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Supplementary methods 
 
Technical details of Dig’s deep-learning framework 
 

Deep-learning network architecture 
 
Convolutional neural network 
 
The CNN architecture is as follows: it contains 4 convolutional blocks with 2 batch normalized 

convolutional layers and ReLU activation. The first block reduces the 735 × 100 input tensor to 

256 × 50 with 256 channels and a double stride. The following blocks are ResNet-style residual 

blocks which maintain their input dimension to facilitate residual connections with 256, 512, and 

1024 channels respectively. Between each of the 3 residual blocks there is a double stride 

(ReLU activated and batch normalized) convolutional layer, which reduces the tensor length by 

half and doubles its height with additional channels. The output of the last residual block is 

flattened (and optionally concatenated with the two-flanking region counts) and passed through 

3 fully connected (FC) layers. The first two FC layers are ReLU activated and reduce the 

dimensionality of the vector to 128 and 16 dimensions respectively. The last FC layer performs 

the final regression that predicts the SNV count in the 10kb region via a linear function. The 

CNN architecture was implemented in PyTorch1. 

 
Gaussian process 
 
The Gaussian process is a sparse, inducing-point GP2 with a radial basis function kernel that 

takes as input the final 16-dimensional feature vector of the trained CNN and non-linearly 

predicts both the mean and variance of the neutral mutations in the associated 10kb region. The 

GP architecture was implemented in GPyTorch3. 

 
 
Deep-learning model training 
 
Filtering of 10kb regions 



To avoid training the model over regions with inaccurate mutation counts due to technical noise, 

we removed regions likely to contain spurious mutation counts, defined as windows where less 

than 50% of the 36mers uniquely mapped back to that region or regions in the top 99.99th 

percentile of mutation counts. 

 

Model training 

The CNN and GP were trained sequentially. First, the CNN was trained for 20 epochs with a 

batch size of 128 samples, using the Adam optimizer to minimize mean squared error loss to 

the observed mutation counts in each training window. For training, the input data was 

additionally divided via an 80-20 split into training data and validation data (thus for each fold, 

64% of the genome was used for training, 16% for validation, and 20% for held-out prediction). 

To avoid overfitting the data, the epoch from which the trained CNN was selected was 

determined by highest validation R-squared accuracy to observed counts in the validation-set 

across all CNN epochs. Once the CNN was trained, the final 16-dimension feature vector for 

each training window was passed as input to the Gaussian process which was trained to predict 

the observed mutation counts in each training window by minimizing a multivariate normal loss 

function with the Adam optimizer. The GP was optimized with 400 inducing points for 50 

iterations. Due to the inherent variability in gradient-based optimization, we ran the GP five 

independent times and calculated the ensemble average of the mean and variance predictions 

from each of the individual runs on the held-out set of regions. These ensemble predictions 

were then used as the mean and variance estimates for each 10kb region. For each fold, we 

also predicted mean and variance of mutation counts in windows filtered prior to training. The 

ensemble average across all GP runs and all folds were used as the mean and variance 

estimates for these regions. 

Some random initializations of the GP would fail to converge (defined as a decrease in 

R-squared accuracy of more than 0.03 compared to the final accuracy of the trained CNN). 



When this occurred, the GP was restarted up to 3 times to achieve a successful convergence. If 

after 3 attempts, the GP had not successfully converged, the number of inducing points was 

reduced by 100 and the GP given another 3 attempts to converge. This process continued until 

successful convergence or a reduction to zero inducing points. If a GP failed to converge in all 

12 attempts, the CNN was reinitialized to generate a new set of feature vectors. 

 

Technical details of Dig’s probabilistic graphical model 
 
We derived a probabilistic method to estimate a distribution over the number of SNVs and indels 

observed at a set of positions in a dataset of interest given the kilobase-scale estimated 

mutation rate 𝜇𝜇𝑅𝑅 and estimation uncertainty 𝜎𝜎𝑅𝑅2 along with the sequence context likelihood 

estimates. We refer to this method as Dig. 

 

Estimating genome-wide likelihood of mutation from sequence context 

Let 𝑉𝑉𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 be the number of times that the nucleotide context 𝑎𝑎,𝑋𝑋, 𝑏𝑏 is observed with 𝑋𝑋 mutated 

to the nucleotide 𝑌𝑌 in the training cancer cohort and let 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 be the number of times the 

trinucleotide 𝑎𝑎,𝑋𝑋, 𝑏𝑏 occurs in the genome, where 𝑎𝑎,𝑋𝑋, 𝑏𝑏 ∈ {𝐴𝐴,𝐶𝐶,𝑇𝑇,𝐺𝐺} and 𝑌𝑌 ∈ {𝐴𝐴,𝐶𝐶,𝑇𝑇,𝐺𝐺}\𝑋𝑋. Then 

the genome-wide likelihood of the mutation 𝑎𝑎𝑋𝑋 → 𝑌𝑌𝑌𝑌 was estimated as Pr(𝑎𝑎𝑎𝑎 → 𝑌𝑌𝑌𝑌) = 𝑝𝑝𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 =

𝑉𝑉𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌
𝑛𝑛⋅𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

 where 𝑛𝑛 is the total number of samples in the training cohort. While we chose to use a 

trinucleotide model in this work, any model that predicts the likelihood of a mutation solely from 

sequence context could be used, for example a pentanucleotide model or composite likelihood 

model4. 

 

Passenger model for SNVs 

Let 𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 be the (discrete) number of mutations of the form 𝑎𝑎𝑎𝑎 → 𝑌𝑌𝑌𝑌 at position 𝑖𝑖; 𝑋𝑋𝑅𝑅 be the 

number of mutations in a kilobase-scale region 𝑅𝑅; and 𝜆𝜆𝑅𝑅 be the rate at which mutations occur 



in the region 𝑅𝑅. We assume the following generative model for how mutations accumulate within 

the genome for a cancer of interest (Supplementary Fig. 1): 

Pr�𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 = 𝑘𝑘,𝑋𝑋𝑅𝑅 , 𝜆𝜆𝑅𝑅� = Pr�𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 = 𝑘𝑘 � 𝑋𝑋𝑅𝑅) ⋅ Pr(𝑋𝑋𝑅𝑅|𝜆𝜆𝑅𝑅) ⋅ Pr (𝜆𝜆𝑅𝑅)  

where 

𝜆𝜆𝑅𝑅 ∼ Gamma(𝛼𝛼𝑅𝑅 ,𝜃𝜃𝑅𝑅) 

𝑋𝑋𝑅𝑅|𝜆𝜆𝑅𝑅 ∼ Poisson(𝜆𝜆𝑅𝑅) 

𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌|𝑋𝑋𝑅𝑅 ∼ Binomial�𝑋𝑋𝑅𝑅 ,𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌�. 

The parameters 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅 are the shape and scale parameters of a gamma distribution, 

respectively. The parameter 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 is the normalization of 𝑝𝑝𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 such that the probability of 

all possible mutations in 𝑅𝑅 sums to one. 

 While the value of 𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 is observed in a cancer cohort of interest, 𝑋𝑋𝑅𝑅 and 𝜆𝜆𝑅𝑅 are 

unknown parameters, and thus must be integrated out for the model to be of practical use. We 

showed previously that the generative model is an extension of the classic Poisson-Gamma 

distribution and that the marginal distribution Pr�𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 = 𝑘𝑘� has a simple closed form5: 

𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌 ∼ NegativeBinomial �𝛼𝛼𝑅𝑅 ,
1

1 + 𝜃𝜃𝑅𝑅 ⋅ 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌
� . 

Moreover, assuming that SNVs arise approximately independently, this extends to any set of 

SNVs 𝐼𝐼 ⊆ 𝑅𝑅 as 

�𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌
𝐼𝐼

∼ NegativeBinomial�𝛼𝛼𝑅𝑅 ,
1

1 + 𝜃𝜃𝑅𝑅 ⋅ ∑ 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌𝐼𝐼
�. 

 We employ a variational approach to estimate 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅. In particular, values for these 

two parameters uniquely determine the mean and variance of a gamma distribution. Thus, 

mean and variance estimates for a region 𝑅𝑅 uniquely determine the values for 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅. Given 

𝜇𝜇𝑅𝑅 and 𝜎𝜎𝑅𝑅2 estimated by our deep-learning method, the variational estimates for 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅 are: 

𝛼𝛼𝑅𝑅 =
𝜇𝜇𝑅𝑅2

𝜎𝜎𝑅𝑅2
 



𝜃𝜃𝑅𝑅 =
𝜎𝜎𝑅𝑅2

𝜇𝜇𝑅𝑅
. 

 Finally, since 𝜇𝜇𝑅𝑅 and 𝜎𝜎𝑅𝑅2 are estimated for a particular cancer cohort used for training, 

they must be updated to account for any differences between the training cohort and the target 

cohort of interest. Assuming that the mutational processes (and technical analysis of the training 

cohort and target cohort) are similar, the model for the training cohort can be readily adjusted to 

the target cohort by the introduction of a single scaling factor 𝐶𝐶SNV that, intuitively, accounts for 

the difference in sample size between the training and target cohorts. Under this formulation, 

the distribution over a set of possible SNVs in a region is: 

�𝑀𝑀𝑖𝑖,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌
𝐼𝐼

∼ NegativeBinomial �𝛼𝛼𝑅𝑅 ,
1

1 + 𝐶𝐶SNV ⋅ 𝜃𝜃𝑅𝑅 ⋅ ∑ 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌𝐼𝐼
� . 

By default, we estimate the scaling factor as the ratio of the number of observed synonymous 

SNVs in the target dataset to the number of expected synonymous SNVs in the training cohort 

across all genes excluding TP53 (in which some synonymous mutations are under positive 

selection6). However, 𝐶𝐶SNV can be equivalently estimated by other approaches when 

synonymous mutations are not available or are observed in only some genes (see below and 

Supplementary Fig. 12). 

 The assumption of biological and technical similarity between the training and target 

cohort introduces an important limitation to our approach. The training and target cohorts must 

be carefully matched, similar to how genetic ancestry must be matched between an imputation 

panel and a target SNP dataset in population genetics in order for imputation of genetic 

variation to be accurate. The standardization of sequencing and variant calling pipelines in 

recent years likely minimizes the extent of technical differences between datasets. However, 

matching the type of cancer between the training and target cohort is crucial. 

 

Passenger model for indels and multi-nucleotide variants 



The indel model is identical to that of the SNV model with two exceptions. First, we assume a 

uniform distribution of indels independent of sequence context, as has been assumed in 

previous works6. Thus in the negative binomial distribution above, ∑ 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌𝑌𝑌𝐼𝐼  is replaced by the 

uniform mutation probability |𝐼𝐼|/|𝑅𝑅| where | ⋅ | denotes the total number of genomic positions in 𝐼𝐼 

and 𝑅𝑅. The uniform assumption of indels could readily be replaced with a probability distribution 

based on indel type, size and homology 7, but we do not pursue that extension here. Second, 

the scaling factor for indels, 𝐶𝐶indel, is estimated as the ratio of the number of indels observed in 

the target dataset to the number of expected indels in the training dataset across the coding 

sequence of all genes not in the Cancer Gene Census. We treat multi-nucleotide variants 

(MNVs) as indels. 

 We tested estimating 𝜇𝜇𝑅𝑅 and 𝜎𝜎𝑅𝑅2 independently for SNVs and indels using separate deep 

learning models for the two types of mutations. We found that direct estimation of these 

parameters for indels resulted in a less accurate indel model than using the SNV estimates as a 

proxy for indel estimates. We suspect this is due to the fact that indels occur an order of 

magnitude less frequently than SNVs and thus there are too few observed indels in the training 

cohort for the deep-learning model to build an accurate prediction function. As sample sizes 

become larger, we expect that directly training a deep-learning model to predict indels will yield 

more accurate predictions.  

 

Extension to mutations spanning multiple kilobase-scale regions 

We take two approaches to extend the above passenger models to account for sets of 

mutations that span multiple kilobase-scale regions.  

• Approach 1: approximate the distribution across the regions by extending the 

variational estimation of 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅. Specifically, let  𝑅𝑅′ = {𝑅𝑅1, … ,𝑅𝑅𝑛𝑛} be the set of 



regions in which a set of mutations occur. Then we estimate 𝜇𝜇𝑅𝑅′ = ∑ 𝜇𝜇𝑅𝑅𝑛𝑛
𝑖𝑖=1  and 𝜎𝜎𝑅𝑅′

2 =

∑ 𝜎𝜎𝑅𝑅2𝑛𝑛
𝑖𝑖=1 , and 𝛼𝛼𝑅𝑅′ and 𝜃𝜃𝑅𝑅′ are then estimated as above from 𝜇𝜇𝑅𝑅′ and 𝜎𝜎𝑅𝑅′

2 .  

• Approach 2: exactly estimate the distribution across the mutation set by convolving 

the distributions arising from the subset of mutations in each 𝑅𝑅𝑖𝑖 ∈ 𝑅𝑅′. 

Approach 1 is computationally efficient and accurate so long as the mutation rate 

estimates across {𝑅𝑅1, … ,𝑅𝑅𝑛𝑛} are sufficiently similar. Thus approach 1 is preferred when 𝑅𝑅′ is 

composed of a small number of contiguous (or nearly contiguous) regions and is the default 

implemented algorithm. When 𝑅𝑅′ is composed of regions with highly variable mutation rates, 

approach 1 is likely to either over- or under-estimate the passenger mutation rate, leading to 

improperly calibrated p-values. In this case, approach 2 will provide accurate estimates but 

requires more computation due to the convolution operation.   

 

Testing mutational burden across a set of candidate mutations using an existing mutation map 

The steps to estimate selection using Dig are as follows: 

User steps: 

1. Download a mutation map for the cancer matching the cancer type of the dataset of 

interest. 

2. Provide the mutation dataset of interest and define the set 𝐼𝐼 of possible mutations. 𝐼𝐼 can 

be defined as any set of genomic intervals (contiguous or noncontiguous) or any set of 

possible SNVs anywhere in the genome. 

 

Software steps: 

3. The mutation likelihoods 𝑝𝑝𝑅𝑅,𝑎𝑎𝑎𝑎→𝑌𝑌,𝑏𝑏 and 𝑝𝑝indel are calculated as described above for each 

mutation set. The nucleotide sequence of 𝑅𝑅 is extracted from the reference genome. 

4. The SNV and indel scaling factors are estimated for the cohort of interest. 



5. The p-value of the number of SNVs and indels observed in the cohort of interest for each 

mutation set are calculated using the negative binomial distributions defined above as 

the null models. In this work, we calculated the P-value as the upper-tail probability of 

the observed mutation count, applying a mid-P correction to account for the discrete 

data.  

6. The p-values for the SNVs and indels are combined via Fisher’s method. 

For this study, we used the mutation maps trained using both epigenetic tracks and flanking 

mutation counts to test for burdens of mutations. These are also the maps we have made 

publicly available. 

 

Associating epigenetic structure to mutation density with feature maps  
 
To investigate the underlying features the deep learning model considered when predicting 

mutation rates, we added another layer of computation between the input epigenetic matrix and 

the CNN to serve as feature maps. Feature maps are a tool used in computer vision tasks to 

detect which regions of an image the model uses to perform prediction8. We used this technique 

to evaluate which epigenetic patterns the CNN exploited to predict mutation rates. To reduce 

the potential for noise, we applied this technique to input matrices encoding 50kb regions. 

 

Feature map generation 

An additional two-layered network was added between the input matrix and CNN to force the 

model to attend to the subset of most salient input sub-regions and compute the feature maps. 

In the attention augmented CNN, the input matrix was first passed through two convolutional 

layers preserving the input dimensionality (stride length 1, kernel sizes 5 and then 3) with ReLU 

activations. Subsequently, the output of the two layers was passed through a row-wise Softmax 

function that had the effect of making most entries in the matrix close to zero with sparse values 



close to one. The resulted “feature map” matrix was then element wise multiplied with the 

original input and passed on to the downstream CNN. This had the effect of setting most entries 

in the original epigenetic matrix to near zero, thus forcing the CNN to rely only on the small 

subspace of the input that was not zeroed out. The optimization process compels the feature 

maps to attend to the features of the input matrix most relevant for the prediction process.  

 

Extraction of epigenetic content of feature maps via dimensionality reduction and clustering  

While the feature maps have the theoretical ability to attend to any regions of the input matrix, in 

practice we found they almost always attended to a large set of epigenomic features (rows) in a 

small set of contiguous columns (genomic positions), zeroing out most values outside of these 

columns. We extracted and summarized the epigenetic content of each of these attention 

columns through the following approach: 1) in each 50kb window, we extracted the largest 

contiguous set of columns such that each column contained at least 10 cells with a non-zero 

entry. This contiguous set of columns was defined as an “attention super-column”. 2) Each 

attention super-column was reduced to an 8-dimensional vector by averaging together tracks of 

the same epigenetic type per column (DNase, H3K27ac, H3K27me3, H3K36me3, H3K4me1, 

H3K4me3, H3K9ac, and H3K9me3) and taking the maximum value across each row. 3) The 

vectors were normalized and projected into a two-dimensional subspace for clustering and 

visualization via a Uniform Manifold Approximation and Projection (UMAP) transformation 

(Python UMAP-learn package; # neighbors: 30, minimum distance: 0, # components: 2). 4) 

Spectral clustering (Python Sklearn package) was applied to the two-dimensional subspace to 

identify attention super-columns with similar epigenetic content. The clustering consistently 

identified five distinct clusters across cancer cohorts (Extended Data Figure 2). 

 

Connecting feature map epigenetic clusters to functional annotations 



To determine whether the attention super-columns in a cluster represented a functional 

epigenetic structure, we extracted the average Epilogos9 signature vector per attention super-

column and examined whether the Epilogos signatures were consistent within a cluster. 

Epilogos is a summary of the functional epigenetic states across 111 tissue types as inferred by 

the ChromHMM method. 

 

Connecting feature map epigenetic clusters to mutation rates 

We extracted the mutation count for the 50kb window in which each attention column occurred. 

We computed the mean and standard deviation of mutation counts across the attention column 

clusters. 

 

Additional details about the comparison of mutation rate models 
 
Deflation of variance explained statistic in low count scenarios 

In discrete stochastic systems, random stochasticity of events when event rate is low results in 

deflation of the variance explained statistic. The characteristic arises because a discrete system 

generally has a fractional expected value but observations must take on integer values. Thus, 

even if a model perfectly predicts the expected value, it will explain relatively little variance if the 

difference between the fractional expected value and possible observed values is of similar 

magnitude to the possible observations (e.g., expected value of 0.5 versus possible observed 

values of 0 or 1). Intuitively, for a discrete process with event rate <1, the expected value will be 

a real value between zero and one but the observed count will be an integer (0, 1, 2, etc.); thus, 

the true expected value will explain relatively little variance of observed data because the 

observed values almost always deviate substantially from the expected value. 

 

Tiled regions 



We compared the variance explained (square of the Pearson correlation coefficient) in SNV 

counts within 10kb windows tiled across the genome between Dig and NBR 10. NBR is, to our 

knowledge, the only method that has been previously used to build passenger mutation rate 

models in kilobase-scale regions tiled across the genome. However, code for running the NBR 

method is not currently publicly available. For each cancer, the NBR model was trained on the 

same regions used to train our deep-learning model (excluding regions with 36mer mappability 

<50% and regions in the top 99.99th percentile of mutation count). The regions excluded from 

training were also excluded when calculating the variance explained statistic. We also assessed 

the variance explained of SNV counts in 1Mb regions by our method and NBR (restricted to 

1Mb regions with >50% 36mer mappability). To estimate the expected mutation count in each 

1Mb region, we summed together the estimates of each non-overlapping 10kb window within 

the 1Mb region. 

 

Coding sequence 

We compared the variance explained in nonsynonymous SNV counts between Dig and two 

widely used methods that generate nonsynomous SNV passenger mutation models: 

MutSigCV11 and dNdScv6. Both MutSigCV and dNdScv utilize the synonymous mutations 

observed in each gene to estimated gene-specific passenger mutation rates. Variance 

explained was evaluated over the coding sequence of 3,740 genes that were 1) common to all 

three methods; 2) between 1kb and 1.5kb in length; and 3) not in the CGC. The length 

restriction was imposed to prevent coding sequence length from artificially inflating variance 

explained since the number of mutations in a gene strongly correlates with its length. 

 

Noncoding regulatory elements 

We compared the variance explained in SNV counts between Dig and two other methods that 

estimate passenger mutation rates in noncoding regulatory elements: DriverPower12 and 



Larva13. DriverPower is optimized to estimate mutation rate within a set of regulatory elements 

predefined by the authors of the software; this set of elements is not easily changed. We thus 

evaluated variance explained in a set of 7,412 noncoding regulatory elements (enhancers, 

lncRNAs, and sncRNAs) between 0.5kb and 1kb in length that could be modeled by 

DriverPower. The length restriction was again implemented to prevent inflation of variance 

explained due to variance in element length. While Larva can predict mutation rate within 

genomic intervals, it cannot natively provide a prediction for elements that are composed of 

multiple, non-contiguous intervals. To circumvent this, we divided each element evaluated by 

DriverPower into its constituent intervals, produced a prediction for each interval separately with 

Larva, and summed the predictions across regions composing a single element.  

 
Details about the comparison of driver element detection methods 
 

Comparison of driver gene detection methods 

We compared the sensitivity, specificity, and F1-score (harmonic mean of sensitivity and 

specificity) for driver gene detection from coding sequence mutations between Dig, MutSigCV, 

and dNdScv across the 32 PCAWG cancer cohorts (melanomas and hematopoietic cancers 

were excluded as in previous comparisons19). We chose to compare to these two methods 

because they are widely used driver gene detection methods that rely on neutral mutation 

models to test for selection. An FDR significance threshold of 0.1 was applied for all methods 

and cohorts. A true-positive driver gene was defined as any gene in the Cancer Gene Census 

(CGC)39 that was detected as FDR significant by any of the methods in a given cohort. A false-

positive was defined as any gene identified as FDR significant that was not in the CGC. Each 

method was applied to the same set of 16,794 genes. Both SNVs and indels were used to 

identify potential driver genes. We additionally compared power over the 16 whole-exome 

sequenced cohorts from Dietlien et al. (excluding hematopoietic cancers as above). The larger 



cohort sizes enabled the approximation of receiver-operator characteristic curves for the 

methods. The curves were approximated because genes in the CGC were used as a proxy for 

true-positives (that is, a gene not in the CGC may still be a true-positive driver but would be 

counted as a false-positive in this analysis). Because of the approximated nature of these 

curves, we visualized the results as false-positive counts vs true positive counts rather than the 

standard false-positive vs true-positive rates, following precedent from Dietlein et al. The power 

of a method was quantified as the area under these approximated receiver-operator 

characteristic curves.  

 

Comparison of noncoding driver element detection methods 

We compared the sensitivity, specificity, and F1-score for driver noncoding element 

identification from noncoding SNVs between Dig, DriverPower, Larva, and ActiveDriverWGS20 

across the 32 PCAWG cancer cohorts (excluding melanoma and hematopoietic cancers as 

above). We chose to compare to these three methods because they are recently introduced 

methods for noncoding driver element identification that rely on neutral mutation models to test 

for selection. An FDR significance threshold of 0.1 was applied for all methods and cohorts. A 

true-positive driver element was defined as any element previously identified by PCAWG as 

carrying a burden of mutations5 that was detected as FDR significant by any of the methods in a 

given cohort. A false-positive was considered any FDR significant element that was not 

previously identified by PCAWG as having a burden of mutations. This comparison was 

conservative (biased against our approach) for two reasons: 1) The other three methods were 

previously applied to the PCAWG dataset to generate the set of putative driver elements that we 

then used as a gold standard for the same samples; and 2) we restricted the analysis to SNVs 

because not all methods we compared to could accept indels. Indeed, our approach is the only 

approach that models SNVs and indels independently; the other approaches either do not 

model indels or model indels and SNVs as a single category. 



 

Constructing a genome-browser of genome-wide mutation rate estimates 
 
We used Dig to estimate mutation rates in every non-overlapping regions of size 100bp, 250bp, 

500bp, 1kb, 2.5kb, 25kb, 50kb, 100kb, 250kb, 500kb and 1Mb tiled across the genome 

(excluding assembly gaps in the GRCh37 reference genome) for 37 PCAWG cancer types. 

These predictions were used to construct data structures that can be interactively visualized by 

HiGlass14. 

 

Details about power analysis 
 
We conservatively simulated Dig’s power to detect driver SNVs at different carrier frequencies 

across enhancers and noncoding cryptic splice sites under the pan-cancer mutation map using 

the following Monte Carlo approach. 

For a given sample size and carrier frequency of driver mutations: 

1. For each element, randomly draw a mutation rate parameter from the gamma 

distribution defined by mean and variance estimated by the kilobase-scale model. 

2. For each element, estimate the scaling factor as the target sample size divided by 

the pan-cancer sample size (n=2,279) and randomly draw an observed number of 

mutations from a Poisson distribution with rate parameter equal to the sampled rate 

multiplied by the scaling factor and by the probability of an SNV in the element. 

3. For each element, randomly sample the number of driver mutations from a Poisson 

distribution with rate parameter equal to the target sample size multiplied by the 

carrier frequency. 

4. Count the number of elements for which the sum of the background mutations and 

driver mutations exceeded the Bonferroni-corrected 𝛼𝛼<0.05 threshold under Dig’s 



negative binomial null mutation distribution for each element. Divide the count by the 

total number of tested elements to estimate a detection likelihood. 

5. Repeat steps 1-4 one thousand times and average the detection likelihoods across 

all simulations. 

 

 

Additional details about quantifying selection on cryptic splice SNVs 
 

Monte Carlo method for estimating confidence intervals of mutational enrichment. 

Mutation enrichment was defined as the ratio of the observed mutations to expected mutations. 

We used the following Monte Carlo simulation approach to estimate the 95% confidence 

intervals of enrichment for a given set of genes and given mutation type. 

1. For each gene, estimate the enrichment coefficient as the number of observed mutations 

divided by the number of expected mutations. A small pseudo-count of 1×10-16 was 

added to the numerator and denominator to prevent the enrichment from being 

identically zero when no mutations were observed in a gene. (This would lead to a 

degenerate Poisson distribution in step 3). 

2. For each gene, randomly draw a Poisson rate parameter from the gamma distribution 

defined by the mean and standard deviation estimates of the kilobase-scale mutation 

rate map. 

3. For each gene, randomly draw a number of “observed” mutations from a Poisson 

distribution with rate parameter equal to the simulated rate parameter multiplied by the 

enrichment coefficient and the likelihood of the mutation type occurring within the gene. 

Conceptually, this mutation count is simulated under the hypothesis of positive selection 

on the mutations within the gene. 



4. Estimate a simulated enrichment by summing the number of simulated mutations across 

all genes in the set and dividing by the expected number of mutations under the null 

model of no enrichment. 

5. Repeat steps 1-4 one thousand times and define the boundaries of the 95% confidence 

interval as the lower 2.5th percentile and upper 97.5th percentile of the simulated 

enrichments. 

 

Additional quantification of mutation enrichment in TSGs and oncogenes 

To gain additional confidence in the accuracy of our mutation enrichment estimates, we directly 

compared the mutation rate in genes not in the CGC to TSGs and oncogenes in the CGC using 

a two-sided Chi-squared test for a two-by-two contingency table. This approach recapitulated 

the enrichment patterns we observed using Dig. However, the Chi-squared test does not 

account for global mutation rate differences between genes not in the CGC and genes in the 

CGC; thus, the precise estimates in Supplementary Fig. 9 are unlikely to be accurate. 

 

Identification of individual TSGs enriched for noncanonical cryptic splice SNVs 

In each of the 37 PCAWG cohorts, we identified TSGs in the CGC with a significant burden of 

noncanonical cryptic splice SNVs under the null model estimated by our method. The 

significance threshold was defined per cancer as FDR q-value<0.1 corrected for the number of 

tested TSGs (n=283). We excluded one significant gene, PRDM1, from further analysis 

because the observed excess mutations were attributable to a single sample.  

 

Quantification of the pan-cancer contribution of cryptic splice SNVs to TSG driver SNVs 

We calculated the excess of SNVs in TSGs in the CGC stratified by function (missense, 

nonsense, canonical splice, and noncoding canonical splice) as the difference between the 

number of mutations observed and the number expected. The relative contribution for each 



category was defined as the excess for that category normalized by the sum of the excess 

across all categories. The 95% confidence interval for the contribution of each category was 

calculated using the Monte Carlo approach described above for enrichment with the following 

modifications: 

6. In step 3: for each gene, the number of neutral mutations was also simulated from a 

Poisson distribution with rate parameter equal to the gamma-simulated rate parameter 

multiplied by the probability of a mutation occurring in the gene. Conceptually, this 

mutation count is simulated under the hypothesis of neutral selection on the mutations 

within the gene. 

• In step 4: the excess for each gene is calculated as the difference between the number 

of mutations simulated under positive selection and the number simulated under neutral 

selection. The total excess for each mutation category is summed across all genes and 

the relative contribution calculated as above. 

 

Enrichment of predicted splicing impact in noncoding cryptic splice SNVs observed in 

significantly burdened TSGs 

We used a bootstrap method to calculate a p-value for the null hypothesis that noncanonical 

cryptic splice SNVs observed in the genes with a significant burden of cryptic splice SNVs had a 

predicted impact on splicing similar to the predicted impact of cryptic splice SNVs observed in 

genes not in the CGC. We calculated the median of the Δ scores randomly resampled from the 

observed cryptic splice SNVs in the TSGs and observed cryptic splice SNVs in genes not in the 

CGC ten thousand times (the number of SNVs sampled from the non-CGC set was equal to the 

number observed in the TSG set). We estimated the p-value as the number of times the 

resampled median of the non-CGC cryptic splice SNVs exceeded the resampled median of the 

cryptic splice SNVs observed in the TSGs. 

 



 

Analysis of alternative splicing events in RNA-seq data 

We obtained RNA-seq data for 8 samples carrying deep intronic predicted cryptic splice SNVs 

(i.e., distance to nearest exon boundary >20 base-pairs) in TSGs with a significant burden of 

predicted noncoding cryptic splice SNVs. This represented all such carriers with available RNA-

seq data. We downloaded the STAR aligned BAM files for each donor and six randomly 

selection non-carriers from the same cancer cohort, and we used bedtools bamtofastq to 

convert these reads into FASTQ files for de novo alignment. We then ran olego15 with the 

default junction database and max edit distance of 4 (flag -M 4) on each FASTQ file. Olego is 

specifically designed for increased sensitivity to de novo splicing in RNA-seq reads. The de 

novo aligned sam files were then converted to bam files, sorted, indexed, and processed for 

junctions by Regtools16 for downstream analysis (input parameters: -a 8 -m 50 -M 50000). For 

each of the carrier-control pairs, we performed differential splicing analysis using LeafCutter as 

described by Li et al.17. The introns in each pair were clustered using the 

leafcutter_cluster_regtools.py script, requiring a single split read to support a junction and 

assuming a maximum intron length of 500Kb (input flags -m 1 -o -l 500000). Differential splicing 

was then evaluated using the leafcutter_ds.R script using the Gencode v19 exons provided with 

the software. When a gene had more than one transcript available, we used the canonical 

transcript as annotated in UCSC genome browser. We considered a predicted splice SNV to 

have strong supporting evidence if LeafCutter reported a splice cluster containing the predicted 

splice SNV that had significantly different usage between carrier and control (p<0.05) in the 

majority of the carrier-control pairs. If LeafCutter did not report a cluster containing the predicted 

splice SNV, we additionally examined the raw junction files from Regtools. We considered a 

predicted SNV to have some supporting evidence if junctions supporting the prediction were 

observed in the raw junction files. Two of the eight samples were discarded due to insufficient 

coverage of the gene of interest (Supplementary Table 14).  



Supplementary notes 
 

1. Insights into mutation rate prediction accuracy from feature maps 
  

To gain insight into which specific epigenetic features the deep-learning model utilized to 

achieve its high prediction accuracy over mutation counts, we leveraged an approach that 

highlights input features important to the model’s performance (feature maps, Supplementary 

Methods). Averaging chromatin marks of the same type (e.g., H3K27ac) across tissues 

revealed that the network learned to focus on localized epigenetic structures (avg. size 1526 bp; 

95% CI: 1512-1540 bp) corresponding to known functional elements: transcription start sites, 

regions of active transcription, enhancers, repressive regulatory states, and heterochromatin to 

make predictions within kilobase-scale regions (Extended Data Fig. 2). This behavior was 

consistent across numerous cancers (Extended Data Fig. 2). The functional epigenetic 

structures that the network learned to recognize associated with observed somatic mutation 

rates in ways consistent with known epigenetic correlates of mutation rates18 (Extended Data 

Fig. 2). For example, regions of closed chromatin exhibited high mutation rates while those of 

active transcription exhibited relatively low mutation rates. These results add to the growing 

evidence that deep-learning models can implicitly learn biological structure when trained to 

directly predict function from sequence19–21. 

 

2. Comparison of cancer driver detection methods 

Because our approach identifies driver candidates by testing for selection, we compared its 

accuracy to other methods that also test for selection. We first compared our method’s ability to 

identify driver genes in the PCAWG dataset against MutSigCV11 and dNdScv6, two widely used 

methods created specifically to identify genes under positive selection. Following previous 

works4,12, we used the Cancer Gene Census (CGC)22 as a conservative approximation of the 



true-positive rate and found our method matched or exceeded the F1-score (a joint measure of 

sensitivity and specificity) of the other methods in 24 of 32 PCAWG cohorts (excluding 

hematological and skin malignancies12) (uniquely highest score in 13 cohorts; tied for highest in 

11 cohorts) (Supplementary Fig. 3, Supplementary Table 8). We additionally calculated the 

receiver-operator curves for the top 600 genes identified by each method in the PCAWG pan-

cancer cohort and found Dig systematically identified more true-positive drivers and fewer false-

positives than the other methods (Supplementary Fig. 3), a pattern that we also observed 

when we additionally compared the methods across whole-exome sequenced (WES) cohorts4 

(Supplementary Fig. 4). We additionally found that Dig’s ability to accurately recall noncoding 

drivers previously identified in the PCAWG dataset was comparable to that of three other 

burden-based non-coding driver detection methods, Larva13, ActiveDriverWGS23, and 

DriverPower12 (Supplementary Fig. 5, Supplementary Table 10), although this analysis was 

biased against Dig because the other three methods were used to generate PCAWG’s own set 

of noncoding drivers. 

 
3. Variance estimation in deep neural networks with Gaussian processes 

While it is intuitive that more accurate prediction of the expected neutral mutation rate can 

improve power to identify drivers, the accuracy of variance prediction also plays a crucial role, 

particularly in ensuring well-calibrated p-values. We previously investigated the accuracy of the 

CNN+GP architecture to estimate kilobase-scale mutation rates compared to other architectures 

in a simulated dataset (full details in Yaari et al.5). Here we review the results about variance 

because they provide additional insight into reasons underlying our methods power to detect 

driver events. 

 In brief, we generated a synthetic kilobase-scale mutation rate dataset for the PCAWG 

melanoma, esophageal, and stomach cancer datasets using a k-nearest-neighbors strategy. 

For each 50kb window, we found its 500 nearest neighbors based on mean epigenetic context 



from the Roadmap Epigenomics dataset and defined the “true” mean and variance for that 

window to be the mean and variance of the mutation rate across the 500 nearest neighbors. We 

then trained methods to predict the mean and variance of each window based on a mutation 

count randomly simulated from a negative binomial distribution defined by that true mean and 

variance. We then compared the predicted mean and variance to the true mean and variance 

for each method (Supplementary Fig. 14). 

 The simulated dataset has an interesting feature: the variance of the mutation rate 

plateaus beyond a certain expected mutation rate. That is, while the expected mutation rate 

continues to increase, the variance of the mutation rate does not increase. An important feature 

of a Gaussian process is that it nonlinearly predicts mean and variance; the relationship 

between mean and variance is not imposed a priori. This has the effect of enabling the 

CNN+GP estimation method to learn that variance plateaus as expected mutation rate 

increases (Supplementary Fig. 14c). Thus, statistical tests remain well powered to identify 

outlier events even at high mutation rates. This is not the case for the linear regression methods 

often employed to predict the mean and variance of mutation rate. For example, negative 

binomial regression imposes a quadratic relationship between mean and variance:  𝜎𝜎2 =

𝜇𝜇(1 +  𝛽𝛽 ⋅ 𝜇𝜇), where 𝛽𝛽 > 0 is the estimated overdispersion parameter.  This has the effect of 

forcing the variance to increase faster than the expected mutation rate, leading to variance 

estimates considerably larger than the true variance when expected mutation rate is high 

(Supplementary Fig. 14c). Thus, negative binomial regression loses power to detect outliers in 

high mutation rate contexts.   

 

4. Additional details on alternative splicing analysis with LeafCutter 

Of the eight predicted cryptic splice SNV carriers for which we obtained RNA-seq data 

(Methods), two carriers were discarded due to insufficient coverage either at the gene of 



interest (DO222305, median coverage of CIITA of 17 reads) or globally (DO9074, median depth 

of coverage of 33). Of the remaining 6 carriers, 4 had clear evidence of alternative splicing: 

LeafCutter17 reported a splicing cluster containing the predicted splice SNV with significantly 

different usage (P < 0.05) between the carrier and at least a majority (4 of 6) of the control pairs 

(Supplementary Table 14). We further investigated the remaining 2 predicted cryptic splice 

SNV carriers and observed that one had some evidence of alternative splicing in the raw 

junction file. This carrier (DO52675) had evidence of differential splicing that was not reported 

by LeafCutter. Specifically, by manually annotating the junction files produced by Regtools16 

with the introns defined in ENSEMBL, we observed that the carrier used an alternative site 

consistent with the predicted splice SNV in approximately 10% of transcripts, while the controls 

utilized this site in approximately 1% of transcripts. The remaining carrier (DO33392) sample did 

not have evidence of alternative splicing upon manual review. This may be due to the mis-

spliced transcripts undergoing nonsense mediated decay; however, we did not have statistical 

power to evaluate this hypothesis. 

 

5. Investigation of mutational burden in ELF3 5’ UTR 

The PCAWG consortium previously carefully reviewed noncoding mutational hotspots in the 

PCAWG dataset10 and cataloged several reasons for excess mutations that were unrelated to 

positive selection: activation-induced cytidine deaminase (AID) activity in lymphomas, impaired 

nucleotide excision repair (NER) at transcription factor binding sites in melanomas, activity of 

endogenous apolipoprotein B mRNA- editing enzyme catalytic subunit (APOBEC) family 

deaminases, particularly in the in the loop region of predicted hairpin structures, and systematic 

short-read mapping inaccuracies leading to artefactual mutation calls. We examined whether 

any of these processes could be responsible for the observed enrichment of SNVs in the 5’ UTR 

of ELF3. 



In our analysis of the 5’ UTR of ELF3, we specifically excluded hematopoietic tumors 

and melanomas, so neither AID nor NER likely account for the observed elevated mutation rate. 

To investigate the possible role of APOBEC at the 5’ UTR of ELF3, we obtained the results of 

the ABOPEC analysis performed by the PCAWG consortium in which each observed mutation 

was annotated for whether it could be attributed to APOBEC. Of the six SNVs observed in the 

ELF3 5’ UTR, only one was annotated as occurring in a context targeted by APOBEC; however, 

the sample in which that mutation occurred was not significantly enriched for APOBEC 

mutations of that kind nor did the mutation occur within a cluster as would be expected if it were 

due to APOBEC mutagenesis. We thus do not believe APOBEC likely explains the mutational 

excess in the EFL3 5’ UTR. We next examined the gnomAD database24 which both cataloged 

population polymorphic germline genetic variation and noted regions of the genome where 

mapping artefacts were present. The 5’ UTR of ELF3 was not annotated as a region with 

mapping artefacts by gnomAD. Moreover, of the 16 somatic mutations observed in the PCAWG 

and Hartwig datasets, only one affected a position also affected by a germline SNP (the 

canonical splice site chr1:201979836, although the mutation itself is different). The germline 

SNP was rare (2 alleles observed in >30000 haplotypes). Moreover, the six mutations in the 

PCAWG dataset were observed in five different cancer types and the ten mutations in the 

Hartwig dataset were observed in seven different cancer types. Thus, the enrichment cannot be 

attributed to a mutational process specific to one cancer type. Finally, the mutation enrichment 

was specific to the canonical 5’ UTR of ELF3; enrichment was not observed in surrounding 

regions as was noted by PCAWG for several lncRNAs. In summary, we were unable to explain 

the mutation burden observed in the 5’ UTR of ELF3 by processes that had been previously 

noted to increase mutation rate independent of positive selection. 

 



6. Functional correlates of mutations in rare driver genes 

We investigated the functional consequences of rare mutations in three genes with known 

phenotypes when they act as common drivers: MSH2 (CNS tumors), MLH1 (CNS tumors), and 

SF3B1 (liver tumors). MSH2 and MLH1 encode DNA mismatch repair proteins25; inactivation of 

these genes increases the spontaneous mutation rate in cells26. Thus, carriers of pLoF 

mutations in these genes are expected to have elevated mutation rates compared to non-

carriers. Consistent with this expectation, CNS tumors with rare pLoF mutations in both MSH2 

and MLH1 exhibited significantly increased mutation rates relative to non-carriers across 213 

targeted sequenced genes (MSH2: mean 30.1 mutations in carriers vs. 3.0 in non-carriers, 

P=3.8×10-7 one-sided Mann-Whitney U-test; MLH1: mean 35.3 mutations in carriers vs. 3.1 in 

non-carriers, P=8.8×10-6 one-sided Mann-Whitney U-test). Further supporting the potential 

driver role of MSH2 in CNS tumors, the gene also exhibited a significant burden of missense 

mutations (18 observed vs. 5.3 expected, P=2.5×10-5), and missense MSH2 carriers also 

exhibited a significantly elevated mutation rate (mean 35.4 mutations in carriers vs. 3.0 in non-

carriers across 213 targeted sequenced genes; P=3.7×10-12, one-sided Mann-Whitney U-test). 

The mutation rate between pLoF and missense MSH2 carriers was not statistically 

distinguishable (P=0.27). MLH1 did not carry a significant burden of missense mutations in CNS 

tumors, though this may reflect a lack of statistical power. 

 SF3B1 encodes a protein involved in the splicing of pre-mRNA molecules. Activating 

mutations in this gene have previously been associated with increased rates of alternative 3’ 

splice site usage and exon-skipping events27. One liver tumor with a rare activating mutation in 

SF3B1 had been characterized with RNA-seq. Based on a quantitative accounting of the 

alternative splicing events in this sample from Kahles et al.27, the carrier was in the 89th 

percentile for number of alternative 3’ splice events amongst TCGA liver samples (40th of 368 

samples) and in the 88th percentile for exon skipping events (43rd of 368 samples), exhibiting 



more than a standard deviation increase in both types of events relative to the mean across liver 

samples. More samples are required to achieve the statistical power necessary to conclude that 

SF3B1 activating mutations in tumors in which SF3B1 is rarely mutated alter splicing 

systematically. 

 

7. Preliminary analysis of enhancer networks 

An analysis of the SNV and indel burden in enhancers (obtained from Nasser et al.28) of 725 

CGC genes using Dig with default settings revealed 36 enhancers with significant (FDR<0.1) 

mutational burdens. To coarsely filter regions potentially affected by unmodeled local 

hypermutation processes, we required that observed mutations each occur in a unique sample. 

This filter reduced the number of enhancers to ten (Supplementary Table 27). Two enhancers 

(for LEPROTL1 and SRGAP3) contained recurrent mutations (LEPROTL1: 8:29952919-G>A 

(n=7), 8:29952921-C>A,G,T (n=5); SRGAP3: 3: 8486222-G>C,T (n=6)); however, it is possible 

that these mutational hotspots could result from APOBEC mutagenesis or mapping artefact10. 

Carriers of mutations in several enhancers demonstrated significant (P<0.05) or nearly-

significant (P<0.1) differences in expression compared to non-carriers (not corrected for multiple 

hypothesis testing). For example, carriers of mutations in the NCOR2 enhancer (12:125422682-

125425761) had a nearly significant decrease in expression (P=0.078). However, expression 

did not always change in a direction consistent with the known or predicted function of the gene 

in tumorigenesis. For example, carriers of indels in the MSI2 enhancer (17:54992281-

54993673) had decreased MSI2 expression (P=0.0081) based on carrier tumors from kidney, 

rectum, and ovary; however, MSI2 is a known oncogene in hematopoietic cancers. More follow-

up analysis will be necessary to determine whether the mutational enrichment constitutes 

positive selection or unaccounted for neutral mutational processes. 

  



Supplementary Figures 

 
Supplementary figure 1: Plate diagram of the probabilistic model that Dig uses to model 
the number of neutral mutations (𝑴𝑴𝒊𝒊) in an element of interest. 𝜂𝜂𝑅𝑅: observed data used as 
input to Dig’s deep-learning model (chromatin modifications and, optionally, flanking mutation 
counts) to estimate regional neutral mutation parameters for region 𝑅𝑅. 𝜇𝜇𝑅𝑅 and 𝜎𝜎𝑅𝑅: mean and 
standard deviation estimates of the neutral mutation rate in region 𝑅𝑅. 𝛼𝛼𝑅𝑅 and 𝜃𝜃𝑅𝑅 gamma 
distribution shape and scale parameters, respectively. 𝜆𝜆𝑅𝑅 gamma-distributed mutation rate 
parameter for region 𝑅𝑅. 𝑋𝑋𝑅𝑅 poisson-distributed mutation count in region 𝑅𝑅. DNA seq.: the DNA 
sequence from the human reference genome. 𝑝𝑝𝑖𝑖: genome-wide likelihood of a mutation in a 
given DNA context centered at position 𝑖𝑖. 𝑝𝑝�𝑖𝑖: likelihood of mutation based on sequence context 
centered at position 𝑖𝑖 normalized such that ∑ 𝑝𝑝�𝑖𝑖𝑖𝑖∈𝑅𝑅 = 1. See Methods for additional details. 

  



 

Supplementary figure 2: Comparison of variance explained of SNV counts across 
methods, annotations, and cohorts. a, Variance explained of SNV count in 10kb regions tiled 
across the genome by Dig and NBR10 in N=16 PCAWG cancer cohorts with >1 million SNVs 
(excluding hemopoietic tumors, for which NBR failed to converge). Regions in which <50% of 
36mers are unique are excluded as are regions in the 99.99th percentile of mutation count. b, 
Variance explained of nonsynonymous SNV count in genes 1-1.5kb in length (n=3,740 genes) 
in N=16 PCAWG cancer cohorts. c, Variance explained of SNV count in enhancers and 
noncoding RNAs (long and short) 0.5-1kb in length (n=7,412 noncoding elements) in 16 
PCAWG cancer cohorts. d, as b for 16 whole-exome sequenced cancer cohorts from Dietlein et 
al.4. Box-plot elements defined in Methods. Number of samples and mutations in each cohort 
are in Supplementary Table 4 (a), Supplementary Table 5 (b), Supplementary Table 6 (c) 
and Supplementary Table 28 (d). 

 

  



 

Supplementary figure 3: Precision-recall comparison of gene driver methods in the 
PCAWG cohort. a,b F1-score (harmonic mean of precision and recall) in N=32 PCAWG 
cohorts (melanoma and hematopoietic tumors were excluded as in previous work12) across 
16,794 genes common to the three methods. Precision and recall were calculated using genes 
in the Cancer Gene Census as a conservative true positive set. a, All samples. b, Excluding 
samples with >3000 coding mutations and restricting the total number of mutations per sample 
per gene to 3 (default filtering options for dNdScv). c,d Recall and precision measured across 
all N=32 PCAWG cohorts for c, all samples and d, samples with <3000 coding mutations. Box-
plot elements defined in Methods.  



  

Supplementary figure 4: Approximate number of false-positive and true positive driver 
genes identified from 15 whole-exome sequenced cohorts from Dietlein et al.4. The 
numbers are approximate because the full set of driver genes is unknown; we therefore used 
genes in the CGC as a conservative approximation of true positives (since a non-CGC gene 
may still be a true driver). The MutSigCV model produced mis-calibrated p-values for the pan-
cancer cohort, suggesting that its model assumptions may have been violated by the large 
cohort of heterogeneous cancer types.  



 

Supplementary figure 5: Precision-recall comparison of noncoding driver detection 
methods in the PCAWG dataset. a, F1-score across 95,231 noncoding elements as defined in 
Rheinbay et al.10 in PCAWG cancer cohorts with at least one identified noncoding driver (n=20 
cohorts). The performance of Dig was also evaluated when removing samples with >1000 SNVs 
across all elements and restricting the total number of SNVs per sample per element to 3. 
DriverPower and Larva do not have built-in filtering options. ActiveDriverWGS was run with 
default filtering which removes any sample with >30 SNVs per megabase. b, Recall and 
precision by method combined across the cohorts in a. c,d, as in a and b but restricting to n=11 
cohorts with at least two identified noncoding drivers. Box-plot elements defined in Methods. 

 

  



 

Supplementary Figure 6: Simulated power to detect driver elements in a pan-cancer 
cohort by sample size and by size of the elements being tested. The simulations were 
performed based on cryptic splice sites in 15,000 genes and 15,000 enhancers. 



 

Supplementary figure 7: Proportion of excess protein-altering SNVs in TSGs as estimated by 
Dig, a, and dNdScv, b. c, Distribution of proportion of excess SNVs as estimated using a Monte 
Carlo simulation approach based on Dig (Methods) with the corresponding dNdScv estimate 
indicated with a black dashed line. Essential splice SNVs include SNVs at canonical splice sites 
(see Fig. 3a) and SNVs 5 bp 5’ of an exon start, which dNdScv also considers in its analysis of 
splice mutations. 

  



 

 

Supplementary figure 8: SNV enrichment (with 95% CI) and excess analysis excluding 
samples with >3000 coding mutations. a, as in Fig. 3b but excluding samples with >3000 
coding mutations (default filtering criterion in dNdScv) (N=2,271 samples). b, As in Fig. 3e but 
excluding samples with >3000 coding mutations. 



 

Supplementary figure 9: Estimated SNV enrichment with 95% CI in tumor suppressor genes 
(TSGs), a, and oncogenes, b, with enrichment calculated with respect to the number of 
observed mutations in genes not in the Cancer Gene Census (CGC). Enrichment is calculated 
as the rate of SNVs of a given type observed in TSGs (oncogenes) relative to the rate of SNVs 
of the same type observed in genes not in the CGC. (N=2,279 samples in both panels). 

 

 

  



 

Supplementary Figure 10: Additional predicted cryptic splice SNV carriers in which 
LeafCutter identified strong evidence of alternative splicing. The location of the predicted 
cryptic splice SNV is marked with a thick black vertical line and labeled in red. a, SMAD4 cryptic 
splice carrier. b,c TP53 cryptic splice SNV carriers. 



 

Supplementary Figure 11: Normalized expression of TP53 stratified by the type of 
mutation individuals carry in TP53. P-values comparing expression of 5’ UTR variant carrier 
to other carrier categories: 5’ UTR vs no variant: 1.2×10-4; 5’ UTR vs. missense: 3.3×10-5; 5’ 
UTR vs. nonsense: P=0.023; 5’ UTR vs. essential splice: P=0.011; 5’ UTR vs. coding indel: 
8.5×10-3. All p-values by one-sided Mann-Whitney U-test. (No variant: N=760 samples; 
Missense: N=285 samples; Nonsense: N=50 samples; Essential splice: N=35 samples; Indel: 
N=78 samples; 5’ UTR variant: N=6 samples). Boxplot elements defined in Methods. 

  



 

Supplementary figure 12: Evaluation of neutral mutation model for ten solid cancer 
megacohorts. Using whole-exome sequenced samples, we compared the accuracy of 
estimating the scaling factor based on missense SNVs with CADD phred<15 observed in genes 
in the MSK IMPACT 230 targeted sequencing panel (the approach used for analyzing the 
megacohorts, see Methods) to the scaling factor estimated using synonymous mutations 
observed in all autosomal genes (Dig’s default method), a, and using synonymous mutations 
observed in genes in the MSK IMPACT 230 targeted sequencing panel, b. c, The estimated 
rate of excess missense SNVs with CADD phred<15 (with 95% CI) in tumor suppressor genes 
in the MSK IMPACT 230 targeted sequencing panel. The burden of missense SNVs with CADD 
phred<15 is not significant in any cancer type. d, The rate of excess pLoF SNVs in oncogenes 
(with 95% CI) in the MSK IMPACT 230 targeted sequencing panel. The burden of pLoF SNVs is 
not significant in any cancer type. N samples per cancer in Supplementary Table 19 for c and 
d).  



 

Supplementary figure 13: Estimated excess activating SNV rate in oncogenes with 95% CIs, 
a, and excess pLoF SNV rate in TSGs with 95% CIs, b, as in Fig. 4a,b but with analysis 
restricted to whole-exome sequenced samples only. Asterisks indicate the burden of SNVs is 
significant in the given cancer type. (N samples per cancer in Supplementary Table 28). Error 
bars are larger than in Fig. 4a,b because sample size is smaller (see Supplementary Tables 
22-23 for exact sample sizes). 

  



 

Supplementary figure 14: Comparison of mean and variance prediction accuracy by 
method in simulated datasets. a, Schematic of simulation framework. Briefly, for each 50kb 
region of the genome, a “true” mean and variance are constructed using a K-nearest-neighbors 
algorithm. The number of observed neutral mutations in that region is then simulated from a 
negative binomial distribution parameterized by this mean and variance. A method is then 
trained to predict the unknown mean and variance using the simulated number of mutations as 
a noisy objective. The accuracy of the model is evaluated by comparing the predicted mean and 
variance parameters to the known simulated values. b, Accuracy (Pearson’s R2) of the predicted 



mean and variance compared to the true simulated mean and variance across methods (N=10 
independent replicates per category). RF: random forest; NBR: negative binomial regression; 
PCA+GP: principle components dimensionality reduction following by a Gaussian process; 
UMAP+GP: UMAP dimensionality reduction followed by a Gaussian process; AE+GP: 
autoencoder dimensionality reduction followed by a Gaussian process; FCNN+GP: fully 
connected neural network followed by a Gaussian process; CNN+GP: Convolutional neural 
network followed by a Gaussian process (Dig’s default model). Boxplot elements defined in 
Methods. c, Mean versus variance of the simulated data (blue) and predicted by a CNN+GP 
(purple), FCNN+GP (green), negative binomial regression (red), or a random forest (orange). 
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