Molecular Cell, Volume 82

Supplemental information

Structural and functional basis of mammalian

microRNA biogenesis by Dicer

David Zapletal, Eliska Taborska, Josef Pasulka, Radek Malik, Karel Kubicek, Martina Zanova, Christian Much, Marek Sebesta, Valeria Buccheri, Filip Horvat, Irena Jenickova, Michaela Prochazkova, Jan Prochazka, Matyas Pinkas, Jiri Novacek, Diego F. Joseph, Radislav Sedlacek, Carrie Bernecky, Dónal O'Carroll, Richard Stefl, and Petr Svoboda

Supplemental information

Supplemental information includes the following material:

Figures

- Figure S1 Production and validation of Dicer mouse mutants.
- Figure S2 Phenotype of *Dicer*^{ΔHEL1/ΔHEL1} mouse mutants.
- Figure S3 miRNome dysregulation in *Dicer*^{ΔHEL1/ΔHEL1} mouse mutants
- Figure S4 Purification and cryo-EM analyses of apo-Dicer.
- Figure S5 Purification and cryo-EM analyses of Dicer-pre-miR-15a complex.
- Figure S6 Reconstitution and cryo-EM analyses of Dicer^O-pre-miR-15a complex.
- Figure S7 Reconstitution and cryo-EM analysis of Dicer-pre-miR-15a-TARBP2 complex.

Tables

- Table S2 Expression of host genes of most upregulated mirtrons in ESCs
- Table S3 Asymmetric cleavage of miRNAs
- Table S4 Cryo-EM data collection and refinement statistics
- Table S5 RNA-seq libraries

Table S1 - miRNA expression in mutants is provided in a non-PDF format separately

Supplementary Figures

Figure S1 Production and validation of Dicer mouse mutants. Related to Figure 1A. (**A**, **B**) Schematic depiction of introduction of the GNT and the DQCH mutation into endogenous *Dicer* gene, respectively. (**C**) Detection of the GNT and (**D**) DQCH alleles by Southern blotting. (**E**, **F**) Validation of the mutated alleles by Sanger sequencing. (**G**) Western blot demonstrating expression of the mutated Dicer^{DQCH} protein. (**H**) Schematic depiction of engineering of *Dicer*^{ΔHEL1} (ΔHEL1) and *Dicer*^{SOM} (SOM) in the genomic sequence encoding HEL1 of the endogenous *Dicer* gene. Briefly, a fragment from exon 2 to exon 7 was removed using CRISPR /Cas9 and recombined with a *Dicer*^{ΔHEL1} recombination construct carrying exon 2 (5' UTR and start codon), HA-tag, and exon 7 coding sequence. *Dicer*^{SOM}, which was produced using the same strategy, was described previously¹. Both alleles were validated by sequencing. (**I**) Western blotting of selected positive clones using anti-HA antibody, tubulin was used as a loading control. The heterozygous line 11 gave rise to *Dicer*^{ΔHEL1} mice. (**J**) Outline of the *Dicer*^{ΔHEL1} mouse strain production process. (**K**) Western blott analysis of Dicer^{ΔHEL1} expression in different tissues of a heterozygote Dicer^{ΔHEL1}/wt mouse. Tissues from Dicer^{SOMWt} mouse were used for comparison. 80 µg of total protein lysate were loaded per lane. Ponceau staining of the membrane shown below provides control for equal loading.

dysregulated 5p and 3p miRNAs (DESeq p-value 0.05) are shown as oriented blue ▼ and red ▲ triangles, respectively. Mirtrons are represented by green triangles whose orientation is the same as that of significantly dysregulated 5p and 3p miRNAs. Three embryos with the wild type and five with the mutant genotype were used. (F) Effect of DicerAHEL1 expression on small RNAs in E15.5 embryos and in ESCs. Each MA plot shows results of small RNA-seg analysis of a DicerAHEL1/AHEL1 sample compared with the normal control (wild-type siblings or the parental ESC line). Each colored point represents a genomic region (cluster) producing 21-23 nt RNAs. Clusters were identified and categorized by a previously developed algorithm ⁴. Cluster "expression" is defined as a fraction of small RNA reads mapping to it per million 21-23 nt small RNAs (RPM). (G) Relative changes of significantly differentially expressed miRNAs in DicerdHEL1/dHEL1 E15.5 embryos (shown as colored triangles, other miRNAs are depicted as grey circles) correlate with changes of these miRNAs in *Dicer*^{ΔHEL1/ΔHEL1} ESCs. Axes depict log₂FC. (H) Unique 3p passenger strand bias in Dicer AHEL1/AHEL1 samples (upper two MA plots) or embryonic stem cell mutants (lower two MA plots) is reproducible when using a mirGeneDB miRNA annotation. MA plots depict relative changes of dominant miRNAs (left) and passenger strands (miRNA*, right) in Dicer^{AHEL1/AHEL1} mutants. 5p and 3p origins of significantly changed miRNAs or miRNA*s are distinguished by color and triangle orientation as depicted. (I) Relative changes of dominant miRNAs and their passenger strands in Dicer^dHEL1/dHEL1</sup> ESCs. Each triangle depicts the strand (5p or 3p) of the dominant miRNA, its position corresponds to relative changes of the dominant miRNA (x-axis) and its corresponding miRNA* (y-axis). Deep color indicates significantly dysregulated miRNAs.

miRNome dysregulation in DiceraHEL1/AHEL1 mouse mutants. Related to Figure 3. (A) TARBP2 binds DicerAHEL1. Figure S3 The western blots show TARBP2 presence in immunoprecipitates of Dicer^{SOM} and Dicer^{ΔHEL1} isoforms. HA-tagged Dicer^{SOM} or Dicer^{ΔHEL1} transiently expressed in NIH 3T3 cells were immunoprecipitated with α -HA antibody, and were analyzed by western blotting. The lower band in bottom western blots is a TARBP2 isoform, which does not interact with Dicer. (B) Expression of miR-15a and miR-145a miRNAs in Dicer^{2HEL1/2HEL1} and Tarbp2^{-/-} mutants. Expression is shown in reads per million (RPM) of 19-25 nt RNA fragments. Error bars = SD. (C) Products of asymmetric cleavage of pre-miR-15a are detectable in RNA-seq data from E15.5 and ESC samples. The blueblack-red lines at the bottom of each panel represent genomic pre-miRNA sequence with 5p miRNA, loop and 3p miRNA. Dicer cleavage positions are depicted by blue (3' end of 5p miRNA) and red (5' end of 3p miRNA) arrowheads. Above are shown RNA fragments corresponding to pre-miRNA, mature miRNAs, the loop, and fragments cleaved only at the 3' of 5p miRNA or 5' of 3p miRNA. Numbers correspond to percentages observed in RNA-seg data from ESCs. (D) miR-145a in vitro cleavage assay. 5 nM of in vitro synthesized P³² 5'-end labeled pre-miRNA were incubated with indicated concentrations of recombinant Dicer variants at 37°C for 60 minutes, resolved by PAGE, and visualized by phosphorimaging. Blue and red arrowheads point to products corresponding to cleavage sites giving rise to 5p and 3p miRNA, respectively. (E) Cleavage fidelity in DicerAHEL1/AHEL1 mouse mutants. Heatmaps depict analysis of cleavage sites at the 5' end of 3p miRNAs (left heatmap) and 3' end of 5p miRNAs (right heatmap) in 50 most affected miRNAs among all miRNAs (>100 DESeg RPMs) in DiceroHEL1/AHEL1 E15.5 embryos and ESCs. At the center is the annotated cleavage site. Each column of squares represents one nucleotide from the cleavage site in direction into the mature miRNA (to the right) or upstream of it (to the left). Red-blue colors indicate relative changes in a miRNA cleavage site relative to the wild type sample.

Figure S4 Purification and cryo-EM analyses of apo-Dicer. Related to Figure 4B (A) SDS-page analysis of apo-Dicer. (B) Outline of the image processing steps used to obtain the 3.8-Å-resolution cryo-EM reconstruction of apo-Dicer. 3D classes with no density of the helicase domain (due to inherent flexibility) were not used for the final reconstruction. (C) Representative Cryo-EM micrograph of apo-Dicer. (D) Gallery of reference-free 2D class averages. (E) Heat map for distribution of particles for the final 3D reconstruction. (F) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (G) Local resolution map of the final 3D reconstruction. (H) cryo-EM map from local refinement and fitting of coordinates.

Figure S5 Purification and cryo-EM analyses of Dicer-pre-miR-15a complex. Related to Figure 4C (A) Gel filtration analysis of Dicer-pre-miR-15a complex. (B) Outline of the image processing steps used to obtain the 4.2-Å-resolution cryo-EM reconstruction of the Dicer-pre-miR-15a complex. (C) Representative cryo-EM micrograph of the Dicer-pre-miR-15a complex. (D) Gallery of reference-free 2D class averages. (E) Heat map for distribution of particles for the final 3D reconstruction. (F) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (top). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (bottom) (G) Local resolution map of the final 3D reconstruction. (H) cryo-EM map and fitting of coordinates. (I) A close-up of the 3' end of the pre-miR-15a substrate recognition by the PAZ domain of Dicer. (J) A close-up of Dicer dsRBD-pre-miR-15a interface in the pre-cleavage state (putative interacting residues are indicated). (K) Dicer in the pre-cleavage state cannot optimally bind long mirtrons or dsRNA due to steric hindrance (indicated by arrows). The models are build based of the cryo-EM structure of Dicer-pre-miR-15a complex, in which pre-miR-15a was replaced by miR-7068 (top) or a 42-bp dsRNA (bottom).

Figure S6 Reconstitution and cryo-EM analyses of Dicer^o–pre-miR-15a complex. Related to Figure 5. (**A**) Gel filtration and SDS analyses of Dicer^o–pre-miR-15a complex. (**B**) Outline of the image processing steps used to obtain the 6.2-Å-resolution cryo-EM reconstruction of the Dicer^o–pre-miR-15a complex. (**C**) Representative cryo-EM micrograph. (**D**) Gallery of reference-free 2D class averages. I Heat map for distribution of particles for the final 3D reconstruction. (**F**) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (**G**) Local resolution map of the final 3D reconstruction. (**H**) Structural models superposed to segmented cryo-EM densities and for the PAZ (green), Platform (violet), Ruler (red), RNase IIIa (orange), and RNase IIIb (magenta) domains of Dicer^o and pre-miR-15a (yellow) are shown. (**I**) A close-up of dsRBD/RNase IIIb–RNA interface. (**J**) A close-up of putative RNA cleavage sites (indicated by arrows) and their alignment with Dicer's catalytic sites (in magenta). (**K**) Quantification of electrophoretic mobility shift assays of Dicer isoforms with different mi-RNA precursors and a 42bp perfect hairpin. Data points, mean ± SD (n=2-3).

Figure S7 Reconstitution and cryo-EM analysis of Dicer-pre-miR-15a-TARBP2 complex. Related to Figure 6. (**A**) SDS-page analysis of Dicer-pre-miR-15a-TARBP2 complex. (**B**) Outline of the image processing steps of the Dicer-pre-miR-15a-TARBP2 complex. (**C**) Representative cryo-EM micrograph of the ternary complex. (**D**) Gallery of 2D class averages for the pre-cleavage state. (**E**) 3.8-Å-resolution cryo-EM reconstruction of the pre-cleavage state (left). Heat map for distribution of particles for the final 3D reconstruction (right) (**F**) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (**G**) Local resolution of the cleavage state (left). Heat map for distribution of particles for the final 3D reconstruction (right). (**J**) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (**J**) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (**J**) Final map FSC (magenta) and map-to-model FSC for the full map (black), half map 1 (cyan), half map 2 (gold) curves (left). FSC curves and resolutions calculated in cryoSPARC during final refinement before and after applying soft masks (right). (**K**) Local resolution map of the final 3D reconstruction. (**L**) Superimposition of pre-miR-15a with TARBP2 dsRBD12 from the pre-cleavage state on the Dicer-pre-miR-15a-TARBP2 structure in the cleavage state.

SUPPLEMENTARY TABLES

Table S2Expression of host genes of most upregulated mirtrons in ESCs. Related toFigure 2.

host gene	host gene id	mRNA baseMean	log2FC	pvalue	padj	mirtron
Cherp	ENSMUSG0000052488.7	617.8	0.845	0.004	0.377	mmu-miR-7068
Dbn1	ENSMUSG0000034675.17	52.0	-0.304	0.542	1.000	mmu-miR-6944
Arap3	ENSMUSG0000024451.8	10.4	0.614	0.358	1.000	mmu-miR-6981
Fbrs	ENSMUSG0000042423.9	197.3	0.219	0.520	1.000	mmu-miR-7060
Dennd6b	ENSMUSG0000015377.9	163.9	0.105	0.791	1.000	mmu-miR-6958
Gfra4	ENSMUSG0000027316.15	11.4	-0.720	0.280	1.000	mmu-miR-6973b
Fbxw9	ENSMUSG0000008167.14	711.2	0.223	0.536	1.000	mmu-miR-7070
Hspg2	ENSMUSG0000028763.17	2418.0	-0.348	0.264	1.000	mmu-miR-7018
Nav1	ENSMUSG0000009418.15	451.2	0.807	0.006	0.499	mmu-miR-1231
Atp2b4	ENSMUSG0000026463.17	275.5	-1.178	0.003	0.351	mmu-miR-6903
Arhgef17	ENSMUSG0000032875.8	301.1	-0.549	0.085	1.000	mmu-miR-3102
Etfb	ENSMUSG0000004610.4	666.6	-0.477	0.121	1.000	mmu-miR-7051
Ptprs	ENSMUSG0000013236.17	602.1	0.012	0.971	1.000	mmu-miR-6977
Rrp1	ENSMUSG0000061032.9	1706.2	-0.101	0.757	1.000	mmu-miR-6907
Myh3	ENSMUSG0000020908.14	27.6	-0.389	0.473	1.000	mmu-miR-6923
Baiap3	ENSMUSG0000047507.12	4.4	-0.270	0.733	1.000	mmu-miR-3547
Ciao3	ENSMUSG0000002280.10	367.9	-0.313	0.296	1.000	mmu-miR-6966
Hip1r	ENSMUSG0000000915.15	189.2	0.241	0.499	1.000	mmu-miR-7032
Farsa	ENSMUSG0000003808.18	1774.8	0.373	0.228	1.000	mmu-miR-7069
Mst1	ENSMUSG0000032591.15	93.0	-0.334	0.458	1.000	mmu-miR-7088
Ap2a2	ENSMUSG0000002957.11	2406.3	0.011	0.972	1.000	mmu-miR-7063
Dnase1l1	ENSMUSG0000019088.13	27.5	-0.661	0.207	1.000	mmu-miR-7091

Table S3Asymmetric cleavage of miRNAs. Related to Figure 3. Shown are frequencies of
specific miRNA fragments in RNA-sequencing data from *Dicer*^{ΔHEL1/ΔHEL1} ESCs. The fragment
miR-5p+loop is produced by asymmetric cleave at the 5' end of 3p miRNA.

miRNA	miR-5p	loop	miR-3p	miR-5p+loop	miR-3p+loop
mmu-miR-7041	0.0000	0.0000	0.6667	0.3333	0.0000
mmu-miR-7067	0.0000	0.0000	0.3333	0.3333	0.0000
mmu-miR-667	0.5358	0.0037	0.0838	0.3322	0.0000
mmu-miR-31	0.5807	0.0000	0.0519	0.2948	0.0031
mmu-miR-29c	0.1667	0.0000	0.1667	0.2222	0.0000
mmu-miR-101b	0.0000	0.0000	0.8350	0.1456	0.0012
mmu-miR-465b	0.5317	0.0000	0.3394	0.1106	0.0000
mmu-miR-465b	0.5317	0.0000	0.3394	0.1106	0.0000
mmu-miR-539	0.2650	0.2222	0.0513	0.0769	0.0256
mmu-miR-154	0.2100	0.0284	0.6601	0.0664	0.0002
mmu-miR-3070	0.2405	0.0000	0.6881	0.0476	0.0000
mmu-miR-465c	0.5198	0.0000	0.4097	0.0407	0.0000
mmu-miR-465c	0.5198	0.0000	0.4097	0.0407	0.0000
mmu-miR-142a	0.3436	0.0082	0.3154	0.0402	0.0000
mmu-miR-377	0.5106	0.0000	0.4012	0.0359	0.0000
mmu-miR-367	0.0000	0.0827	0.7694	0.0351	0.0000
mmu-miR-878	0.6171	0.0000	0.2904	0.0334	0.0000
mmu-miR-293	0.2776	0.0000	0.6612	0.0291	0.0001
mmu-miR-15a	0.0193	0.0078	0.8588	0.0270	0.0000
mmu-miR-141	0.1689	0.1947	0.3683	0.0264	0.0034
mmu-miR-324	0.0620	0.0361	0.8431	0.0250	0.0000
mmu-miR-883b	0.5185	0.0000	0.4577	0.0238	0.0000
mmu-miR-376b	0.0291	0.0173	0.9008	0.0235	0.0000
mmu-miR-485	0.3695	0.0001	0.5528	0.0214	0.0146
mmu-miR-20b	0.9475	0.0006	0.0089	0.0199	0.0004
mmu-miR-743b	0.0394	0.0000	0.9235	0.0185	0.0000
mmu-miR-665	0.0400	0.0000	0.8164	0.0176	0.0820
mmu-miR-679	0.7761	0.0000	0.0568	0.0167	0.0000
mmu-miR-465a	0.0921	0.0000	0.8556	0.0143	0.0057
mmu-miR-181c	0.0812	0.0000	0.8520	0.0140	0.0000
mmu-miR-188	0.9352	0.0139	0.0000	0.0139	0.0000
mmu-miR-411	0.7924	0.0023	0.1631	0.0139	0.0000
mmu-miR-93	0.9053	0.0019	0.0396	0.0135	0.0000
mmu-miR-301a	0.5232	0.0067	0.1228	0.0133	0.0000
mmu-miR-362	0.4786	0.0000	0.4550	0.0130	0.0000
mmu-miR-341	0.0241	0.0000	0.8388	0.0121	0.0003
mmu-miR-380	0.3384	0.0000	0.5523	0.0115	0.0000
mmu-miR-211	0.8401	0.0000	0.1078	0.0109	0.0021
mmu-miR-29a	0.0085	0.0000	0.9267	0.0096	0.0000
mmu-miR-677	0.2121	0.0000	0.0004	0.0089	0.0025

Table S4	Cryo-EM dat	a collection an	d refinement statistics	. Related to Figure 4-6.
----------	-------------	-----------------	-------------------------	--------------------------

Instrument							
Microscope	Microscope FEI Titan Krios						
Data collection							
Sample	Dicer	Dicer–RNA	Dicer ^o –RNA	Dicer–RNA- TARBP2 (pre-cleavage)	Dicer–RNA- TARBP2 (cleavage)		
EMDB accession number	EMD-14387	EMD-14383	EMDB-14384	EMDB-14856	EMDB-14854		
PDB accession	7YZ4	7YYM	7YYN	7ZPK	7ZPI		
Voltage (kV)	300	300	300	300	300		
Detector (counting mode)	Gatan K2	Gatan K2	Gatan K2	Gatan K3	Gatan K3		
Symmetry	C1	C1	C1	C1	C1		
Electron dose (e ⁻ /Å ²)	55.0	55.0	55.0	60.198	60.198		
Defocus range (µm)	-0.8 to -3.5	-1 to -3.5	-1 to -3.5	-0.8 to -3.5	-0.8 to -3.5		
Pixel size (Å)	0.828	0.828	0.828	0.835	0.835		
Movies collected	6,354	16,601	9,956	48,253	48,253		
Initial particles	862,842	1,212,966	230,362	2,219,694	2,219,694		
Final particles	92,906	154,665	84,697	437,518	64,038		
Model composition							
Protein residues	1234	1281	705	1513	705		
Refinement							
Map resolution (cryoSPARC) 0.143/0.5 (Å)	3.8/4.6	4.2/5.8	6.2/7.9	3.8/4.5	5.9/8.4		
Map-to-model FSC 0.143/0.5 (Å)	3.9/7.3	4.3/6.7	6.3/9.7	4.0/6.5	6.0/9.7		
Combined map resolution range (Å)	3.5 – 4.2	-	-	-	-		
Map sharpening <i>B</i> -factor (Ų)	87.8	134.8	451.4	189.2	520.0		
R.m.s deviations							
Bond lengths (Å)	0.004	0.004	0.013	0.005	0.004		
Bond angles (°)	0.780	0.798	1.917	1.089	0.290		
Validation							
MolProbity score	1.12	1.07	0.78	1.15	0.70		
Clashscore	1.46	1.57	0.92	2.24	0.61		
Poor rotamers (%)	0.92	0.18	0.64	0.68	0.64		
Ramachandran plot							
Favored (%)	96.44	97.07	98.70	97.18	97.44		
Allowed (%)	3.56	2.93	1.30	2.82	2.56		
Disallowed (%)	0.00	0.00	0.00	0.00	0.00		

stage	type	genotype	library name	note
ESC	small RNA	Dicer ^{wt/wt}	s_ESC_WT+MosIR_RS7.1	transfected with MosIR
ESC	small RNA	Dicer ^{wt/wt}	s_ESC_WT+MosIR_RS7.2	transfected with MosIR
ESC	small RNA	Dicer ^{wt/wt}	s_ESC_WT+MosIR_RS7.3	transfected with MosIR
ESC	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_ESC_XHOM+MosIR_RS10.1	transfected with MosIR
ESC	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_ESC_XHOM+MosIR_RS10.2	transfected with MosIR
ESC	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_ESC_XHOM+MosIR_RS10.3	transfected with MosIR
E15.5	small RNA	Dicer ^{wt/wt}	s_E15.5_WT_1	
E15.5	small RNA	Dicer ^{wt/wt}	s_E15.5_WT_6	
E15.5	small RNA	Dicer ^{wt/wt}	s_E15.5_WT_8B	
E15.5	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_E15.5_XHOM_10B_r2	
E15.5	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_E15.5_XHOM_2	
E15.5	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_E15.5_XHOM_3B	
E15.5	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_E15.5_XHOM_4	
E15.5	small RNA	Dicer ^{∆HEL1/∆HEL1}	s_E15.5_XHOM_7B	
E15.5	small RNA	Dicer ^{wt/wt}	s_E15.5_WT_11	
E15.5	small RNA	Dicer ^{wt/wt}	 s_E15.5_WT_14	
E15.5	small RNA	Dicer ^{wt/wt}	s_E15.5_WT_16	
E15.5	small RNA	Dicer ^{GNT/GNT}	s_E15.5_GNTHOM_3	
E15.5	small RNA	Dicer ^{GNT/GNT}	 s_E15.5_GNTHOM_4	
E15.5	small RNA	Dicer ^{GNT/GNT}	 s_E15.5_GNTHOM_9	
E15.5	small RNA	Tarbp2 ^{+/+}	SRS2781156 B6T2-65Tarbp2_WT_1	PRJNA423238 SRP127346
E15.5	small RNA	Tarbp2 ^{+/+}	SRS2781151 B6T2-65Tarbp2_WT_2	PRJNA423238 SRP127346
E15.5	small RNA	Tarbp2 ^{+/+}	SRS2781150B6T2-65Tarbp2_WT_3	PRJNA423238 SRP127346
E15.5	small RNA	Tarbp2 ^{-/-}	SRS2781155 B6T2-54Tarbp2_Mut_1	PRJNA423238 SRP127346
E15.5	small RNA	Tarbp2 ^{-/-}	SRS2781154 B6T2-60Tarbp2_Mut_2	PRJNA423238 SRP127346
E15.5	small RNA	Tarbp2 ^{-/-}	SRS2781157 B6T2-90Tarbp2_Mut_3	PRJNA423238 SRP127346

Table S5RNA-seq libraries used in the study. Related to Figure 1-3 and STAR Methods(Method Details, section Bioinformatics analyses).

References

- Taborska, E., Pasulka, J., Malik, R., Horvat, F., Jenickova, I., Jelic Matosevic, Z., and Svoboda, P. (2019). Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet 15, e1008261. 10.1371/journal.pgen.1008261.
- 2. Fromm, B., Hoye, E., Domanska, D., Zhong, X., Aparicio-Puerta, E., Ovchinnikov, V., Umu, S.U., Chabot, P.J., Kang, W., Aslanzadeh, M., et al. (2022). MirGeneDB 2.1: toward a complete sampling of all major animal phyla. Nucleic Acids Res *50*, D204-D210. 10.1093/nar/gkab1101.
- 3. Ladewig, E., Okamura, K., Flynt, A.S., Westholm, J.O., and Lai, E.C. (2012). Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res 22, 1634-1645. 10.1101/gr.133553.111.
- 4. Flemr, M., Malik, R., Franke, V., Nejepinska, J., Sedlacek, R., Vlahovicek, K., and Svoboda, P. (2013). A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell *155*, 807-816. 10.1016/j.cell.2013.10.001.