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1. TOTAL MRNA EXPRESSION IN SINGLE-CELL RNA SEQUENCING DATA 

1.1. Datasets 

Colorectal cancer single-cell RNA sequencing data 

Three fresh colorectal adenocarcinoma samples of primary tumor were collected from patients who were 

receiving chemotherapies by surgical resection at the University of Texas MD Anderson Cancer Center 

(Supplementary Table 1). Single-cell data was generated using the Chromium Single Cell 3’ Library, 

Gel Bead & Multiplex Kit, and Chip Kit (v3, 10x Genomics). Libraries were sequenced on an Illumina 

NovaSeq6000. Alignment, tagging, and gene and transcript counting were conducted using the 10x 

Genomic Cell Ranger pipeline (version 3.0). 

Liver cancer single-cell RNA sequencing data1 

Three fresh hepatocellular carcinoma samples of primary tumor were collected at the NIH Clinical Center 

for immune checkpoint inhibition studies (NCT01313442) (Supplementary Table 1). Two of them 

(patient 1 and patient 2) were from patients who were receiving immunotherapies by needle biopsy, and 

the other was collected from an untreated patient by surgical resection. Single-cell data was generated 

using the Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and Chip Kit (v2, 10x Genomics). 

Libraries were sequenced on an Illumina NextSeq500. Alignment, tagging, and gene and transcript 

counting were conducted using the 10x Genomic Cell Ranger pipeline (version 2.0.2). 

Lung cancer single-cell RNA sequencing data2 

Two fresh lung adenocarcinoma samples of primary, non-metastatic lung tumor were collected from 

untreated patients by surgical resection at University Hospital Leuven (Supplementary Table 1). Single-

cell data was generated using the Chromium Single Cell 3’ Library, Gel Bead & Multiplex Kit, and Chip 

Kit (v1, 10x Genomics). Libraries were sequenced on Illumina HiSeq4000. Alignment, tagging, and gene 

and transcript counting were conducted using the 10x Genomic Cell Ranger pipeline (version 2.0.0).  

Pancreatic cancer single-cell RNA sequencing data3 

Two untreated patients with primary pancreatic cancer were recruited at the University of Texas MD 

Anderson Cancer Center and informed written consents following institutional review board approval 

were obtained (Lab00-396 and PA15-0014). Fresh biopsies were collected from the tumors by fine needle 

aspiration (Supplementary Table 1). Single-cell data was generated using the Chromium Single Cell 3’ 

Library, Gel Bead & Multiplex Kit, and Chip Kit (v1, 10x Genomics). Libraries were sequenced on an 

Illumina NextSeq500. Alignment, tagging, and gene and transcript counting were conducted by using the 

10x Genomic Cell Ranger pipeline (version 3.1). 

1.2. Single-cell RNA sequencing data processing 
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In this section, we first introduce the preprocessing for the single-cell RNA sequencing (scRNA-seq) 

datasets described above (including quality control, cell clustering, cell type annotation), followed by the 

introduction of a method to group cell clusters within a cell type based on gene counts, i.e., the total 

number of expressed genes, to simplify the characterization of heterogeneity within the cell type. We then 

introduce a scale normalization method to correct for sequencing or experimental biases on total UMI 

counts, and finally the trajectory and cell cycle analyses for the scRNA-seq data. 

1.2.1. Quality control, clustering and cell type annotation 

For each of the three colorectal adenocarcinoma scRNA-seq samples generated at MD Anderson, genes 

expressed in less than three cells were removed. Cells with either fewer than 500 total UMIs, below 200 

expressed genes, or more than 50% total UMI counts derived from mitochondrial genes were excluded. 

The total number of transcripts in each cell was normalized to 10,000, which was followed by a natural 

log transformation. Highly variable genes were detected and used for principal component analysis (PCA). 

Cells were then clustered with the Seurat package4. The cell type for each cell was annotated based on 

known marker genes5 (Supplementary Note Figure 1, Supplementary Note Table 1). Initial somatic 

copy number variation (CNV) estimates were made using inferCNV6, which was used to calculate CNV 

scores and CNV correlation scores1. The CNV score of a single cell was defined as the sum of the 

squared copy number variants across all gene positions. The CNV correlation score was calculated as 

the correlation between the copy number variations of a single cell and the average copy number variation 

of the top 2% cells ranked by CNV scores from the same sample. Tumor cells were identified as epithelial 

cells with an average CNV score greater than 0.0015. The three samples from patient 1, patient 2 and 

patient 3 had 5,444, 7,462 and 2,445 cells remaining, respectively, after data pre-processing. 

The quality control of the three hepatocellular carcinoma scRNA-seq patient samples was conducted 

following the method described by Ma, L. et al1. For each sample, genes expressed in less than 0.1% of 

Supplementary Note Table 1. Marker genes used to annotate cell types in scRNA-seq patient 
samples from four cancer types. 

  Colorectal adenocarcinoma5 Hepatocellular carcinoma1 Lung adenocarcinoma2 Pancreatic adenocarcinoma3,7   

B cell CD79A, CD38 CD79A, SLAMF7, BLNK CD79A, IGKC, IGLC3 CD79A, CD38 

T cell CD2, CD3E, CD3D CD2, CD3E, CD3D CD3D, TRBC1, TRBC2 CD2, CD3D 

NK cell    NKG7, KLRF1 

Myeloid CD14, CD68, ITGAX CD14, CD163, CD68 LYZ, MARCO, CD68 CD14, CD68 

Fibroblast COLA1A, COL1A2, COL3A1 COL1A2, FAP, PDPN COLA1A, DCN, COL1A2 COLA1A, COL1A2 

Endothelial PECAM1, VWF, ENG  PECAM1, VWF, ENG CLDN5, FLT1, CDH5  

Alveolar   FOLR1, AQP4, PEBP4  

Epithelial EPCAM, KRT18, KRT20  CAPS, TEME190, PIFO, 
SNTN EPCAM, KRT18, KRT20 

Tumor cell     LCN2, CCL20, PTTG1   
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the cells were removed. Cells with fewer than 700 total UMIs, fewer than 500 expressed genes, or more 

than 20% total UMI counts derived from mitochondrial genes were excluded. An additional quality control 

step of doublet removal was performed based on the number of cells loaded and recovered. The total 

number of transcripts in each cell was normalized to 10,000, followed by a natural log transformation. 

Highly variable genes were detected and used for PCA. Cells were then clustered with the Seurat 

package4. The cell type for each cell was annotated based on known marker genes1 (Supplementary 
Note Figure 1, Supplementary Note Table 1). Tumor cells were identified as epithelial cells with CNV 

scores above the 80th percentile and CNV correlation scores above 0.4. The three samples of patient 1, 

patient 2 and patient 3 had 83, 761 and 796 cells remaining, respectively, after data pre-processing. 

The quality control of the two lung adenocarcinoma scRNA-seq patient samples was conducted following 

the method described by Lambrechts, D. et al2. For each sample, genes expressed in less than 0.5% of 

the cells were removed. Any cell with either fewer than 201 total UMI counts, below 101 or over 6,000 

expressed genes, or more than 10% total UMI counts derived from mitochondrial genes were filtered out 

from downstream analysis. The total number of transcripts in each cell was normalized to 10,000, 

followed by a natural log transformation. Highly variable genes were detected and used for PCA. Cells 

were then clustered with the Seurat package4. Cell type (including tumor cell) of each cell was annotated 

based on known marker genes2 (Supplementary Note Figure 1, Supplementary Note Table 1). The 

two samples (patient 1 and patient 2) had 8,845 and 13,658 cells remaining, respectively, after data pre-

processing.  

For each of the two pancreatic adenocarcinoma scRNA-seq samples, genes expressed in less than three 

cells were removed. Cells with either fewer than 500 total UMIs, below 200 expressed genes, or more 

than 50% total UMI counts derived from mitochondrial genes were filtered out. The total number of 

transcripts in each cell was normalized to 10,000, followed by a natural log transformation. Highly variable 

genes were detected and used for PCA. Cells were then clustered with the Seurat package4. Cell type of 

each cell was annotated based on known marker genes7 (Supplementary Note Figure 1, 

Supplementary Note Table 1). Tumor cells were identified as epithelial cells with CNV score above 

0.015 and CNV correlation above 0.4. The two samples (patient 1 and patient 2) had 2,404 and 7,037 

cells remaining after QC, respectively, after data pre-processing. 

Within each cell type, we further merged clusters that did not significantly differ in gene counts (two-sided 

Wilcoxon rank-sum test, α=0.001, Supplementary Note Figure 2).  
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Supplementary Note Figure 1. UMAPs of scRNA-seq data from four cancer types. 
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1.2.2. Normalized total UMI counts 

We performed scale normalization on the raw count data to ensure the total UMI count per cell across all 

cells are comparable for different samples. Specifically, let UMIi = {UMIigc}GxCi be a matrix of raw UMI 

counts for the scRNA-seq data for sample i being investigated, with genes g on the rows and cells c on 

the columns. G denotes the total number of genes, Ci is the number of cells in sample i. Then, the 

normalized UMI matrix UMIi, denoted as UMIi
norm , is calculated as UMIi

norm=UMIi/ri , where, 	ri = 
UMIi

sum/Ci
baseline

, baseline = median"UMI1
sum/C1,UMI2

sum/C2,…, UMIn
sum/Cn#, UMIi

sum=∑ ∑ UMIigcG
g=1

Ci
c=1 .  

Given a cell cluster, we let ugc denote the amount of mRNA of gene g in cell c. The average total mRNA 

amount per cell is	∑ (∑ ugcG
g=1

C
c=1 )/C. For scRNA-seq data, we assume the UMIgc from gene g, cell c is 

proportional to the total mRNA ugc of gene g in that cell, with a constant kg that represents technical 

effects: UMIgc=kg*	ugc . The constant kg is introduced because every single-cell sequencing platform 

presents a <100% capture efficiency for mRNA, and such efficiency varies across different platforms9. 

Under the assumption that the technical effect kg remains constant across cells and is often evaluated as 

an average effect across genes within the same platform, we can evaluate total mRNA expression in the 

scRNA-seq data using the average total UMI counts, which is ∑ (∑ UMIgcG
g=1

C
c=1 )/C. Notably, we observed 

 
Supplementary Note Figure 2. An example of merging cell clusters by gene counts. Tumor cells 
in patient 2 of colorectal adenocarcinoma are used. The initial 4 clusters were determined by Seurat 
clustering (resolution=0.5). Two-sided Wilcoxon rank-sum tests comparing gene counts were 
performed between clusters and those that did not pass the significance level of 0.001 were merged. 
The resulting two tumor cell clusters had n=1,715 cells (high UMI cluster, e.g. 1, 2, and 4) and n=365 
cells (low UMI cluster, e.g., 3), respectively. We repeated this process based on the initial Seurat 
clustering with resolution=1.0. There were still two tumor cell clusters after merging. The differences 
of tumor cells in the high UMI cluster and in the low UMI cluster based on the two resolutions were 
only n=12 cells and n=13 cells, respectively. 
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strong correlations between gene counts and total UMI across cells in each cell cluster across all cell 

types and cancer types (Supplementary Note Figure 3). This observation supports our assumption of 

a stable technical effect kg within each study, and that the average total UMI counts serve as a reasonable 

surrogate to compare total mRNA expression across cells that are generated from the same experiment.  

The average gene counts and average total UMI counts for both individual cell clusters and all the clusters 

pooled within a cell type are summarized in Supplementary Note Table 2. 

The observed fold changes in total UMI counts between tumor cell clusters were significantly higher than 

those expected from expression dosage response from genome ploidy changes alone (at 2-3 folds10,11) 

among tumor cells (Supplementary Note Table 3). For the two tumor cell clusters in each patient across 

four cancer types, our null hypothesis is that there is no difference between the distribution of the total 

UMI counts from the tumor cell high-UMI cluster and the distribution of the total UMI counts from the 

tumor cell low-UMI cluster multiplied by three. For each patient, the P value was obtained with a t-test 

and adjusted by the Benjamini-Hochberg (BH) method12; the 95% confidence intervals were calculated 

using bootstrapping with 1,000 iterations. 
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Supplementary Note Table 2. The average gene counts and average total UMI counts for both 
individual cell clusters and all the clusters pooled. The 95% CI was estimated using bootstrapping 
with 1,000 iterations. 

 

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Cluster 3
5,649 

(5,526, 5,779)
48,706 

(46,811, 50,691) NA NA NA NA NA NA NA NA

Cluster 2
2,438 

(2,325, 2,561)
13,787 

(12,661, 15,063) NA NA NA NA NA NA NA NA

Cluster 1
646 

(620, 675)
1,929 

(1,805, 2,058) NA NA NA NA NA NA NA NA

Pooled
1,926 

(1,785, 2,074)
13,626 

(11,990, 15,228) NA NA NA NA
2,135

 (2,041, 2,239)
7,378 

(6,845, 7,899) NA NA

Cluster 2
1,782 

(1,710, 1,848)
7,307 

(6,910, 7,700) NA NA NA NA NA NA NA NA

Cluster 1
604 

(573, 638)
1,964 

(1,800, 2,142) NA NA NA NA NA NA NA NA

Pooled
1,576 

(1,506, 1,642)
6373 

(5988, 6781)
1,272 

(1,225, 1,326)
4,455 

(4,199, 4,721) NA NA NA NA NA NA

Cluster 2
2,286

(2205, 2368)
15877

(15046, 16786) NA NA NA NA NA NA NA NA

Cluster 1
1042

(1008, 1077)
4986

(4713, 5258) NA NA NA NA NA NA NA NA

Pooled
1,796

(1,725, 1,873)
11,589

(10,874, 12,351)
730

(686, 776)
3097

(2774, 3485) NA NA
960

(897, 1031)
3997

(3609, 4369) NA NA

Cluster 2 5,338 
(5,252, 5,425)

48,457 
(47,098, 49,861)

NA NA NA NA NA NA NA NA

Cluster 1
1,364 

(1,325, 1,405)
4,670 

(4,402, 4,954) NA NA NA NA NA NA NA NA

Pooled
3,660 

(3,524, 3,800)
29,969 

(28,109, 31,625) NA NA NA NA NA NA NA NA

Patient 2*
(Stage IV, 

PFS ≥ 18 months)
Pooled 1,871 

(1,787, 1,949)
7,961 

(7,471, 8,460)
NA NA NA NA 1,760 

(1,734, 1,787)
4,150 

(4,037, 4,259)
1,947 

(1,906, 1,986)
5,255

 (5,089, 5,415)

Cluster 2 NA NA NA NA NA NA 4,149 
(4,064, 4,241)

16,410 
(15,796, 17,043)

NA NA

Cluster 1 NA NA NA NA NA NA
2,368 

(2,306, 2,429)
7,131 

(6,813, 7,462) NA NA

Pooled
2,921 

(2,876, 2,966)
13,289 

(12,897, 13,647) NA NA NA NA
2,708 

(2,634, 2,788)
8,904 

(8,447, 9,380)
1,961 

(1,918, 2,002)
5,699 

(5,491, 5,922)

Cluster 2 3,999 
(3,921, 4,073)

15,664 
(15,180, 16,128)

NA NA NA NA NA NA 1,663 
(1,612, 1,713)

4,179 
(3,995, 4,375)

Cluster 1
649 

(616, 682)
1,230 

(1,132, 1,341) NA NA NA NA NA NA
717 

(675, 767)
1,680 

(1,498, 1,869)

Pooled
1,869 

(1,761, 1,979)
6,489 

(5,952, 7,050)
3,233 

(3,156, 3,314)
9,846 

(9,502, 10,176)
724 

(692, 754)
1,479 

(1,394, 1,569)
1,371 

(1,314, 1,432)
3,200 

(2,989, 3,417)
1,520 

(1,464, 1,574)
3,801 

(3,612, 3,993)

Cluster 2
2,778 

(2,680, 2,871)
8,458 

(8,041, 8,868) NA NA
2,097 

(2,039, 2,160)
6,123 

(5,856, 6,411) NA NA
1,898 

(1,836, 1,968)
5,179 

(4,899, 5,486)

Cluster 1
831 

(784, 880)
1,703 

(1,535, 1,897) NA NA
586 

(561, 612)
1,091 

(1,024, 1,168) NA NA
649 

(623, 676)
1,255 

(1,190, 1,321)

Pooled
1612 

(1515, 1703)
4,411 

(4,058, 4,763) NA NA
1200 

(1134, 1266)
3,135 

(2,917, 3,360)
684 

(652, 715)
1,316 

(1,232, 1,401)
1,128 

(1,071, 1,188)
2,760 

(2,549, 2,985)

Cluster 2
4,315 

(4,205, 4,421)
21,718 

(20,860, 22,550)
2,549 

(2,437, 2,654)
11,066 

(10,341, 11,818) NA NA NA NA NA NA

Cluster 1
1,510 

(1,439, 1,578)
4,631 

(4,314, 4,938)
616 

(588, 645)
1,491 

(1,393, 1,599) NA NA NA NA NA NA

Pooled
3,323 

(3,193, 3,458)
15,675 

(14,823, 16,549)
1,423 

(1,334, 1,527)
5,489 

(4,933, 6,075) NA NA NA NA NA NA

Cluster 2
2,235 

(2,160, 2,306)
8,896 

(8,437, 9,317)
1,382 

(1,324, 1,442)
6,017 

(5,635, 6,386) NA NA NA NA NA NA

Cluster 1
997 

(959, 1,039)
3,381 

(3,173, 3,581)
779 

(728, 831)
2,496 

(2,246, 2,765) NA NA NA NA NA NA

Pooled
1,614 

(1,542, 1,682)
6,129 

(5,715, 6,486)
1,086 

(1,028, 1,142)
4,286 

(3,965, 4,644) NA NA NA NA NA NA

Patient 2 
(Stage IVA, 

DFS ≥ 22 months)

Colorectal 
adenocarcinoma

Hepatocellular 
carcinoma

Patient 1
(Stage IV, 

PFS < 5 months)

Patient 3
(Stage I, 

PFS ≥ 18 months)

Patient 1 
(Stage IVA, 

DFS = 4 months)

Patient 3 
(Stage IVA, 

DFS = 5 months)

Cancer type Patient id Cell cluster

Cell type

Tumor Epithelial Alveolar Endothelial Fibroblast

Lung 
adenocarcinoma

Patient 1
{Stage IIIB}

Patient 2
{Stage IIB}

Pancreatic 
adenocarcinoma

Patient 1
(Stage IV, 

OS = 21 months)

Patient 2
(Stage IIB, 

OS ≥ 45 months)
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Supplementary Note Table 2. (Continued) 

 
DFS: disease free survival, PFS: progression free survival, OS: overall survival. 
*: for a patient, if all cell types have one cluster each, only the results from the pooled cells of each cell type are shown. 
NA: due to no cells or only one cell cluster in the corresponding cell type; for the latter, the results of gene counts and total 
UMI counts are shown in the "Pooled" position. 

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Average 
gene counts

(95% CI)

Average 
total UMI counts

(95% CI)

Cluster 3 NA NA NA NA NA NA NA NA

Cluster 2
2,984 

(2,920, 3,054)
13,050 

(12,518, 13,573) NA NA NA NA NA NA

Cluster 1
535 

(523, 548)
1,415 

(1,372, 1,457) NA NA NA NA NA NA

Pooled
1,787 

(1,691, 1,877)
7,365 

(6,853, 7,920)
1,211 

(1,177, 1,243)
3,600 

(3,473, 3,743) NA NA
1,102 

(1,058, 1,149)
5,422 

(5,012, 5,873)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled
662 

(627, 700)
2,054 

(1,881, 2,231)
1,203 

(1,177, 1,230)
4,377 

(4,250, 4,505) NA NA
963 

(911, 1,011)
3,633 

(3,330, 3,936)

Cluster 2 NA NA 1470
1453, 1487

6184
(6086, 6285)

NA NA NA NA

Cluster 1 NA NA 1077
(1050, 1106)

5,354
(5,164, 5,566)

NA NA NA NA

Pooled
659

(612, 709)
3086

(2776, 3381)
1,185 

(1,157, 1,213)
5,582 

(5,405, 5,774) NA NA
685

(655, 715)
3,643

(3,369, 3,950)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled NA NA
1,318 

(1,285, 1,350)
3,720 

(3,561, 3,879) NA NA NA NA

Patient 2
(Stage IV, 
PFS ≥ 18 
months)

Pooled 1,406 
(1,376, 1,434)

4,228 
(4,085, 4,368)

1,303 
(1,272, 1,340)

3,221 
(3,079, 3,366)

NA NA 1,105 
(1,088, 1,122)

11,686 
(11,426, 11,965)

Cluster 2 NA NA NA NA NA NA NA NA

Cluster 1 NA NA NA NA NA NA NA NA

Pooled
1,602 

(1,571, 1,634)
5,879 

(5,711, 6,057)
1,410 

(1,373, 1,448)
4,590 

(4,412, 4,782) NA NA NA NA

Cluster 2
1,293 

(1,253, 1,329)
3,936 

(3,776, 4,102) NA NA NA NA NA NA

Cluster 1
393 

(381, 407)
876 

(838, 917) NA NA NA NA NA NA

Pooled
1,233 

(1,191, 1,271)
3,732 

(3,573, 3,889)
584 

(566, 602)
1,050 

(1,011, 1,090) NA NA
544 

(520, 568)
2,569 

(2,278, 2,858)

Cluster 2
1,207 

(1,164, 1,251)
3,504 

(3,302, 3,721) NA NA NA NA NA NA

Cluster 1
361 

(352, 370)
728

 (699, 754) NA NA NA NA NA NA

Pooled
1,137 

(1,089, 1,183)
3,275 

(3,080, 3,482)
765 

(745, 789)
1362 

(1310, 1417) NA NA
762 

(732, 796)
4,396 

(4,083, 4,746)

Cluster 2
3,213 

(3,131, 3,292)
16,221 

(15,618, 16,851) NA NA NA NA NA NA

Cluster 1
1,460 

(1,420, 1,504)
3,840 

(3,688, 3,980) NA NA NA NA NA NA

Pooled
1,788 

(1,726, 1,851)
6,158 

(5,746, 6,568)
1,531 

(1,508, 1,554)
4,814 

(4,716, 4,922)
1,651 

(1,630, 1,671)
4,064 

(4,001, 4,126)
1,352 

(1,327, 1,378)
4,119 

(4,022, 4,213)

Cluster 2
2,210 

(2,155, 2,271)
10,285 

(9,860, 10,748) NA NA NA NA NA NA

Cluster 1
890 

(857, 926)
2,523 

(2,344, 2,711) NA NA NA NA NA NA

Pooled
1,960 

(1,891, 2,030)
8,818 

(8,327, 9,245)
936 

(919, 953)
2,526 

(2,467, 2,586)
1,169 

(1,148, 1,191)
2,855 

(2,763, 2,950)
927

 (904, 950)
2,684 

(2,586, 2,775)

Patient 2 
(Stage IVA, 

DFS = 5 months)

Colorectal 
adenocarcinoma

Cancer type Patient id Cell cluster

Patient 1 
(Stage IVA, 

DFS = 4 months)

Patient 3 
(Stage IVA, 
DFS ≥ 22 
months)

Cell type

Myeloid T cell Natural killer cell B cell

Pancreatic 
adenocarcinoma

Patient 1
(Stage IV, 

OS = 21 months)

Patient 2
(Stage IIB, 

OS ≥ 45 months)

Hepatocellular 
carcinoma

Patient 1
(Stage IV, 

PFS < 5 months)

Patient 3
(Stage I, 
PFS ≥ 18 
months)

Lung 
adenocarcinoma

Patient 1
{Stage IIIB}

Patient 2
{Stage IIB}
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Supplementary Note Figure 3. Correlations between gene counts and total UMI 
counts. Smoothed scatter plots show the correlations between gene counts and total UMI counts in 
cell clusters from each patient sample. In each smoothed scatter plot, the Spearman correlation 
coefficient is labeled on the top (r). 
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1.2.3 Cell cycle states of tumor cells 

For each patient sample, we calculated the S score and G2M score for each tumor cell using the 

CellCycleScoring function in the Seurat package. Cells with either S score or G2M score > 0.2 are 

considered as cycling cells. Among the rest, cells with either 0 < S score ≤ 0.2 or 0 < G2M score ≤ 0.2 

are defined as intermediate cells, and all the remaining cells are considered as non-cycling cells13. We 

examine if the high UMI tumor cell cluster is enriched with non-cycling cells by calculating an Odds Ratio 

(OR) = !"."$	&'&()*+&)*-./0.1)2-.	&.((3	)*	4)+4	567	-80"/	&(83-.//	!"."$	*"*:&'&()*+	&.((3	)*	4)+4	567	-80"/	&(83-./	
!"."$	&'&()*+&)*-./0.1)2-.	&.((3	)*	(";	567	-80"/	&(83-.//	!"."$	*"*:&'&()*+	&.((3	)*	(";	567	-80"/	&(83-./

 

(also see the distribution of S and G2M scores in Supplementary Note Figure 4). An OR < 1 suggests 

enrichment of non-cycling cells. The results show that in all four patient samples (colorectal, liver, lung 

and pancreatic cancers) with worse survival outcomes, the high UMI tumor cells are enriched with non-

cycling cells.  

 

1.2.4 Gene set enrichment analysis in scRNA-seq data 

We performed gene set enrichment analyses for the high and low UMI tumor cell clusters in scRNA-seq 

data. We first compiled a comprehensive set of signatures with 18,617 human gene sets (containing at 

least 4 genes) from the Molecular Signatures Database (MSigDB, v6.2)47 and CellMarker48. Among them, 

341 gene sets were annotated as stemness signatures based on the key word ‘_stem_’ in their names. 

We quantified enrichment for high and low UMI tumor cells using the GeneOverlap R package (v1.24.0)75. 

GeneOverlap took the DE genes, a gene set and the background genome size (number of expressed 

genes in the scRNA-seq data expressed in ≥ 10 cells) as input, and gave a P value for the enrichment 

significance and Jaccard Index, which was calculated by the number of common genes in the DE gene 

list and the signature gene set divided by the union of them. P values were adjusted for multiple 

comparisons using the Benjamini-Hochberg (BH) correction. The DE genes between high UMI and low 

Supplementary Note Table 3. Two-sided t-tests between the total UMI counts of high UMI tumor cell 
cluster and 3 times of the total UMI counts of low UMI tumor cluster within each patient across four 
cancer types. P values are adjusted by the Benjamini-Hochberg (BH) method. 

Cancer type 
Patient 1 Patient 2 Patient 3 

No. of tumor cells P value μ2/μ!(95% CI)* No. of tumor cells P value μ2/μ!(95% CI) No. of tumor cells P value μ2/μ!(95% CI) 

Colorectal  
adenocarcinoma 

High UMI: 808 
Low UMI: 2,426 < 2x10-16 25 (23, 27) High UMI: 1,696 

Low UMI: 359 9x10-13 3.7 (3.4, 4.2) High UMI: 813 
Low UMI: 528 0.22 3.2 (2.9, 3.4) 

Hepatocellular  
carcinoma 

High UMI: 26 
Low UMI: 19 9x10-7 10 (10,11) NA NA NA NA NA NA 

Lung  
adenocarcinoma 

High UMI: 497 
Low UMI: 867 < 2x10-16 13 (12, 14) High UMI: 1,061 

Low UMI: 1,586 < 2x10-16 5.0 (4.4, 5.6) NA NA NA 

Pancreatic  
adenocarcinoma 

High UMI: 462 
Low UMI: 286 6x10-10 4.7 (4.3, 5.0) High UMI: 1,929 

Low UMI: 1,942 1x10-5 2.6 (2.4, 2.8) NA NA NA 

*μ2 and μ1 are the means of the total UMI counts from the tumor cell high-UMI cluster and tumor cell low-UMI cluster, respectively. 

  



 12 

tumor cells were obtained by the “FindMarkers” function from Seurat with Wilcoxon rank-sum test, based 

on criteria of adjusted P value < 0.1, genes expressed in ≥ 10 cells, and absolute log2(fold change) > 

0.585 (1.5 fold change).  

 

 

 
2. TUMOR-SPECIFIC TOTAL MRNA EXPRESSION IN BULK SEQUENCING DATA 

2.1. A mathematical model for tumor-specific total mRNA expression  

For any group of cells, we use 𝑆 to denote the average global mRNA transcript level per cell per haploid 

genome, which follows 𝑆 = ∑ (∑ ugcG
g=1 /pc)

C
c=1 /C. Here pc is the ploidy, i.e., the number of copies of the 

 

 
 
Supplementary Note Figure 4. Distribution of cycling/intermediate and non-cycling cells in 
tumor cells. Dashed lines separate cycling/intermediate and non-cycling cells. OR for high UMI vs. 
low UMI tumor cell clusters in cycling state and 95% confidence interval (CI) are labeled on the top. 
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haploid genome in cell c. However, the cell level ploidy pc is usually not measurable. Hence, in practice, 

we use average ploidy 𝛹 of the corresponding cell group to approximate it: 𝑆	≈∑ ∑ ugcG
g=1 /(C𝛹)C

c=1 . For 

non-tumor cells, which are commonly diploid, this assumption is assured. 

2.1.1. Model  

In the analysis of bulk RNAseq data from mixed tumor samples, we are interested in comparing tumor 

with non-tumor cell groups. We denote tumor cells by group T, and non-tumor cells by group N. Therefore, 

we define a tumor-specific total mRNA expression score (TmS) to reflect the ratio of total mRNA transcript 

level per haploid genome of tumor cells to that of the surrounding non-tumor cells, i.e., TmStumor = ST / SN, 

simplified as TmS from here forward. It is necessary to calculate this ratio in order to cancel out technical 

effects presented in sequencing data that confound with both ST and SN .  Let Tg=∑ ugc
CT
c=1  and 

Ng=∑ ugc
CN
c=1  denote the total number of mRNA transcripts of gene g across all cells from tumor and non-

tumor cells, and T+=∑ TgG
g=1  and N+=∑ NgG

g=1 , let CT and CN denote the total number of tumor and non-

tumor cells, and let 𝛹T and 𝛹N represent the average ploidy of tumor and non-tumor cells, respectively. 

Under the assumption that the tumor cells have a similar ploidy, we can derive TmS without using single-

cell-specific parameters as 

Here we further introduce a tumor-specific mRNA proportion π =	(∑ TgG
g=1 ) / (∑ TgG

g=1 +∑ NgG
g=1 ) and a 

tumor cell proportion of tumor cells within a sample (termed “tumor purity”) r = CT / (CT + CN). Note that 

deconvolution of just the gene expression data will not provide information on the total number of tumor 

cells and non-tumor cells, but only the sum of total mRNA expression across all cells of each cell type.  

Using these parameters, we rewrite Eq.S1 as 

Additionally, we can define a ploidy-unadjusted TmS by removing the ploidy terms. 

2.1.2. Estimation 

It is common practice to assume the ploidy of non-tumor cells 𝛹N equals to 214,15. Hence, we have 

In what follows, we use	TmS to represent TmS* , for the sake of simplicity. 

TmS	= π(1:ρ)@N
(A:π)ρ@T

.                                                              Eq.S2 

TmS	= T+/(CT@T)
N+/(CN@N)

.                                                               Eq.S1      

𝑇𝑚𝑆*	= 𝜋B(1−𝜌B)C	
𝜌B(1−𝜋B)DE#	

.                                                          Eq.S3 
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Estimation of tumor-specific mRNA proportion π using high-throughput RNA sequencing has not been 

possible due to several technical and analytical factors including: 1) the need to account for technical 

artifacts introduced by varied library size, which currently involves normalization procedures across 

samples; 2) total mRNA transcripts per cell are confounded with technical artefacts so that normalization 

procedures adjust for both effects at once, consequently losing the ability to evaluate the downstream 

global transcriptome feature16; and 3) a limited focus on estimating cell proportions by popular methods17–

19.  

Using deconvolution to partition tumor and non-tumor cells within the same sample under the same 

experimental conditions provides a mathematical means to cancel out the effect of technical artefacts 

while maintaining the effect of cell-type-specific total mRNA counts. We use the DeMixT model20 to 

estimate π. For sample i and across any gene g, we have 

where Yig represents the scale normalized expression matrix from mixed tumor samples, T’ig and N’ig 

represent the normalized relative expression of gene g within tumor and surrounding non-tumor cells, 

respectively. The estimated π- is the quantity desired for Eq.S3.  

Computational deconvolution methods, e.g., ASCAT14 and ABSOLUTE15, have been developed to 

perform allele-specific copy number analysis and to estimate tumor purity r and ploidy 𝛹T from tumor 

DNA sequencing data. Such statistical methods jointly model the distribution of logR and B allele (or 

variant allele) frequency (BAF) across germline SNPs, with tumor purity and allele-specific copy number 

as parameters of interest. Then the tumor purity and ploidy (the average tumor copy number) can be 

estimated through minimizing the loss function or maximizing the likelihood. Below, we provide a detailed 

description for these methods using the ASCAT model as an example. 

Sequence read counts at known SNP loci were computed from tumor DNA sequencing data. The logRi 

can be computed from the total read counts in the tumor versus normal for the ith SNP, which provides 

information on the ratio of total copy number between the tumor and the normal. Specifically, logRi can 

be expressed as14 

where ρ is the tumor purity, yT is the tumor ploidy, 𝛾 is a constant depends on which DNA sequencing 

technology is used. nA,i and nB,i stand for the allele-specific copy number of A allele and B allele for the 

ith SNP in tumor cells, respectively. 

logRi = γlog2 .
2(1-ρ)+ρFnA,i+nB,iG

2(1-ρ)+yT
/,                                        Eq.S5 

Yig=πiTig
' +(1-πi)Nig

'                                                      Eq.S4 
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On the other hand, allelic imbalance can be inferred from the BAFi  for ith SNP. The BAFi  can be 

expressed as14  

Based on Eq.S5 and Eq.S6, the allele-specific copy number can be expressed as a function of the tumor 

purity and ploidy. Specifically, we have  

Allele-specific piecewise constant fitting (ASPCF)21 was then applied to both logRi  and BAFi 

simultaneously, which enforced the change points to occur at the same genomic locations. Consequently, 

a segmentation of the genome was obtained, each segment corresponding to a genomic region between 

two adjacent change points. Using the ASPCF smoothed logRi  and BAFi , the final values for 𝜌3 and 

𝛹4T were obtained through the optimization, such that the allele-specific copy number estimates n3A,i and 

n3B,i were as close to nonnegative integers as possible for germline heterozygous SNPs. 

  

BAFi =
1-ρ+ρnB,i

2(1-ρ)IρFnA,i+nB,iG
.                                                      Eq.S6 

n3A,i =
ρ-1+2

logRi
γ (A:BAFi)(2(1-ρ)+@T)

ρ
; 

n3B,i =
ρ-1+2

logRi
γ BAFi(2(1-ρ)+@T)

ρ
. 
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2.2. Improved estimation using DeMixT 

Many computational deconvolution methods have been developed to estimate cell type proportions 

through transcriptome data; however, most of them focus on the cellular proportion and not the global 

gene expression level of each cell type, due to lack of appropriate normalization approaches. The 

DeMixT20 model is unique in aiming to estimate the global tumor-specific gene expression level relative 

to the normal reference in the context of admixed tumor samples. ISOpure22 is the other model that 

presents similar objectives as the DeMixT model. The following issues and our proposed solution are 

generally applicable to both models.  

The identifiability of model parameters is a major issue for high dimensional models. Due to technical 

limitations, given a certain amount and quality of experimental data, not all model parameters are 

guaranteed for unambiguous estimation. Frequently, only a subset of model parameters are identifiable 

based on the available data, with the rest of the parameters considered unidentifiable. Confidence 

intervals can be derived for identifiable parameters, which contain the true value of the parameter with a 

desired probability23. Fortunately, with the DeMixT model, there is hierarchy in model identifiability in 

which the cell-type specific global gene expression proportions (π) are the most identifiable parameters, 

requiring only a subset of genes with identifiable expression distributions. Therefore, our goal is to select 

an appropriate set of genes as input to DeMixT that optimizes the estimation of π. In general, genes are 

expressed at different levels, which, due to different numerical ranges, can affect estimation of π. We 

found that including genes that are not differentially expressed between the tumor and non-tumor 

components within the bulk sample, or genes with large variance in expression within the non-tumor 

component, can introduce large biases into the estimated π. On the other hand, the tumor component is 

hidden in the mixed tumor samples, hence preventing a DE analysis between mixed and normal samples 

from finding the best genes. By applying a profile-likelihood based approach to detect the identifiability of 

model parameters24, we systematically evaluated the identifiability for all available genes based on the 

data, and selected the most identifiable genes for the estimation of π. As a result, the accuracy of the 

estimated proportions has been improved. As a general method, the profile-likelihood based gene 

selection strategy can be extended to any method that uses maximum likelihood estimation. We also 

employed an additional virtual spike-in strategy to balance proportion distributions which further improved 

model identifiability. 

2.2.1. Likelihood model for DeMixT 

In the DeMixT model20 (Eq.S4), we assumed that the observed expression level Yig is a linear combination 

of two hidden components Tig (tumor, in place of T’ig from now on) and Nig (non-tumor, in place of N’ig 

from now on), where gene g = 1,2,…,G, sample i = 1,2,…,M , and πi is the tumor-specific total mRNA 
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expression proportions. We assume each hidden component follows the log2-normal distribution, i.e., 

Tig ~ LN 5μTg, σTg
2 6 and Nig ~ LN 5μNg, σNg

2 6. 

Fitting the deconvolution model in Eq.S1 can be formally defined as an optimization problem that seeks 

to identify optimal estimates for sample-level, tumor-specific mRNA proportions πi , and gene-level 

parameters. The full parameter set is denoted by (π,μT,σT), where π = (π1,π2,…,πM), μT = (μT1, μT2,…, 

μTG), σT = (σT1, σT2,…,σTG). The full log-likelihood of the DeMixT model can be written as                                        

where f 5Yig|πi,μTg,σTg6= 1
2πσNgσTg

∫ 1
t(Yig-t)

exp(-
(log2(t)-μNg-log2(1-πi))

2

2σNg
2 -

(log2FYig-tG-μTg-log2(πi))
2

2σTg
2 )dtYig

0 . 

The DeMixT model applies an optimization method, iterated conditional modes (ICM)25, to maximize the 

full log-likelihood function and estimate all distribution parameters (μT,σT) and proportions π. 

2.2.2. Optimized model identifiability  

Based on the most stringent definition, for a parametric model 𝑙(Y | θ), θ is identifiable if, 𝑙(𝒀	|	𝜃A) = 𝑙(Y | 
θ2) => θ1 = θ2. However, this rigorous identifiability is difficult to validate for a general high-dimensional 

and non-convex model, which is the case for the DeMixT model. Thus, for a parameter θ, we use the 

confidence interval [θ-, θ+] to measure its identifiability24.  

In the DeMixT model, if we select genes with small confidence intervals of μTg based on profile likelihood, 

which indicate high identifiability, the corresponding gene g will be more stable and reliable, so will the 

inferred tumor-specific mRNA proportions (π). As a result, the length of confidence interval of μTg serves 

as an estimable quantity with which we can evaluate the gene g’s identifiability and prioritize genes to 

increase the estimation quality of πi, μTg, σTg. 

The profile likelihood is preferred to compute confidence intervals of parameters that often have better 

small-sample properties than those based on asymptotic standard errors calculated from the full 

likelihood26. Assume the kth gene’s mean parameter μTk is the parameter of interest. The definition of the 

profile log-likelihood function of μTk is: 

The confidence interval of a profile likelihood function can be constructed through inverting a likelihood-

ratio test27. Assume the null hypothesis as H0: μTk = x, and the maximum likelihood estimator of (πi, μTg, 

𝑙?π,μT,σT@=∑ ∑ log(f(Yig|πi,μTg,σTg))
G
g=1

M
i=1 ,                       

𝑙μTk?μTk=x|π,μT,σT@ = max
πi,μTg,σTg,σTk	

{E [E log .f 5πi,μTg,σTg6/  +log 5f?πi,μTk=x,σTk@6
G

g≠k

 ]
M

i=1

} 
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σTg) are (π-i, μ-Tg, σ-Tg). The null hypothesis will not be rejected at the α level of significance if and only if 

2 F𝑙?π-, μ- T, σ-T@ − 𝑙μTk?μTk = x | π-, μ- T, σ-T@H ≤ χ1-α
2 (1) , where χ1-α

2 (1)  stands for 1-α  percentile of the χ2 

distribution with degrees of freedom equal to 1. Since the maximized likelihood 𝑙?π-, μ- T, σ-T@ and model 

parameters π-, μ- T, σ-T can be estimated by running the DeMixT model on all available gene sets, for any 

given x, we are able to investigate the profile log-likelihood function 𝑙μTk?μTk = x | π-,μ-T,σ-T@. Consequently, 

we can estimate the lower and upper bounds of the confidence interval [μTk
- , μTk

+ ] as 

Following the same procedure, we can derive the confidence interval of μTk for all available genes. 

In real data analysis, calculating the actual profile likelihood function of μTk across all 20,000 genes is 

generally infeasible due to computational limits. An asymptotic approximation is necessary in order to 

quickly evaluate the profile likelihood function. If the measurement noise is small and the sample size is 

large enough, asymptotic confidence intervals are good approximations of the actual confidence 

intervals24. The asymptotic profile likelihood function can be derived from the observed Fisher information 

of the log likelihood, denoted as H(π-,μ-T,σ-T). Then the asymptotic α level confidence interval of μTk can 

be written as follows24 

Validation. We compared the actual profile likelihood function with the asymptotic profile likelihood 

function for a random set of 20 genes in real data (the TCGA prostate adenocarcinoma dataset) and 

observed good performance of the approximate profile likelihoods (Supplementary Note Figure 5). With 

20 randomly selected genes, we calculated the root mean squared error (RMSE) between the 

confidence intervals from the true and asymptotic profile likelihoods is 0.05. 

Gene selection score. We now introduce a metric, the gene selection score, which for gene 𝑘 is the width 

of the asymptotic 95% profile likelihood-based confidence interval of μTk for gene 𝑘 

Genes with a lower score have a smaller confidence interval, hence higher identifiability in their 

corresponding parameters. Genes are ranked based on the gene selection score from the smallest to the 

largest. A subset of genes that are ranked on top will be used for parameter estimation. In the DeMixT R 

μTk
- = min

x
{x|2 F𝑙?π-,μ-T,σ-T@	-	𝑙μTk?μTk	=	x	|	π-,μ-T,σ-T@H≤χ1-α

2 (1)}

μTk
+ = max

x
{x|2 F𝑙?π-,μ-T,σ-T@	-	𝑙μTk?μTk	=	x	|	π-,μ-T,σ-T@H ≤χ1-α

2 (1)}
 

μTk
±	=	μTk	" ±#2χ1-α

2 (1) H$π%,μ&T,σ%T'k,k
-1

 .                                             Eq.S7 

gene selection scorek=2#2χ0.05
2 (1) H$π%,μ&T,σ&T'k,k

-1
.                           Eq.S8                                 



 19 

package (freely available from Bioconductor), our proposed profile-likelihood based gene selection 

approach is included as function “DeMixT_GS”. 

 

2.2.3. A simulation study for profile-likelihood based gene selection 

The DeMixT model assumes every gene g has a shared mean (μTg) and variance (σTg) parameters 

across all tumor samples. However, in real data, this assumption will be violated in selected genes, due 

to the fact that some genes are significantly differentially expressed in different subtypes of the cancer. 

For example, the PAM50 genes are known to be differentially expressed in different molecular subtypes 

in breast cancer, e.g., Basal, Her2, LumA, and LumB subtypes. Therefore, our simulation aimed to assess 

the performance of the proposed gene selection method in finding genes that best follow the DeMixT 

model. The detailed simulation design is described below. 

We simulated gene expression of 269 mixed samples and 100 normal references with 10,000 genes, 

mimicking the real data scenario presented in the TCGA prostate adenocarcinoma dataset. The true π 

were set as the tumor cell proportions derived from ASCAT. We generated the expression of 10,000 

genes under four scenarios: 1) genes that are consistently differentially expressed between the tumor 

 
Supplementary Note Figure 5. Asymptotic profile likelihoods for 4 genes using 259 samples 
from the TCGA prostate cancer dataset. Comparison of asymptotic and actual profile likelihoods of 
μT for 4 randomly selected genes in the TCGA prostate adenocarcinoma data. The red curve shows 
the true profile likelihood of the corresponding parameter. The blue curve shows an asymptotic 
approximation of the profile likelihood of the corresponding parameter.  
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and normal components; 2) genes that are differentially expressed across subtypes of tumor samples; 3) 

genes that are consistently expressed similarly between the tumor and normal components; 4) genes 

that are expressed with large variances. Specifically, for scenario 1), we generated 6,000 genes for the 

pure tumor Tig  and normal references Nig  with distributions log2?Tig@ ∼ N 5μTg,	σTg
2 6  and 

log2?Nig@ ∼ N 5μNg,	σNg
2 6, where i denotes sample, i=1, ⋯, M. We simulated μNg,	μTg∼ N?7,1.52@, and σNg, 

σTg were sampled with replacement from the observed standard deviations from the normal samples of 

TCGA prostate adenocarcinoma. For scenario 2), we generated additional 2,000 subtype genes with 

samples spit into equal-sized subgroups M1 , M2 , and M3  with corresponding μT1g  ~ N?5,1.52@ , 

μT2g~ N?7,1.52@ , μT3g~ N?9,1.52@  and M= M1+M2+ M3 . Then we generate the expression with 

log2?Nig@ ∼ N 5μNg,	σNg
2 6 , log2?Tig@ ∼ N 5μTkg, σTg

2 6 , k=1, 2,	3, i∈Mk . For scenario 3), we generated 

1,000 genes with strictly equal mean expression for pure tumor and normal reference, where 

μNg=	μTg∼ N?7,1.52@, log2?Tig@ ∼ N 5μTg,	σTg
2 6  and log2?Nig@ ∼ N 5μNg,	σNg

2 6 . For scenario 4), we 

generated the remaining 1,000 genes with large variances, where μNg,	μTg∼ N?7,1.52@, σNg = σTg = 1.5, 

and the expression profile follow log2?Tig@ ∼ N 5μTg,	σTg
2 6, log2?Nig@ ∼ N 5μNg,	σNg

2 6. Then we mixed the 

Tig  and Nig  component expression linearly at the generated π according to the DeMixT model: Yig= 

πiTig+(1-πi)Nig , where G=10,000 , M=269 . Our proposed gene selection method (“DeMixT_GS”) 

successfully ranked genes from scenario 1) much higher than others, whereas a routine DE analysis 

using the two-sided t-test statistic between mixed tumor and normal samples failed to identify these genes 

(Extended Data Fig. 4d). Across simulations where we selected 100, 250, 1500, 2500, and 8000 genes, 

“DeMixT_GS” always outperformed “DeMixT_DE” in estimating proportions (Supplementary Note 
Figure 6a). The dip test28 was used to measure the unimodality of the distribution of gene expression. 

This test statistic was designed to test multimodality of a random variable based on the maximum 

difference between the empirical distribution and the unimodal distribution of all observed data points 
(Supplementary Note Figure 6b). It suggests that the proposed gene selection method successfully 

ranked subtype-specific genes lower than the DE method. 

Optimal selection of genes. We also observed that the number of genes selected by “DeMixT_GS” 

influences the performance of DeMixT. The accuracies of π estimation based on 100, 250, 1,500, 2,500 

and 8,000 genes selected by the proposed “DeMixT_GS” were compared. (Supplementary Note Figure 
6a, c). Accurate π estimation, as measured by the RMSE, was achieved with 1,500 or 2,500 genes. In 

real data, we used either the top 1,500 or top 2,500 genes to estimate π. 
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Supplementary Note Figure 6. Profile-likelihood based gene selection (DeMixT_GS) improves 
tumor-specific total mRNA expression proportions estimation. a, Root Mean Square Error 
(RMSE) was calculated for 5 simulated scenario. The center points represent the mean and the 
bound of error bars represent the mean +/- one standard error of RMSE. b, Density of P values 
based on a dip test for selected genes by “DeMixT_GS” and “DeMixT_DE” methods. The dip test 
was applied to indicate the distribution of gene expression for selected genes based on the 
“DeMixT_GS” and “DeMixT_DE” methods, respectively. A small P value of the dip test suggests the 
corresponding gene is not unimodally distributed, which violates the model assumption of log2-
normal distribution across samples. c, Scatter plot of true versus estimated tumor-specific total 
mRNA expression proportions using “DeMixT_GS” method with different numbers of top-ranking 
genes with the smallest gene selection score. 
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2.2.4. Virtual spike-ins to improve identifiability and a simulation study 

When the true proportions are skewed towards the high end (i.e., median above 0.5), which is expected 

to occur frequently in real data (tumor samples with a low percentage of tumor cells are already discarded), 

the DeMixT estimation procedure, after careful gene selection, tends to slightly underestimate the high 

proportions. We hypothesize that by shifting the mode of the π distribution close to 0.5, the issue of 

underestimation will be alleviated. To achieve this, we simulate additional “mixed tumor” samples, i.e. 

spike-ins, with close to 0% of π, so that there are roughly the same number of samples with tumor 

proportions below and above 50%, i.e., SP + P"i P	ρi<0.5#P @ |{i | ρi≥0.5}|, where SP represents the number 

of spike-ins, ρi represent tumor purity of sample i, and the | ∙ | represent cardinality of a set. For the 

cancer type whose median tumor purity is below 0.5, we set SP at 5. The spike-ins are generated based 

on gene expression profiles observed from the input data of normal reference samples.  

We simulated 100 mixed samples and 100 normal reference samples with 8,000 genes based on 

simulation settings described in Section 2.2.3 with five replicates. Tumor-specific mRNA proportions 

were simulated from a normal distribution (mean = 0.55, SD = 0.2) and truncated at endpoints of 0.05 

and 0.95. μNg, μTg ∼ N?7,1.52@ and σNg,σTg ∼ U(0.1, 0.8). The expression level of spike-ins is denoted 

as Pjg. We simulate Pjg ~ LN 5μ3Ng, σ-Ng
2 6, for gene g = 1,2,…,G and sample j = 1,2,…,SP. The spike-ins 

were then combined with mixed tumor samples. We ran DeMixT on the combined samples while fixing π 

for the spike-ins at 0.01. We found adding spike-ins can reduce biases in the estimation of tumor-specific 

mRNA proportions (Supplementary Note Figure 7a), as demonstrated by the improved gene selection 

scores (the smaller the better) for the top-ranking genes (Supplementary Note Figure 7b).  

2.3. Tumor-specific total mRNA expression in patient samples 

 
Supplementary Note Figure 7. Adding spike-ins reduces systematic bias of estimated tumor-
specific mRNA proportions at a high end. a, Scatter plot of true versus estimated tumor-specific 
mRNA proportions using “DeMixT_GS” method under different strategies of adding spike-ins. b, 
Distribution of gene selection score to top 2,000 genes under different strategies of adding spike-ins, 
where the x-axis represents the rank of genes sorted by gene selection score from low to high and 
the y-axis represents the estimated gene selection score for the corresponding genes. 
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2.3.1. Datasets  

The Cancer Genome Atlas data 
Publicly available transcriptome profiling HT-seq raw read counts from 7,054 tumor samples from 15 

cancer types in TCGA (breast adenocarcinoma, bladder urothelial carcinoma, colorectal cancer (colon 

adenocarcinoma + rectum adenocarcinoma), head-and-neck squamous cell carcinoma, kidney 

chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver 

hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, pancreatic 

adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma, uterine 

corpus endometrial carcinoma) were downloaded from the GDC data portal (v14.0)29 

(https://portal.gdc.cancer.gov/). They were generated through the standard RNAseq analysis pipeline 

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/) by aligning 

reads to the GRCh38 reference genome and then by quantifying the mapped reads. Clinical annotation 

data including overall survival (OS), progression-free interval (PFI), pathologic stage, age, and sex of 

patients across 15 cancer types was downloaded from the GDC data portal 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). Somatic mutation data of the 15 cancer 

types were downloaded from the re-annotated mutation annotation file (MAF) format at the GDC 

(https://gdc.cancer.gov/about-data/publications/mc3-2017). ABSOLUTE tumor purity and ploidy data 

were downloaded from Aran et al30. ASCAT tumor purity and ploidy data were downloaded from 

Alexandrov et al31. Driver mutation and indels annotation were downloaded from the TCGA pan-cancer 

driver mutation database: http://intogen.org/download version 2016.532. NarrowPeak format ATAC-seq 

data for TCGA samples was obtained from Corces et al33. NarrowPeak files were annotated using the R 

package chipseeker34. Peaks outside of promoter regions (-2kb to 1kb of transcription start sites) were 

excluded. For breast adenocarcinoma, molecular subtype, triple negative status, status of hormone 

receptor, were obtained from Koboldt et al35. Copy number alternation status of MYC and PVT1, called 

by GISTIC36 using the SNP6 DNA microarray data from breast carcinoma in TCGA, were obtained from 

cBioPortal (https://www.cbioportal.org/)37. For prostate adenocarcinoma, Gleason scores were 

obtained from Abeshouse et al38. For head and neck squamous cell carcinoma, HPV status was obtained 

from Lawrence et al39. In renal papillary carcinoma, molecular subtypes were obtained from Linehan et 

al40.  

International Cancer Genome Consortium – Early-Onset Prostate Cancer data41 

Matched RNAseq and whole genome sequencing (WGS) data from 121 tumor samples and 9 adjacent 

normal samples from 96 patients, the corresponding clinical data including biochemical recurrence (BCR), 

and Gleason scores were downloaded from an early-onset (treatment age < 55) prostate cancer patient 

cohort (ICGC-EOPC)41. Among these 96 patients, there were 13 with Gleason score = 3+3, 58 with 
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Gleason score = 3+4, 11 with Gleason score = 4+3, 1 with Gleason score = 4+4, 6 with Gleason Score 

= 4+5, 6 with Gleason score = 5+4, and 1 with Gleason Score = 5+5. 

For the ICGC-EOPC dataset, the gene expression read counts from the ultra-deep total RNAseq and 

relevant clinical data of 121 tumors samples from 96 patients were obtained from Gerhauser et al41. RNA 

reads were aligned to the human GRCh37 reference genome using BWA and SAMtools. Uniquely 

mapped reads were annotated using Ensembl v62. DNA library preparation and WGS was performed on 

Illumina sequencers42 with a median insert size of 310 bp (SD = 57 bp) and a median WGS coverage of 

61-fold for tumor and 38-fold for germline control samples. WGS data was aligned to the GRCh37 

reference genome using BWA-MEM43 according to Pan Cancer Analysis of Whole Genomes (PCAWG) 

protocol (https://doi.org/10.1101/161638).  

METABRIC data 

RNA expression arrays profiled by Illumina HT-12 v3 and matched DNA arrays profiled by Affymetrix 

SNP 6.0 from tumor tissues of 1,992 female patients with breast cancer in the METABRIC44 cohort were 

downloaded from EGA (https://ega-archive.org) with Study ID EGAS00000000083. This cohort were split 

into a discovery set (997 patients) and a validation set (995 patients) by the original study44. 144 adjacent 

normal tissue expression arrays, each from one patient, are also available in this cohort. Clinical 

information including disease free survival and treatment was downloaded from cBioPortal 

(https://www.cbioportal.org/study/summary?id=brca_metabric).  

TRACERx data 

Matched RNAseq and WES data from multi region tumor samples of 64 patients in TRACER cohort 

were obtained45–47. WES data was performed on DNA samples, see details in Jamal-Hanjani et al.45. 

For RNA sequencing data, the STAR package48 (version 2.5.2.b) was used to perform alignment 

and map reads to human hg19 reference genome. RNA count data was generated and quantified 

by the RSEM package49 (version 1.3.0). Clinical information including disease free survival was 

downloaded from Jamal-Hanjani et al.45.  
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2.3.2. TCGA  

2.3.2.1. Data processing  

To estimate the tumor-specific mRNA proportions (π) for each sample, we used the two-component mode 

of DeMixT for 15 TCGA cancer types where sufficient normal reference samples were available (the 

minimum number of normal samples is seven). For each cancer type, the following quality control was 

performed on both the tumor and normal samples to remove any suspicious samples. For each gene, we 

first used the Wilcoxon rank-sum test to test for differential expression between normal and tumor 

samples. The top 1,000 genes with the smallest P values were selected as the feature genes. The first 

two principal component scores of the feature genes were extracted for hierarchical clustering using 

Euclidean distance and the Ward method. We separated samples into two groups using the “cutree” 

function. In general, one cluster contained tumor samples and the other contained normal samples. Any 

samples that were clustered outside of its general group label, e.g., tumor samples clustered within the 

normal sample cluster or normal samples in the tumor cluster, were filtered out (Supplementary Note 
Figure 8, Supplementary Note Table 4).  

 

 
Supplementary Note Figure 8. Hierarchical clustering of read count data from adjacent normal 
and mixed tumor samples for breast and prostate adenocarcinoma in TCGA as examples. 
Dendrograms of the hierarchical clustering results based on the top 1,000 differentially expressed 
feature genes for breast carcinoma (a) and prostate adenocarcinoma (b), respectively. Circles 
represent adjacent normal samples and dots represent mixed tumor samples. 
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Scale normalization at the seventy-fifth percentile based on the DSS package50 was then applied to the 

post quality-control tumor and normal samples. Next, we applied two criteria to filter out spurious genes. 

First, we filtered out genes with a zero count in either the mixed tumor or normal samples. Second, we 

filtered out genes with a large variance (σ-Ng
2  > 0.6) in the normal reference samples. Here, the standard 

deviation of a gene is calculated as σ-Ng
2  = sd(log2?R.g@), where R.g is the normalized expression of gene 

g for normal reference samples. 

For each cancer type, we applied the “DeMixT_DE” to the quality-controlled expression data together 

with simulated spike-ins as input data to generate initial tumor-specific mRNA proportions π0. We used 

ASCAT estimated tumor purities as an informed prior to calculate a reasonable number for SP. With other 

datasets in general, we set SP= max(50, 0.3*Sample size),	as the default option of the “DeMixT_GS” 

function. Results from the TCGA datasets across 15 cancer types were largely consistent with small to 

moderate changes from the addition of spike-ins (Supplementary Note Figure 9).  

We then used these π0K 𝑠	as initial values in the profile likelihood calculation on all genes to calculate gene 

selection scores. We ranked all genes based on their gene selection scores from smallest to largest. 

Based on a simulation study and observed distributions of gene selection scores in real data, we chose 

the top 1,500 or 2,500 genes to ensure accuracy in proportion estimation (Supplementary Note Figure 

Supplementary Note Table 4. Summary of sample sizes for 15 TCGA cancer types. 
Cancer type Original number of 

normal samples 

Original number 
of tumor 
samples 

Number of normal 
samples after quality 

control 

Number of tumor 
samples after quality 

control 

Bladder urothelial carcinoma 19 401 17 385 

Breast carcinoma 113 1074 98 1032 

Colorectal carcinoma 51 633 43 598 

Head & neck squamous cell carcinoma 44 495 31 494 

Renal chromophobe 24 64 23 64 

Renal clear cell carcinoma 72 513 66 495 

Renal papillary carcinoma 32 277 26 276 

Hepatocellular carcinoma 50 362 50 362 

Lung adenocarcinoma 59 455 57 446 

Lung squamous cell carcinoma 49 488 48 486 

Pancreatic adenocarcinoma 4 150 7* 142 

Prostate adenocarcinoma 52 406 47 295 

Stomach adenocarcinoma 32 352 32 299 

Thyroid papillary carcinoma 57 498 55 418 

Endometrial carcinoma 35 526 26 524 

 
*Pancreatic adenocarcinoma is the only cancer type with increased normal samples. This is due to the addition of pseudo-normal samples, which are tumor 
samples of stromal tissue with scant tumor presence. 
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6a). Within each cancer type, we used the spike-ins as benchmarking samples and evaluated the RMSE 

of the estimated proportions of the spike-ins with either the top 1,500 or top 2,500 genes (π-1500(Sp) and 

π-2500(Sp)). If RMSE(π-1500(Sp)-0)<RMSE(π-2500(Sp)-0), we used the results of the top 1,500 genes, i.e., 

the tumor proportions π=π1500; otherwise, π=π2500. In general, the RMSEs were small (median = 0.02 

across 15 cancer types), and the two sets of tumor proportions, π-1500 and π-2500 , were consistent within 

each cancer type. We additionally removed samples with extreme estimates of π, >85% or ranked at the 

top 2.5 percentile of all samples within each cancer type, to mitigate the remaining underestimation when 

π is close to 1 and control the estimation bias in high values of TmS. 

  

 
Supplementary Note Figure 9. Comparison of tumor-specific mRNA proportions with and 
without spike-ins across 15 TCGA cancer types. A scatter plot of estimated tumor-specific mRNA 
proportions using the “DeMixT_GS” method for 4,897 TCGA samples across 15 cancer types with and 
without spike-ins. The x axis represents the estimated tumor-specific mRNA proportions without spike-
ins and the y-axis represents the estimated tumor-specific mRNA proportions with spike-ins. 
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2.3.2.2. Consensus TmS estimation  

We first calculated TmS values for 5,295 TCGA samples with matched tumor-specific mRNA proportions 

and ABSOLUTE or ASCAT derived tumor purity and ploidy estimates. We then fitted a linear regression 

model on log2-transformed TmS calculated by ASCAT using log2-transformed TmS calculated by 

ABSOLUTE as a predictor variable. We removed samples with a Cook’s distance ≥ 4/n (n=5,295) 

(Extended Data Fig. 3f-h), and for the remaining samples, which were the majority, we calculated the 

final TmS as: TmS=STmSASCAT × TmSABSOLUTE. These TmS estimates were used throughout the paper 

(Supplementary Note Table 5). A CONSORT diagram (Supplementary Note Figure 10) demonstrates 

the sample exclusion for TmS in TCGA. 

 

 

 
Supplementary Note Figure 10. CONSORT diagrams for data exclusions in TCGA. 
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2.3.2.3. Intrinsic tumor signature genes 

For each cancer type, we selected the top 1,500 or 2,500 genes based on a gene selection score (Eq.S8), 

ranked from smallest to largest, as the intrinsic tumor signature gene (Supplementary Note Figure 11a). 

We found the genomic locations of the selected genes covered 22 autosomes and the X chromosome 

(Supplementary Note Figure 11b) across 15 cancer types, which is expected for an unbiased gene set 

to measure global gene expression. For each cancer type, as well as consistently across 15 cancer types, 

we find that 54-68% (mean = 62%) of intrinsic tumor signature genes are housekeeping genes51 or 

essential genes52, and 3.5-7.2% (mean = 5.4%) are MYC targets genes (Supplementary Note Figure 
11c). The common pan-cancer essential genes are derived from a total of 147 cancer cell lines and 

16,733 genes that were screened independently by both the Sanger and Broad institutes52. 

We conducted gene set enrichment analyses on Hallmark pathways and KEGG pathways53 using 

GSEA54 and g:Profiler55. For each cancer type, the genes were ranked according to their gene selection 

scores from the smallest to the largest. For GSEA, we adopted permutation tests (1,000 times) to 

generate a normalized enrichment score (NES), the null distribution and an adjusted P value for each 

candidate pathway54. g:Profiler detects statistically significantly enriched pathways for the given gene list 

by implementing hypergeometric tests. For each candidate pathway a nominal P value is calculated by 

Supplementary Note Table 5. Summary of sample sizes for 15 TCGA cancer types before and 
after consensus TmS estimation. 

Cancer type 
Number of samples 
before consensus 

analysis 

Number of samples 
after consensus 

analysis 

Number of 
samples 
removed 

Bladder urothelial carcinoma 350 328 22 

Breast carcinoma 932 916 16 

Colorectal carcinoma 499 490 9 

Head & neck squamous cell 
carcinoma 449 443 6 

Renal chromophobe 59 59 0 

Renal clear cell carcinoma 299 295 4 

Renal papillary carcinoma 192 169 23 

Hepatocellular carcinoma 333 317 16 

Lung adenocarcinoma 399 395 4 

Lung squamous cell carcinoma 440 431 9 

Pancreatic adenocarcinoma 105 101 4 

Prostate adenocarcinoma 266 259 7 

Stomach adenocarcinoma 272 265 7 

Thyroid papillary carcinoma 297 202 95 

Endometrial carcinoma 403 361 42 
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the hypergeometric test and adjusted for multiple testing by the BH method. As a result, the minimum 

NES of significantly enriched Hallmark pathways and KEGG pathways are above 1.74 and 1.70, 

respectively.  

We further evaluated the chromatin accessibility of signature genes using ATAC-seq data TCGA 

samples33. For each sample, peak scores (-log10(p-value)) were scaled by dividing each individual peak 

score by the sum of all of the peak scores in the given sample divided by 1 million. These scaling values 

ranged from 1.4 to 67.4 across cancer types. The 75th percentile of normalized peak scores across all 

peaks within the promoter region were selected for each gene as representative peak scores, and genes 

with normalized peak scores less than 1 were excluded. A total of 7.1% to 20.4% of genes were excluded 

across cancer types (Supplementary Note Figure 11d). For each sample, we calculated the mean of 

 
Supplementary Note Figure 11. Validation of gene selection to represent intrinsic tumor 
signature across cancer types. a, Ordered gene selection scores of all genes from low to high across 
15 cancer types. The black solid dots represent the cutoffs for gene selection in the corresponding 
cancer type. b, Karyotype plots showing the genomic locations of signature genes for each cancer type. 
Signature genes are presented as dots colored by cancer type. An overall gene density track is shown 
in gray shades underneath the dots. The density of signature genes is consistent with the overall gene 
density. c, Proportions of the intrinsic tumor signature gene categories across 15 cancer types. d, 
Boxplots showing sums of peak scores across samples / 1 million (yellow) and percentages of genes 
removed per sample (white). In the boxplots, whiskers represent the maximum and minimum values, 
the middle line in the box denotes median and the bounds of the box stand for upper and lower quartiles. 
The sums of peak scores were used as scaling factors to normalize the ATAC-seq data. The genes 
with normalized scores <1 were removed from downstream analysis. For a,b,c,e, all 15 TCGA cancer 
types are annotated using colored squares as shown in the legend of a. For each cancer type, the 
number of samples used is indicated on the top. 
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the peak scores of all signature genes. A null distribution of mean peak scores was generated by 

calculating means from 1,000 random subsets of genes with the matching number of the signature genes 

from all genes. P values for signature genes were calculated as the percentile of the permuted means 

being greater than or equal to the observed mean. P values were adjusted for multiple testing by the BH 

method.  

2.3.2.4 Association of TmS with genetic alterations 

For each cancer type within TCGA, we searched among driver mutations (including nonsense, missense 

and splice-site SNVs and indels)32 over all genes for the 15 cancer types to identify those that were 

significantly associated with TmS. For each cancer type, we considered genes which had driver mutations 

in at least 10 samples. For each of these genes, samples were labelled as “with driver mutation” if they 

carried at least one driver mutation in that gene or “without driver mutation” otherwise. We investigated 

24 cancer-gene pairs for the driver mutation analysis. We applied a Wilcoxon rank-sum test to each 

candidate gene to compare the distributions of TmS of the samples with driver mutations versus without 

driver mutations. The P values of each gene were adjusted for multiple testing using BH correction across 

all candidate genes within the corresponding cancer type.  

We also implemented an agnostic search among non-synonymous mutations (including SNVs and indels) 

over all genes for the 15 cancer types to identify those that were significantly associated with TmS. For 

each cancer type, we considered a gene as a candidate gene if there were at least 10 samples containing 

non-synonymous mutations in that gene. We investigated 32,894 cancer-gene pairs for non-synonymous 

mutation analysis. We applied two statistical tests to evaluate the difference between the “with non-

synonymous mutation” and “without non-synonymous mutation” samples. We first applied a Wilcoxon 

rank-sum test for each candidate gene to evaluate the difference between the distribution of TmS of the 

two group of samples. We then fitted a linear regression model using log2-transformed TmS as the 

dependent variable and mutation status as a predictor: log2(TmS)=b0+b1 log2(TMB)+b2MUT, where 

TMB represents tumor mutation burden. MUT=1 if the sample has at least one non-synonymous mutation 

in the candidate gene, and MUT=0 otherwise. The P values were calculated by a t-test of the regression 

coefficient b2. The P values of each gene based on Wilcoxon rank-sum test and t-test were adjusted by 

BH correction based on the number of candidate genes within the corresponding cancer type. 

We find 5 overlapping pairs out of 6 statistically significant pairs produced from each interrogation 

(adjusted P values < 0.01). The same significant associations with PIK3CA and TP53 mutations in TmS 

were found in the TCGA breast cancer study (adjusted P values <0.001). The additional pair found 

through the agnostic search (FGFR3 in bladder carcinoma in TCGA) was not identified in the driver 

mutation analysis due to a limited sample size. These associations in breast, lung, thyroid, and bladder 
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cancers show that TmS can capture changes in tumor phenotypes induced by driver mutations in a 

cancer type-specific manner32. This is consistent with previous findings that the same driver mutations 

may not have the same prognostic effect across cancers56,57, and their effects are modified by additional 

tumor and/or treatment-related factors. In this context, our results indicate that TmS can be used to 

prognostically stratify tumors beyond driver mutation status. 

Tumor mutation burden (TMB) was calculated by counting the total number of all somatic mutations 

based on the consensus mutations calls (MC3)58. Chromosomal Instability (CIN) scores were calculated 

as the ploidy-adjusted percent of genome with an aberrant copy number state. ASCAT was used to 

calculate allele-specific copy numbers21. For samples present in both TCGA and PCAWG, the consensus 

copy number was derived from published results59. We calculated the Spearman correlation coefficients 

between TmS and /TMB/CIN scores for each cancer type in TCGA (Supplementary Note Table 6). 

 

2.3.2.5 Association of TmS with expressions of pluripotency and proliferation genes, and patient 
characteristics 

We found that TmS is mostly uncorrelated with the expression levels of canonical pluripotency genes 

SOX2, MYC, KLF4 and POU5F160 in bulk tissue samples (Supplementary Note Figure 12). The 

Supplementary Note Table 6. Spearman correlation coefficients between TmS and TMB/CIN 
scores across 15 TCGA cancer types. 

Cancer type TMB CIN 

Breast carcinoma 0.35 0.46 

Lung adenocarcinoma 0.3 0.23 

Thyroid papillary carcinoma 0.066 0.1 

Pancreatic adenocarcinoma 0.082 0.1 

Renal clear cell carcinoma 0.17 0.35 

Lung squamous cell carcinoma 0.04 0.051 

Bladder urothelial carcinoma 0.21 0.24 

Renal papillary carcinoma -0.21 0.18 

Colorectal carcinoma -0.021 0.056 

Prostate adenocarcinoma 0.072 0.3 

Endometrial carcinoma -0.062 0.16 

Hepatocellular carcinoma -0.066 -0.095 

Head & neck squamous cell carcinoma 
(HPV+) 0.32 0.27 

Head & neck squamous cell carcinoma 
(HPV-) -0.017 -0.081 

Stomach adenocarcinoma -0.073 -0.15 

Renal Chromophobe 0.13 0.23 
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corresponding correlation coefficients are much lower than those of TmS with the proliferation marker 

genes (MKI67 and PCNA) (Supplementary Note Figure 12). This observation does not necessarily rule 

out any close relationship between these genes and tumor-cell transcriptome variations, as their 

expression levels from non-tumor cells, which could be major confounders, were also profiled in the bulk 

samples.  

 

 

We also observed that TmS is unassociated with clinical characteristics of patients, including age and 

sex, across the 15 TCGA cancer types (Supplementary Note Figure 13a). We investigated the 

correlation between TmS and the Tumor-Node-Metastasis (TNM) stage which was dichotomized into 

early and advanced groups. Since prostate adenocarcinoma, endometrial carcinoma and renal 

chromophobe did not have TNM stage information, and pancreatic adenocarcinoma had very imbalanced 

sample distribution in early (n=91) vs. advanced (n=4) stages, they were removed from this analysis. In 

4 (stomach adenocarcinoma, bladder urothelial carcinoma, renal clear cell carcinoma and renal papillary 

carcinoma) of the remaining 11 cancer types from TCGA, high TmS is associated with advanced stage; 

no correlation between TmS and TNM stage was observed in other cancer types (Supplementary Note 
Figure 13b). 

 
Supplementary Note Figure 12. Spearman correlation coefficients between TmS and the 
expression levels of MKI67 and PCNA and pluripotency genes across 15 cancer types. 
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Supplementary Note Figure 13. Associations between TmS and patient characteristics. a, 
Distribution of TmS for female and male patient samples in TCGA across 15 cancer types. None of 
the adjusted P values of two-sided Wilcoxon rank-sum tests comparing TmS between the two groups 
reached significance at a confidence level of 0.05. Brown circles (read out on the right y-axis) 
represent Spearman correlation coefficients between TmS and age within the same sex and cancer 
type. The red dotted horizontal line represents TmS equal to 1 (left y axis) and correlation equal to 0 
(right y axis). None of the adjusted P values for correlation tests reached significance at a confidence 
level of 0.05. b, Distribution of TmS for early (stage I and II) vs. advanced (stage III and IV) pathological 
stages across 15 cancer types. BH adjusted P values of two-sided Wilcoxon rank-sum tests are 
indicated by asterisks (*P < 0.05, ** < 0.01, *** < 0.001). 
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2.3.3. ICGC-EOPC 

For this dataset, DNAseq-based purity and ploidy estimates for 113 samples from 89 patients were 

determined by Sequenza61. We used the 9 available adjacent normal samples as the normal reference 

to run DeMixT. The RNAseq data came from three batches - batch 1 (17 patients, 25 samples), batch 2 

(42 patients, 52 samples), and batch 3 (37 patients, 44 samples). We have conducted a comprehensive 

comparison for deconvolution with and without batch effect correction, and concluded that we will report 

both TmS values estimated with and without batch effect correction (see details in Supplementary Note 
3.1.1). A CONSORT diagram is provided for this dataset to demonstrate the sample filtering steps 

(Supplementary Note Figure 14). 

 

2.3.4. METABRIC 

Tumor purity and ploidy for each of the 1,992 patient samples was estimated using both ASCAT14 and 

Sequenza61 based on the LogR and B Allele Frequency (BAF) data processed from the Affymetrix CEL 

files by the PennCNV library62. For each expression array, we first annotated the probes using the Illumina 

HumanHT12v3 annotation data, and only kept 29,438 probes that have matched gene symbols for 

downstream analyses. We applied the DeMixT deconvolution pipeline to the expression arrays of the 

combined discovery and validation sets, after batch effect correction by limma63, to estimate tumor-

specific proportions using the adjacent normal samples as the reference. The consensus TmS strategy 

was applied to obtain robust TmS estimations. 1,664 patient samples with TmS remained after the above 

steps. We additionally removed 118 patient samples due to missing follow-up information of biochemical 

 
Supplementary Note Figure 14. CONSORT diagram for data exclusions in ICGC-EOPC. 

Excluded (n = 9, m = 9) 
- patients without outcome data

ICGC-EOPC patients with matched RNAseq and WGS data from 
tumor and adjacent normal samples 

(n = 96, m = 121, a = 9) 
n: No. of patients; m: No. of tumor samples; a: No.of adjacent 

normal samples

ICGC-EOPC patients with TmS estimated from matched 
RNAseq and WGS data from tumor and adjacent normal 

samples (n = 85, m = 109, a = 9) 

ICGC-EOPC patients with matched RNAseq and WGS 
data from tumor and adjacent normal samples (n = 76, 

m = 100, a = 9) 

ICGC-EOPC

Excluded (n = 11, m = 12)
- samples without tumor purity and ploidy 
estimates from Sequenza, or high 
tumor-specific mRNA proportions
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recurrence intervals or the PAM50 subtypes. A final cohort of 1,546 patient samples from both the 

discovery and validation sets were kept for downstream analyses. A CONSORT diagram is provided for 

this dataset to demonstrate the sample filtering steps (Supplementary Note Figure 15). See details in 

batch effect correction in Supplementary Note 3.1.1. 

 

2.3.5. TRACERx  

This dataset does not contain RNAseq data from adjacent normal samples, which is required for running 

DeMixT. Instead, we used RNAseq data from normal lung samples which are available in the GTEx64 

study. To mitigate the technical artefacts, such as batch effects, scale normalization was applied before 

deconvolution. The tumor-specific mRNA expression proportions for 159 tumor samples from 64 patients 

were estimated using the “DeMixT_DE” mode with the top 1,500 genes20. The other 168 tumor samples 

from 36 patients with only DNAseq data and no matching RNAseq data were removed. DNA-based tumor 

purity and ploidy were estimated by Sequenza61. In the end, we focus on 30 patients (19 with lung 

adenocarcinoma and 11 with lung squamous cell carcinoma) with multi-region samples (m = 94; m 

denotes the number of tumor samples) and 52 patents with both single and multi-region samples (m = 

116) for the downstream analysis. A CONSORT diagram (Supplementary Note Figure 16) 
demonstrates the sample exclusion for TmS in TRACERx. 

 
Supplementary Note Figure 15. CONSORT diagram for data exclusions in METABRIC. 

Excluded (w = 26) 
- tumor purity and ploidy cannot 
be derived from ASCAT

Expression arrays from tumor and normal samples of METABRIC 
(n = 1,992, a = 144) 

n: No. of tumor samples; a: No.of normal samples

Excluded (n = 7, a = 9)
- samples filtered out through hierachical 
clustering of summarised probe intensities 

Expression arrays from tumor 
and normal samples  
(n = 1,985, a = 135) 

TmS estimates for tumor samples in METABRIC
(n = 1,959) 

Excluded (n = 413) 
- samples filtered out due to inconsistent 
TmS estimates using ASCAT and 
SEQUENZA, high tumor-specific 
proportion, or missing clinical information

TmS estimates for tumor samples in METABRIC study 
(n = 1,546) 

SNP 6.0 array data from tumor samples 
with tumor purity and ploidy estimates 

from ASCAT and SEQUENZA in 
METABRIC
(w = 1,992)

METABRIC
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Deconvolution using normal reference samples from GTEx 
We conducted a series of experiments across cancer types to evaluate the impact of technical artefacts 

such as batch effects to the proportion estimation when using a different cohort. We first applied GTEx 

expression data64 from normal prostate samples as the normal reference to deconvolute the TCGA 

prostate cancer samples. Even though the overall performance of deconvolution was negatively impacted, 

the estimated proportions showed a reasonable correlation (Spearman correlation coefficient = 0.65) with 

those generated using TCGA normal prostate samples as the normal reference (Supplementary Note 
Figure 17a). We repeated this experiment on the deconvolution of TCGA thyroid papillary carcinoma 

samples using RNAseq data from TCGA normal and GTEx normal thyroid samples as the reference, 

respectively. Again, the two sets of estimated tumor-specific mRNA expression proportions were highly 

correlated (Spearman correlation coefficient = 0.65) (Supplementary Note Figure 17b). For the EOPC 

tumor samples where RNAseq data from 9 normal samples were available, we observed a higher 

correlation (Spearman correlation coefficient = 0.77) between the estimated tumor-specific mRNA 

expression proportions using EOPC normal and TCGA prostate normal samples on the deconvolution of 

 
Supplementary Note Figure 16. CONSORT diagram for data exclusions in TRACERx. 
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EOPC tumor samples, respectively (Supplementary Note Figure 17c). Furthermore, for the 

deconvolution of TRACERx tumor samples, we also observed a high correlation (Spearman correlation 

coefficient = 0.83) between the estimated tumor proportions using TCGA and GTEx normal lung samples 

as the reference, respectively. (Supplementary Note Figure 17d). We calculated TmS values for all 

regions (median number of regions per patient = 2, ranging from 1 to 6) in the TRACERx dataset.  

 

 

 

 

 

 
Supplementary Note Figure 17. DeMixT deconvolution using normal reference from different 
studies. a, Scatter plot of DeMixT estimated tumor proportions for TCGA-prostate adenocarcinoma 
samples using GTEx normal (y axis) or TCGA normal (x axis) samples. b, Scatter plot of DeMixT 
estimated tumor proportions of EOPC using EOPC normal (y axis) and TCGA normal (x axis) samples. 
c, Scatter plot of DeMixT estimated tumor proportions of TCGA-thyroid papillary carcinoma samples 
using GTEx normal (y axis) and TCGA normal (x axis) samples. d, Scatter plot of DeMixT estimated 
tumor proportion of TRACERx samples using GTEx normal (y axis) and TCGA normal (x axis) samples. 
Spearman correlation coefficients (r) between the two sets of tumor proportion estimates are shown on 
the top of each panel. 
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3. STATISTICAL ANALYSIS  

3.1. Robustness of TmS  

3.1.1. Batch effect correction  

For RNAseq data from multiple batches, we applied batch effect correction using ComBat65 and limma to 

combine RNAseq data in one pool before estimating tumor-specific mRNA proportions. The TmS 

estimates after the batch effect correction were used in the downstream analyses. 

For the ICGC-EOPC dataset, the RNAseq data came from three batches - batch 1 (17 patients, 25 

samples), batch 2 (42 patients, 52 samples), and batch 3 (37 patients, 44 samples). We first evaluated 

batch effects using PCA. We observed a moderate batch effect across the three batches 

(Supplementary Note Figure 18a) which was removed after correction using Combat (Supplementary 
Note Figure 18b). To evaluate the impact of batch effects, we applied the DeMixT deconvolution pipeline 

 
Supplementary Note Figure 18. a, PC1 vs. PC2 of the EOPC samples from 3 batches before batch 
effect correction. b, PC1 vs. PC2 of EOPC samples from 3 batches after batch effect correction. c, A 
scatter plot of estimated TmS under scenario (1) vs. scenario (2). d, A scatter plot of estimated TmS 
under scenario (1) vs. scenario (3). e, A scatter plot of estimated TmS under scenario (2) vs. scenario 
(3). The Spearman correlation coefficients between the TmS estimates was shown in each figure. f, 
Forest plot of hazard ratios (center points) and 95% CIs (error bars) of multivariate Cox proportional 
hazard models with Age, TmS and Gleason score as predictors for PFI in EOPC. 



 40 

in three scenarios: (1) all samples together; (2) each batch separately; (3) all samples together using 

batch effect corrected data. The Spearman correlation coefficients between TmS obtained in pairwise 

comparisons were high: 0.88, 0.79, and 0.84 (Supplementary Note Figure 18c-e). In addition, the 

survival analysis using the TmS with batch effect correction are consistent and robust comparing to those 

without correction (Supplementary Note Figure 18f). Any further data manipulation could potentially 

introduce unwanted variations. We made further observation that TmS values without correction are 

closer to those from the TCGA-PRAD data. We therefore chose TmS estimates without batch effect 

correction as our main output. 

 
For the METABRIC dataset, the microarray data came from two batches, i.e., the discovery set and the 

validation set. We observed a significant batch effect between the two batches (Supplementary Note 
Figure 19a). The batch effect was removed using both limma and ComBat (both show consistent results) 

(Supplementary Note Figure 19b). To demonstrate the impact of batch effects, we applied the DeMixT 

deconvolution pipeline in the following scenarios: (1) each batch separately; (2) all samples together 

using batch effect corrected expression data. The TmS estimates under the two scenarios are highly 

correlated (Spearman r=0.95, Supplementary Note Figure 19c). In summary, TmS estimates were 

consistent before and after batch effect correction. 

Furthermore, we found TmS results were consistent across technological platforms, e.g., in breast cancer 

between the microarray-based METABRIC data and the TCGA RNAseq data, across PAM50 subtypes 

(Supplementary Note Figure 20a). Q-Q plots showed similar distributions of TmS between the two 

platforms for the Luminal B, Her2 and Basal subtypes (Supplementary Note Figure 20b). There is an 

elevation of TmS in the METABRIC-LumA subtype, which may be explained by a discrepancy in the 

clinical ascertainment of the study cohorts, potential mistakes in annotating ER/PR status, or some 

unknown technical effects. 

 
Supplementary Note Figure 19. a, PC1 vs. PC2 of METABRIC samples from discovery and validation 
cohorts without batch effect correction b, PC1 vs. PC2 of METABRIC samples after batch effect 
correction. c, A scatter plot of estimated TmS after batch effect correction (y axis) vs. estimated TmS 
for discovery and validation cohort separately (x axis). 
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3.1.2. Adjustment for focal copy number alterations  

TmS may potentially be influenced by the boost in RNA content arising from focal amplifications and loss 

of RNA content from focal deletions. To evaluate this, we re-estimated TmS of 4,897 tumor samples 

across 15 cancer types in TCGA after excluding the expression data from genes with focal amplifications 

and homozygous deletions in the estimation of TmS. First, we identified all focal amplifications and 

homozygous deletion events in each tumor sample using the tumor-specific copy number profiles 

estimated by ASCAT (Supplementary Note Figure 21). We define a focal event as a CNA smaller than 

10MB. For samples without or with a whole genome duplication event, a gene is defined as amplified if 

the tumor-specific copy number is greater than or equal to 5 or 9, respectively. For genes with 

amplification or homozygous deletion events occurring in more than 10 samples, we removed their 

corresponding expression data from all samples. For genes presenting focal CNA events occurring in 

less than 10 samples, we replaced their expression data in these samples with the median expression 

from all samples. After making these adjustments, we re-estimated TmS from the TCGA datasets across 

15 cancer types and found that they were consistent with original TmS estimations reported in the 

manuscript (the median of the difference in TmS estimates is 0.07, the median absolute deviation of the 

difference in TmS estimates is 0.2, also see Supplementary Note Figure 22). 

 
 
Supplementary Note Figure 20. TmS for each PAM50 subtype across TCGA and METABRIC. a, 
Distributions of TmS across PAM50 subtypes in TCGA BRCA and METABRIC. Numbers on top 
represent sample sizes. b, Q-Q plots for TmS in TCGA versus METABRIC for each PAM50 subtype. 
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Using the re-estimated TmS with adjustment to focal CNAs, we fitted multivariate Cox models with Age, 

Stage and TmS as the baseline model, and the interaction term between TmS and Stage (TmS x Stage), 

as the candidate predictor for the response variable of overall survival (OS) or progression free interval 

(PFI). The results from the re-estimated TmS are again consistent with those obtained from the original 

TmS (Supplementary Note Figure 23). 

 

 
Supplementary Note Figure 21. Distribution of focal CNA events per sample in intrinsic tumor 
signature genes across 15 cancer types in TCGA. Large points represent mean focal CNA events per 
sample in the corresponding cancer type. For KIRP, KICH, KIRC, and THCA, the mean values of focal 
CNA events per sample are smaller than 1 (not shown in figure). 

 

 
Supplementary Note Figure 22. Density plots of the original and the re-estimated TmS (a) and their 
differences (b). 
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3.2. Survival analysis  

3.2.1. Association analysis of TmS in survival outcomes 

For the TCGA datasets, we used clinical data that passed at least one of the three quality control steps 

introduced from the TCGA pan-cancer clinical paper66. We used two survival outcomes, the OS and PFI. 

To ensure sufficient sample size in each category, we combined the pathologic stages into two categories: 

early stage and advanced stage. The early stage includes Stage I, Stage IA, Stage IB, Stage IC, Stage 

II, Stage IIA, Stage IIB, and Stage IIC, while the advanced stage consists of Stage III, Stage IIIA, Stage 

IIIB, Stage IIIC, Stage IV, Stage IVA, Stage IVB, and Stage IVC. With prostate cancer, we used Gleason 

score (Gleason Score = 7 versus Gleason Score ³ 8) instead of early and advanced stage. The 

 
Supplementary Note Figure 23. Forest plots of hazard ratios (center point) and 95% of CIs 
(error bar) of multivariate Cox proportional hazard models using re-estimated TmS in 
comparison with Fig. 4h. P values of two-sided Wald tests for the covariates are indicated by 
asterisks (* P < 0.05, ** < 0.01, *** < 0.001). For each cancer type, the number of samples is 
indicated on the top. 
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CONSORT diagram that demonstrates the sample exclusion for survival analysis in TCGA is shown in 

Supplementary Note Figure 24.  

 
Supplementary Note Figure 24. CONSORT 
diagram for data exclusions in TCGA survival 
analysis. 
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Due to the potential nonlinear relationship between TmS and survival outcomes, we used a recursive 

partitioning survival tree model, rpart67, to find an optimized TmS cutoff that best differentiates survival 

outcomes within each of the two stages as defined above in each cancer type. The splitting criteria were 

Gini index, and the maximum tree depth was set to 2. The TmS cutoffs of early/advanced stage across 

cancers are shown in Supplementary Note Table 7.  

 

Supplementary Note Table 7. Summary of TmS cutoffs for early/advanced stage across cancers 
in TCGA and ICGC (a), breast cancers in METABRIC (b) and lung cancers in TRACERx (c). 

a. TCGA and ICGC 

Cancer type 

Overall survival Progression-free interval 

Early stage Advanced 
stage 

Early stage (Gleason 
score = 7 for prostate 
cancers) 

Advanced stage (Gleason 
score ³ 8 for prostate 
cancers) 

Pan-Cancer (14 cancer types) 1.10 1.72 1.65 1.72 

Bladder urothelial carcinoma 0.15 NA 0.15 0.60 

Triple-negative breast carcinoma 4.11 1.80 3.02 2.97 

Colorectal carcinoma 1.94 4.52 NA 4.14 

Head & neck squamous cell carcinoma (HPV-) 1.00 0.26 0.14 0.26 

Renal clear cell carcinoma 0.54 1.78 0.33 1.67 

Hepatocellular carcinoma 0.16 1.81 NA 0.64 

Lung adenocarcinoma 0.81 0.97 0.51 8.66 

Lung squamous cell carcinoma 6.67 2.08 5.67 6.37 

Pancreatic adenocarcinoma 1.83 NA 1.83 NA 

Stomach adenocarcinoma 0.40 0.15 0.28 0.31 

Thyroid papillary carcinoma NA NA 0.57 1.25 

Prostate adenocarcinoma NA NA 0.50 0.48 

Early-onset prostate cancer (ICGC-EOPC) NA NA 1.25 0.84 

b. METABRIC 

Breast carcinoma subtype Disease-free 
survival        

Triple-negative breast carcinoma  1.73    

Triple-negative breast carcinoma treated with 
chemotherapy  1.73    

ER-positive breast carcinoma  1.30    

ER-positive breast carcinoma treated with 
chemotherapy  1.30    

c. TRACERx (TmSmax) 

Cancer type Disease-free 
survival  

  

Lung adenocarcinoma and lung squamous cell 
carcinoma 3.48   
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We have evaluated the predictive power of different dichotomizations of TmS (rpart, median, lower tertile, 

upper tertile) as well as the continuous form of log2(TmS) for survival outcomes. We fitted multivariate 

Cox proportional hazard models with Age, TmS (High vs. Low) and Stage (Advanced vs. Early) as 

predictors, and with overall survival (OS) or progression-free interval (PFI) as response variable across 

five cancer types (Supplementary Note Figure 25, for simplification, only the hazard ratios of TmS are 

shown). Endometrial cancer was excluded in the main analysis due to the lack of stage information, 

although we also performed Cox regression without Stage for this cancer type (Supplementary Table 
5). Using the criteria that the number of samples within the early and the advanced-stage groups 

respectively should be greater than 30 and the number of events/number of samples should be greater 

than 10%, we further excluded renal chromophobe and renal papillary carcinoma from the main analysis 

as presented in Fig. 4h.   

 

We observed the direction of hazard ratios (HRs) of the four types of binarized TmS and the continuous 

log2(TmS) are consistent, although the statistical significance of median, lower tertile and upper tertile 

binarized TmS and log2(TmS) decreased as expected. We also observed, as expected, that when the 

cutoff values deviate from the rpart-based cutoff to become the tertiles or median, the corresponding 

effect size of the hazard ratios reduces in accordance with the degree of deviation. Overall, depending 

 
Supplementary Note Figure 25. Forest plots of hazard ratios (center points) and 95% of CIs (error 
bars) of four types of binarized TmS and the continuous log2(TmS) across six datasets from five cancer 
types. The HRs in pink are for log2(TmS). HRs using four different cutoffs are ordered from the lowest 
to the highest cutoff values: lower tertile, median, upper tertile and rpart. The rpart result is shown in 
bold, whose location with regard to the other three cutoffs vary across cancer types). For each cancer 
type, the number of samples is indicated on the top. 
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on the characteristics of the patient population of interest, tertile or median cutoffs may also be used to 

study the prognostication effect of TmS. 

Using the TCGA datasets from 12 cancer types, we fitted multivariate CoxPH models with Age, TmS, 

and Stage as the baseline model, and the interaction of TmS and Stage, a cell cycle score68, expression 

levels of POU5F1, KLF4, SOX2, MYC69, as candidate predictors of OS or PFI. To select the optimal 

predictors of the Cox model, we implemented a stepwise model selection method with a forward-

backward search for the Cox model based on the Bayesian Information Criterion (BIC). Across all cancer 

types, the cell cycle score and MYC expression were never selected. Consistent with previous reports, 

KLF4 was selected in lung adenocarcinoma70, POU5F1 was selected in bladder urothelial carcinoma71, 

and SOX2 was selected in renal clear cell carcinoma72 and triple negative breast carcinoma. The main 

effect of TmS in prognostication remains statistically significant after these features are included. 

We further tested the hypothesis whether the varying sample sizes indeed biased the clinical outcomes 

associated with TmS. Across the 15 cancer types, we set a consistent sample size around its median 

value, 300, bootstrapped 300 samples within each cancer type, and evaluated the prognostication effect 

of TmS in these 4,500 pan-cancer samples. This procedure was repeated 1,000 times. Supplementary 
Note Fig. 26 shows the pan-cancer results from one bootstrapped set, supporting our finding that high 

TmS is associated with worse prognosis across cancers. Across all iterations, we obtain the hazard ratios 

(HRs) of TmS and the corresponding 95% Confidence Intervals (CI), and found all of them to be 

significantly different from 1. For OS, we find the following HR for TmS across all samples: median 1.67, 

 
Supplementary Note Figure 26. Kaplan-Meier curves of overall survival (a) and progression-free 
probability (b) for one bootstrap sample from 15 cancer types in TCGA. 
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95%CI [1.38, 1.87]; across early stage samples: median 2.34, 95%CI [2.02, 2.73]; across advanced stage 

samples: median 1.18, 95%CI [1.00, 1.40]. For the PFI, we find the following HR for TmS across all 

samples: median 1.64, 95%CI [1.34, 1.83]; across early stage samples: median 2.16, 95%CI [1.84, 2.49]); 

across advanced stage samples: median 1.25, 95%CI [1.06, 1.46]. We conclude that the pan-cancer 

analysis with balanced sample sizes gives the same results as the original analysis. 

3.2.2. Identification of patients treated without systemic therapy in TCGA 

We identified a cohort of patients where chemotherapy and/or radiotherapy are generally not indicated 

using NCCN guidelines as well as expert opinion for each cancer type 

(https://www.nccn.org/guidelines/category_1) (Supplementary Table 6) in TCGA. We performed 

Cox regression analysis in six cancer types where the number of events / number of samples > 10%: 

lung adenocarcinoma, lung squamous cell carcinoma, renal papillary carcinoma, renal clear cell 

carcinoma, renal chromophobe, and hepatocellular carcinoma. Patients of cancer types except 

hepatocellular carcinoma subgroup are mainly with early-stage, we therefore used PFI for these cancer 

types. 

3.3. Regional TmS analysis in TRACERx 

We calculated the percentage of copy number alteration burden per region, the percentage of subclonal 

copy number alteration (CNA) per region, and the percentage of subclonal copy number alteration per 

patient. For each chromosomal segment i in tumor region k, we use an indicator function Iik to represent 

the copy number alteration (gain and loss) event43:  

Iik= U 1 if α>log2(2.5/2) or α<log2(1.5/2)
0 otherwise

, 

where α= cnTotalik
Ploidyk

 and cnTotalik is the integer total copy number of this segment43. 

We then define the percentage of CNA burden for each region as the percentage of genome affected by 

copy number alterations, 

percentage of	CNA burdenk= 
∑ Di×IiknS
i=1

∑ DinS
i=1

× 100%, 

where nS and Di denotes the number of shared segments, i.e., segments of the genome where copy 

number status is available across all regions, and the length of shared segment i across regions, 

respectively. 

Further, for each region, whether the segment i has a subclonal CNA event is defined as 

Sik=X  1 Iik=1 andE Iik
K

k=1
≠K

0 Otherwise
, 
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where K is the total number of regions for a given tumor sample.  

Further, we define Ti as an indicator function which denotes whether there is an CNA event (including 

clonal and subclonal) on shared segment i. 

Ti=X  1 0 <E Iik
K

k=1
≤K

0 Otherwise
. 

Therefore, the percentage of subclonal CNA for region k (percentage of subclonal CNA per region) is 

defined as  

percentage of subclonal CNAk=
∑ Di×SiknS
i=1

∑ Di×TinS
i=1

× 100%. 

We then introduce Si as an indicator function representing the union of subclonal CNA events on shared 

segment i across regions: Si =	⋃ SikL
MNA . Correspondingly, the percentage of subclonal CNA for each 

patient is defined as 

percentage of subclonal CNA=
∑ Di×SinS
i=1

∑ Di×TinS
i=1

× 100%. 

Across regions, the Spearman correlation coefficient between log2(TmS) and percentage of subclonal 

CNA per region is 0.44; the Spearman correlation coefficient between log2(TmS) and copy number 

aberration burden per region is 0.26. The difference between these two correlation coefficients between 

is statistically significant (bootstrapping 1,000 times, mean difference = 0.2, 95% confidence interval: 

[0.04, 0.37]).  

Two subclonal structures in two regions can be linearly related to each other, or have a common ancestor, 

but develop a branching relationship, which is more common in this dataset. For example, a linear 

relationship can be described as a parent and child relationship, where two subclonal structures share 

overlapped segments and one structure evolves further than the other. For a branching relationship, two 

subclonal structures usually share a common node (ancestor), and two structures evolve in different 

directions. The subclonal structures of 5 out of the 30 patients are defined as linear relationships; others 

are defined as branching relationships (Supplementary Note Table 8). For each evolutionary 

relationship per patient sample, we defined the range of TmS = log2(maximum TmS )-

log2(minimum TmS ) across regions. We observed a strong correlation between log2(TmSmax) and 

percentage of subclonal CNA among 30 patients with multi-region sequencing data (Spearman 

correlation coefficient r = 0.69). To further explore the underlying relationship between log2(TmSmax) 

and all variables (e.g., percentage of subclonal CNA, number of regions, range of TmS, evolutionary 

relationship and their interactions) across patients, we fit linear regression models by taking TmSmax as 

the response variable and others as predictors. The best model was selected by stepwise adding or 

dropping one predictor that achieves the best BIC (Bayesian Information Criteria) (Supplementary Note 
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Table 9a). We also adopted a logistic regression model by taking the evolutionary relationship as the 

response variable, and after the model selection (likelihood ratio test), percentage of subclonal CNA and 

range of TmS were chosen separately as predictor variables (Supplementary Note Table 9b-c, 
Supplementary Note Figure 27). 

 

 

 

Supplementary Note Table 8. Evolutionary relationships for 30 TRACERx patients with multi-
region samples. 

Patient Histology Evolutionary 
Relationships 

Region with Maximum 
TmS Maximum TmS Region with Minimum 

TmS Minimum TmS Range of TmS 

CRUK0005 LUAD Branching R4 3.5 R3 3.4 0.050 

CRUK0013 LUAD Branching R2 3.0 R3 1.6 0.90 

CRUK0017 LUAD Branching R4 1.9 R1 1.3 0.58 

CRUK0018 LUAD Branching R4 3.4 R2 0.88 2.0 

CRUK0021 LUAD Branching R1 1.8 R2 1.7 0.050 

CRUK0023 LUAD Branching R4 2.7 R1 0.80 1.7 

CRUK0024 LUAD Branching R1 4.1 R4 2.2 0.89 

CRUK0025 LUAD Branching R3 1.8 R1 0.87 1.0 

CRUK0029 LUAD Branching R2 4.0 R6 2.2 0.85 

CRUK0030 LUAD Linear R2 2.7 R3 2.4 0.14 

CRUK0033 LUAD Linear R1 1.3 R2 0.85 0.58 

CRUK0036 LUAD Branching R4 7.4 R2 5.4 0.47 

CRUK0037 LUAD Branching R2 7.5 R3 1.5 2.3 

CRUK0039 LUAD Branching R1 2.3 R2 2.0 0.19 

CRUK0041 LUAD Branching R4 2.5 R1 1.8 0.48 

CRUK0046 LUAD Branching R2 2.5 R1 1.6 0.65 

CRUK0047 LUAD Branching R2 2.7 R1 2.4 0.16 

CRUK0050 LUAD Linear R4 1.1 R3 0.98 0.19 

CRUK0057 LUAD Branching R1 2.7 R2 2.0 0.40 

CRUK0062 LUSC Branching R7 4.0 R2 1.7 1.2 

CRUK0065 LUSC Branching R3 3.9 R1 1.7 1.2 

CRUK0067 LUSC Branching R1 2.2 R3 1.3 0.73 

CRUK0069 LUSC Branching R1 3.5 R3 0.81 2.1 

CRUK0070 LUSC Branching R6 1.4 R1 0.85 0.72 

CRUK0076 LUSC Linear R2 2.9 R4 2.6 0.16 

CRUK0077 LUSC Branching R1 3.7 R2 1.4 1.5 

CRUK0079 LUSC Branching R1 3.5 R3 2.0 0.81 

CRUK0083 LUSC Branching R3 3.7 R1 1.2 1.6 

CRUK0084 LUSC Branching R2 0.91 R3 0.72 0.34 

CRUK0090 LUSC Linear R1 1.3 R2 1.0 0.30 
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Supplementary Note Table 9. Summary of regression models 
a. linear regression model with maximum TmS as response variable. P values of two-sided t tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 
0.001). 

Variable Coefficient T-statistics Standard Error P value 

Intercept 0.3 0.7 0.5 0.5 

% Subclonal CNA 2.9 4.7 0.6 8x10-05 *** 

Range of TmS 0.3 0.4 0.6 0.7 

No. of Regions -0.2 -1 0.1 0.2 

% Subclonal CNA * Range of TmS -1.8 -2.5 0.7 0.02* 

Range of TmS * No. of Region 0.3 2.4 0.1 0.03* 

F-statistics R-squared Adjusted R-squared RMSE P value 

 10.2 on 5 and 24 DF  0.7 0.6 0.4 3x10-05 *** 

b. Logistics regression model with Range of TmS as predictor and Evolutionary Relationships (Branching = 1, Linear = 0) as response variable. P values of 
two-sided z tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). 

Variables Coefficient Z-statistics Standard Error P value 

Range of TmS 3.3 2.7 1.3 0.008** 

c. Logistics regression model with % Subclonal CNA as predictor and Evolutionary Relationships (Branching = 1, Linear = 0) as response variable. P values 
of two-sided z tests are indicated by asterisks (* P < 0.05, ** < 0.01, *** < 0.001). 

Variables Coefficient Z-statistics Standard Error P value 

% Subclonal CNA 4.3 3.1 1.4 0.002** 

 

 
Supplementary Note Figure 27. ROC curves for predicting evolutionary relationships: 
branching versus linear. Two logistic models were used (Supplementary Note Table 9b-c), with 
either the range of TmS or the percentage of subclonal CNA as the predictor. The 95% confidence 
intervals and area under the ROC curves (AUC) are provided. 
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