ***, **** or ns: p < 0.001, p < 0.0001 or not significant (p > 0.05) versus corresponding D₃R or D₁R-D₃R cells only treated with pramipexole (control) (one-way ANOVA followed by Dunnett's post hoc comparisons).