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Supplementary Note 1. SAF to FM transition as a function of oxidation 

process time 

 

Figure S1 | Influence of oxidation upon the SAF to FM transition. a, M-H hysteresis loops 

of SAF film measured along the magnetic easy-axis as a function of oxidation process time. 

b,c, Comparison of oxidized SAF (60 sec processed) and as-grown reference FM film 

measured along the magnetic easy-axis (b) and hard-axis (c).  
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The plasma oxidation to transform SAF into FM is optimized by monitoring the 

magnetic hysteresis loop measured on unpatterned films using vibrating sample magnetometry. 

The magnetic easy axis hysteresis loops of SAF films that are treated with different oxidation 

times are shown in Fig. S1a.  Here, the plasma oxidation is carried out using reactive ion etching 

(RIE) at an oxygen pressure of 50 mTorr and an RF bias power of 100 W.  

The pristine SAF film exhibits a typical spin-flop transition with AF coupling and 

nearly zero remnant magnetization at 𝐻௭ = 0 kOe thus showing that the SAF film is nearly 

compensated. The film structure is composed of the underlayer (20 TaN | 30 Pt), lower FM 

layer (LM : 3 Co | 7 Ni | 1.5 Co), spacer layer (9.5 Ru), upper FM layer (UM : 3.5 Co | 7 Ni | 3 

Co), and capping layer (30 TaN) (all thicknesses are in Å). By increasing the oxidation time, 

the remnant magnetization of SAF gradually increases while the exchange field 𝐻௘௫  still 

remains ~ 10 kOe up to 50 sec of process time (orange line). This shows that the oxidation 

affects the compensated moment by reducing the magnetic moment of UM.  As for 60 sec 

oxidation time (yellow line), the hysteresis loops shows a clear transition from SAF to FM that 

is evidenced by the disappearance of any AF coupling.  It is found that the magnetic moment 

of LM remains constant over the oxidation time up to 240 sec (red line). The Ru spacer layer 

prevents the LM layer from further oxidation1. For reference, a control FM film (20 TaN | 30 

Pt | 3 Co | 7 Ni | 1.5 Co | 9.5 Ru | 30 TaN) is prepared. As shown in Fig. S1b and c, the magnetic 

properties of the oxidized SAF (process time of 60 sec) are identical to the FM control film, 

thereby showing that our oxidation process affects only the upper FM layer.  
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Supplementary Note 2. AFM imaging and topography of FM-SAF junction       

 

Figure S2 | Atomic force microscopy (AFM) images of FM-SAF junction (𝜽𝑱 = 𝟎°) in a 

racetrack. The edges of the Racetrack are shown by the white dashed lines.  The FM-SAF 

junction boundary is clearly seen from the color contrast within the nanowire. Step heights are 

measured on the racetrack across the junction (blue dashed line) and off the racetrack that is 

capsulated with alumina (green dashed line). 

 

 AFM imaging shows that the oxidation process results in a local increase in the 

thickness of the racetrack by ~1-2 nm as discussed in main text, which allows us to measure 

the width of the FM-SAF junction boundary.  On the other hand, the alumina encapsulation 

region outside the nanowire is found to become thinner due to chemical etching of the alumina 

by the developer, diluted tetramethylammonium hydroxide (TMAH), as shown in Fig. S2.  The 

etching rate of alumina is estimated to be ~ 5 nm/min at room temperature. This leads to the 

distinct color contrast in the optical microscopy image, as can be seen in Fig. 1a.     
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Supplementary Note 3. XPS depth-profile analysis of the pristine and 

oxidized SAF  

 

 

 

Figure S3 | XPS profile of atomic concentrations with etching time. Depth profile spectra 

of pristine (upper panel) and oxidized SAF  (lower panel). The four times t1, t2, t3, and t4 that 

are shown in the figure refer to the points where the Co and Ni 2p spectra are investigated, as 

shown in Fig. S4.   
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To investigate the effect of plasma oxidation on the SAF, XPS depth profile 

measurements are carried out, using Ar ion etching, on the unpatterned pristine SAF film and 

a FM film that had been obtained by oxidization for 60 sec of a SAF film. The etching 

conditions are: Ar+ energy 500 eV, 0.5 µA beam current, 5 x 2 mm2 etching area, 20 sec per 

cycle.  

As shown in Fig. S3, it takes longer to etch the TaN capping layer for the oxidized SAF 

than for the pristine case, thus showing that TaN becomes thicker on oxidation by forming 

TaON.  The depth profiles show that the oxygen level is significantly increased in the TaN, 

and the Co and Ni upper layers in the oxidized SAF film.  
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Supplementary Note 4. XPS spectra analysis of the chemical shifts in upper 

FM layer 

 

Figure S4 |  XPS spectra of Co and Ni at different etching times.  2p3/2 spectra of Co (left 

panel) and Ni (right panel) in pristine SAF (solid line) and oxidized SAF (dashed line) are 

plotted at t1, t2, t3 and t4 as designated in Fig. S3.  Peak positions for metallic Co and Ni are 

indicated, as a guide, by grey solid lines, while those from the oxidized film are displayed by 

grey dashed lines. 

 

Metallic Co 2p3/2 (~778.2 eV) and Ni 2p3/2 (~852.6 eV) spectra are observed in the pristine SAF 

(solid line) film, thus showing that the 30 Å TaN capping layer effectively protects Co and Ni 

in the upper layer against natural oxidation. On the other hand, the oxidized SAF shows 
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chemical shifts of ~ 0.5 eV of spectral peaks towards higher binding energies, thereby 

confirming the oxidation of Co and Ni  in the upper layer. As the film is further etched away, 

thus allowing analysis of the lower FM layer, Co and Ni are clearly seen to be metallic 

(unoxidized)  (t4).   
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Supplementary Note 5. Current- and field-driven DW depinning probability 

in FM and SAF regions 

 

 
Figure S5 | Domain wall depinning probability versus current density and applied field 

in the thermally activated regime. a,b, Current-driven domain wall depinning probability as 

a function of current density in FM (a), and SAF region (b) for various current pulse lengths 

𝜏௉
௃  (10 to 104 ms). c,d, Field-driven domain wall depinning probability as a function of easy 

axis magnetic field in FM (c), and SAF region (d) for various field pulse lengths 𝜏௉
ு (10 to 104 

ms).   

 

 To understand the domain wall (DW) dynamics in the thermally activated regime in 

which DW motion is dominated by thermal fluctuations, the depinning probabilities for 

current- and field-driven DW motion are measured inside the FM and SAF regions. Single 

current or magnetic easy axis field pulses are applied. The DW depinning is monitored by 

magneto-optical Kerr microscopy.  Each depinning process is repeated 10 times. Solid lines 
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represent fits to the depinning probability curves. Here, the depinning threshold current density 

𝐽௧௛
௜ , and field 𝐻௧௛

௜  (𝑖 = 𝐹𝑀 and 𝑆𝐴𝐹) correspond to 𝑃ௗ௘௣
௜ = 0.5 at 𝜏௉

௃ , and 𝜏௉
ு, respectively2,3.   
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Supplementary Note 6. Current-driven DW injection (FM  SAF) 

probability at FM-SAF junction  

 

 
Figure S6 | DW injection (FMSAF) probability versus current density. a,b, Current-

driven DW injection probability versus current density in the flow regime (a), and the thermally 

activated regime (b). Current pulse lengths 𝜏௉
௃  are varied from 5 to 100 ns (flow regime) and 

10 to 104 ms (thermally activated regime) for the DW injection from FM to SAF region across 

the junction 𝜃௃ = 0°. 
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Supplementary Note 7. Extraction of energy barrier in thermally activated 

DW motion regime 

 

 
 

Figure S7 | Threshold current density and threshold field versus pulse length in the 

thermally activated regime. a, Threshold current density for DW depinning 𝐽ௗ௘௣
௜  (𝑖 = FM and 

SAF) and DW injection  𝐽௜௡௝
ிெ→ௌ஺ி  (green circle) in the thermally activated regime. 𝐽ௗ௘௣

௜  are 

measured from the FM (red triangle) and SAF region (blue triangle), respectively. DW 

injection from the FM region into the SAF region is carried out for the junction with 𝜃௃ = 0°. 

b, DW depinning threshold fields in the FM and SAF regions. 𝐻௧௛
௜  (𝑖 = FM and SAF) are 

measured by applying magnetic easy-axis fields for the FM (orange triangle) and SAF (blue 

triangle) regions. Current and field pulse lengths are varied from 10 ms to 5 s and 16 ms to 5 s, 

respectively. The error bars represent 25/75% probabilities.  

 To determine the energy barriers for DW depinning and injection, we carry out the 

current- and field-driven DW depinning measurements in the thermally activated regime and 

determine the corresponding 𝐽ௗ௘௣
௜ , 𝐽௜௡௝

ிெ→ௌ஺ி , and 𝐻ௗ௘௣
௜  (𝑖 =  FM, SAF and FMSAF ) as 

discussed in Supplementary Note 5 and 6. For DW depinning in the FM and SAF regions, DW 

depinning experiments were performed evenly inside each FM and SAF region, respectively, 

in order to exclude the effects of local pinning. According to ref. 2, 3, and 4, 𝜏௉
௃

=

𝜏଴exp (𝐸௃
௘௙௙

𝑘஻𝑇)ൗ  based on the Arrhenius relation, where 𝜏௉
௃  is applied current pulse length, 

and 𝜏଴ is thermal attempt time. The effective energy barrier 𝐸௃
௘௙௙ is given by 𝐸௃

௘௙௙
= 𝐸௃(1 −



 13

𝐽௧௛ 𝐽௧௛଴)ఈ⁄  with threshold current density 𝐽௧௛଴ to depin DW within infinitely long time and at 

zero temperature. In this work, we define 𝐸௃  as the energy barrier at room temperature by 

assuming a finite thermal attempt time 𝜏଴ = 1 ns.  The exponent 𝛼 corresponds to the reversal 

mechanism which is either 𝛼 = 1  (DW propagation dominant), or 𝛼 = 2  (DW nucleation 

dominant)5,6. Here, we employed 𝛼 = 1 since DW depinning and injection is mainly governed 

by propagation mechanism. By plotting an exponential fit (solid lines in Fig. S7a) with the 

equation  𝐽௧௛ = 𝐽௧௛଴(1 −
௞ಳ்

ா಻
ln(

ఛು
಻

ఛబ
)) (𝑇 = 300 𝐾) , 𝐸௃ can be determined.  Similar to the 

current case, 𝐸ு can be obtained from the fits to the equation 𝐻௧௛ = 𝐻௧௛଴(1 −
௞ಳ்

ாಹ
ln(

ఛು
ಹ

ఛబ
)) (𝑇 =

300 𝐾) (solid lines in Fig. S7b). 𝐻௧௛ corresponds to collected threshold field 𝐻ௗ௘௣
௜  (𝑖 = FM, 

and SAF) from DW depinning in each region, and 𝐻௧௛଴ refers to the field to depin DW within 

infinitely long time at zero temperature.  𝜏௉
ு is applied field pulse length, and 𝜏଴ is thermal 

attempt time (𝜏଴ = 1 ns).    
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Supplementary Note 8. Field-induced energy landscapes and global energy 

barriers for domain walls in a FM-SAF junction.   

 

 
Figure S8 | Illustration of field-induced energy landscapes and global energy barriers for 

↑↓ domain walls in a FM-SAF junction. Upper left panel: ↑↓ DW in the FM region (𝑞 < 0). 

Upper right panel: ↑↓ DW in the lower layer of the SAF region (𝑞 > 0). Lower panel: Field 

induced energy landscape in the FM-SAF junction with 𝑡௎ெ𝑀௎ெ > 𝑡௅ெ𝑀௅ெ. 

We consider a FM-SAF lateral junction with 𝜃௃ = 0 in which the junction boundary is 

located at 𝑥 = 0 in a wire with length 𝐿ிெ + 𝐿ௌ஺ி (FM region: 𝐿ிெ, SAF region: 𝐿ௌ஺ி) and 

width 𝑤 as shown in Fig. S8.  When a DW is sitting at 𝑥 = 𝑞 in the presence of an external 

magnetic field 𝐻ሬሬ⃗ (𝑥, 𝑦, 𝑧), the energy landscape is determined by the Zeeman energy 𝐸௓ா(𝑞) =

− ∫ 𝑀(𝑞, 𝑥)𝑚ෝ(𝑞, 𝑥) ∙ 𝐻ሬሬ⃗ (𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧  (S1) where 𝑀(𝑞, 𝑥) and 𝑚ෝ(𝑞, 𝑥) are the magnitude 

of the magnetization and the unit vector along the magnetization at 𝑥 as a function of 𝑞.  Note 

that the volume integration is valid for the magnetic layers only.  The wire direction and the 

easy magnetization axis are along the 𝑥  and 𝑧-axes, respectively.  The magnetizations and 

thicknesses for the lower and upper magnetic layers in the SAF are 𝑀௅ெ, 𝑀௎ெ, 𝑡௅ெ and 𝑡௎ெ, 

respectively. Here we assume that the DW width is much smaller than both 𝐿ிெ and 𝐿ௌ஺ி.  

When, in the presence of a uniform field 𝐻௭  along the easy axis, a domain wall with ↑↓ 

configuration is located at 𝑥 = 𝑞 in the FM region (−𝐿ிெ < 𝑞 < 0), the energy can be written 

as 
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𝐸௓ா
ிெ(𝑞) = −𝑤𝑡௅ெ(𝐿ிெ + 𝑞)𝑀௅ெ𝐻௭ − 𝑤𝑡௅ெ𝑞𝑀௅ெ𝐻௭ = −𝑤𝑡௅ெ(𝐿ிெ + 2𝑞)𝑀௅ெ𝐻௭. (S2) 

On the other hand, when a DW with ↑↓ in the lower layer and ↓↑ in the upper layer is sitting in 

the SAF region (0 < 𝑞 < 𝐿ௌ஺ி), the energy in the SAF is given by 

𝐸௓ா
ௌ஺ி(𝑞) = −𝑤𝑡௅ெ𝑞𝐻௭ + 𝑤𝑡௅ெ(𝐿ௌ஺ி − 𝑞)𝑀௅ெ𝐻௭ + 𝑤𝑡௎ெ𝑞𝑀௎ெ𝐻௭

− 𝑤𝑡௎ெ(𝐿ௌ஺ி − 𝑞)𝑀௎ெ𝐻௭ = 𝑤(2𝑞 − 𝐿ௌ஺ி)(𝑡௎ெ𝑀௎ெ − 𝑡௅ெ𝑀௅ெ)𝐻௭. 

(S3) 

Hence, the total energy landscapes for the cases that the DW is located in the FM and SAF 

regions are, respectively, 

𝐸௓ா
் (𝑞 < 0: 𝐹𝑀) = 𝐸௓ா

ிெ(𝑞) + 𝐸௓ா
ௌ஺ி(0) 

= −𝑤[2𝑞𝑡௅ெ𝑀௅ெ + (𝐿ிெ − 𝐿ௌ஺ி)𝑡௅ெ𝑀௅ெ + 𝐿ௌ஺ி𝑡௎ெ𝑀௎ெ]𝐻௭    (S4a) 

𝐸௓ா
் (𝑞 > 0: 𝑆𝐴𝐹) = 𝐸௓ா

ிெ(0) + 𝐸௓ா
ௌ஺ி(𝑞) 

= 𝑤[2𝑞(𝑡௎ெ𝑀௎ெ − 𝑡௅ெ𝑀௅ெ) − (𝐿ிெ − 𝐿ௌ஺ி)𝑡௅ெ𝑀௅ெ − 𝐿ௌ஺ி𝑡௎ெ𝑀௎ெ]𝐻௭          (S4b) 

Eqs. (S4) show that, when 𝐻௭ > 0, the slopes of energy landscapes vs. 𝑞 for the cases that the 

DW is located in the FM (𝑞 < 0) and SAF regions (𝑞 > 0) are negative (−2𝑤𝑡௅ெ𝑀௅ெ𝐻௭) and 

positive (2𝑤(𝑡௎ெ𝑀௎ெ − 𝑡௅ெ𝑀௅ெ)𝐻௭), respectively, since 𝑡௎ெ𝑀௎ெ > 𝑡௅ெ𝑀௅ெ.  This shows 

that the DW is trapped at 𝑥 = 0 (the junction boundary) due to the formation of a global energy 

barrier.  On the other hand, when 𝐻௭ < 0, the signs of the slopes change so that the DW moves 

away from 𝑥 = 0.  For a DW with ↓↑, then the opposite is true.  This notion can be extended 

to the SAF-FM-SAF lateral bi-junctions.  The wiggles in the energy landscapes shown in Fig. 

2d, 3c, 5e and Extended Data Fig. 1c illustrate the DW pinning potentials that are typically 

caused by non-uniform anisotropies/exchange stiffness in the films and from edge roughness 

of the wires2,7.   Note that an additional large step in Fig. 2d, 3c, 5e and Extended Data Fig. 1c 

at the junction (𝑥 = 0) corresponds to the energy 𝐸௡௖ that is required to nucleate a DW in the 

upper layer of the SAF region. 
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Supplementary Note 9. Thermal depinning of domain walls in FM-SAF 

junctions.  

 

 
Figure S9 | Illustration of thermal fluctuation torques depending on the DW position in 

FM-SAF junction. i, ↑↓ DW in the FM region (𝑞 < 0), ii: ↑↓ DW on the boundary (𝑞 = 0), ii: 

↑↓ DW in the lower layer of the SAF region (𝑞 > 0). 

It is known that thermal depinning of domain walls is induced by thermally fluctuating 

magnetic fields due to microscopic degrees of freedom of the environment, such as phonons, 

conduction electrons or nuclear spins.  Hence the thermally agitated domain wall dynamics can 

be described by the stochastic Landau-Lifshitz-Gilbert equation (Langevin equation)8-10: 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴 × ൫𝑯𝒆𝒇𝒇 + 𝑯𝒇𝒍൯ + 𝛼𝑴 ×

𝑑𝑴

𝑑𝑡
 

where 𝛾, 𝑯௘௙௙, 𝑯𝒇𝒍(𝒓, 𝑡) and 𝛼 are the gyromagnetic ratio, the effective magnetic field, the 

random thermal fluctuating magnetic field, and the Gilbert damping, respectively.  𝑯௘௙௙ 

includes the external field, the DMI field, the exchange field, the dipolar field, and the 

anisotropy field.  𝑯𝒇𝒍(𝒓, 𝑡) is typically assumed to be a Gaussian random process satisfying <

𝐻௙௟
௜ (𝒓, 𝑡) >= 0  and < 𝐻௙௟

௜ (𝒓, 𝑡)𝐻௙௟
௝ (𝒓′, 𝑡′) >=

ଶఈ௞ಳ்

ఊఓబெ
𝛿௜௝𝛿(𝒓 − 𝒓′)𝛿(𝑡 − 𝑡′)  ( 𝑖, 𝑗 =

𝑥, 𝑦, 𝑧) such that 𝑯𝒇𝒍(𝒓, 𝑡) = 𝜻(𝒓, 𝑡)ට
ଶఈ௞ಳ்

ఊఓబௌ௏ௗ௧
 where 𝑘஻ , 𝑇, 𝜇଴ , 𝑑𝑉, 𝑑𝑡, and 𝜻(𝒓, 𝑡) are the 

Boltzmann constant, temperature, magnetic permeability, fluctuating element volume, 
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fluctuating time interval, and stochastic random unit vector, respectively.  𝛿௜௝ is the Kronecker 

delta. 𝛿(𝒓 − 𝒓′) and 𝛿(𝑡 − 𝑡′) are Dirac delta functions.  𝑑𝑉 can be approximated to be the 

DW volume, 𝑤𝑡ிெ𝜋Δ (width of wire : 𝑤, FM thickness: 𝑡ிெ, DW width parameter: Δ).  If we 

use 𝛼 = 0.1, 𝑇 = 300 K, 𝑀 = 600 emu/cc, 𝑑𝑉 = 𝑤𝑡ிெ𝜋Δ = 2.5 × 10ିଵ଻  cm3 (𝑤 = 2 m, 

𝑡ிெ = 1 nm, Δ = 4 nm) and Δ𝑡 = 1 ps, we have max൫𝐻௙௟
௭ ൯ ~177 Oe that may depin the DW 

from any extrinsic potential traps in the energy landscape over an extended time in either the 

FM or SAF region (e.g. see Fig. 2d).  Here note that only the 𝑧-component of 𝑯௙௟ has been 

considered since the other components (𝑥  and 𝑦)  cannot depin the DWs.  Note also that 

max൫𝐻௙௟
௭ ൯ cannot be directly compared to the DC DW propagation field in the FM region (~30 

Oe) since the time scale for 𝐻௙௟
௭  is ~ 1 ps. 

 Now let us investigate how the DWs are depinned by 𝑯௙௟ depending on where the ↑↓ 

DW is located (see Fig. S9).  When 𝑞 < 0 (case I. DW is in the FM region) or 𝑞 > 0 (case III. 

DW is in the SAF region), the DW is depinned by 𝑯𝒇𝒍 that is applied to the DW at 𝑥 = 𝑞 and 

at a certain time 𝑡. The directions of the depinning torque 𝝉஽ௐ and the resulting DW velocity 

𝒗஽ௐ are determined by the sign of 𝐻௙௟
௭ (𝑞, 𝑡) as shown in Fig. S9.  For example, when 𝑞 < 0 

(FM region) and 𝐻௙௟
௭ (𝑞, 𝑡) > 0, 𝜏஽ௐ

௭ > 0 and 𝑣஽ௐ
௫ > 0 (case I in Fig. S9).  When 𝑞 > 0 (SAF 

region) and 𝐻௙௟
௭ (𝑞, 𝑡) > 0, 𝜏஽ௐ

௭ > 0 and 𝑣஽ௐ
௫ < 0 since in the SAF region the upper layer 

moment is larger than the lower layer moment such that the DW configuration is ↓↑ as seen 

from the 𝑚௡௘௧ landscape (case III in Fig. S9).  As 𝐻௙௟
௭ (𝑞, 𝑡) changes sign, then these statements 

are vice versa for both the FM and the SAF regions. 

In contrast, when 𝑞 = 0 (case II. DW is at the FM-SAF boundary), the situation is 

distinct from the others: there is effectively no DW (see the net magnetic moment 𝑚௡௘௧ 

landscape in case II in Fig. S9).  This is a very special case, thus corresponding to a singular 

point at which the whole wire is nothing but a single domain due to the fact that the upper 

moment is larger than the lower moment in the SAF region.  This suggests that any direction 

of 𝑯𝒇𝒍 cannot depin or move the DW at 𝑞 = 0 unless a new DW is created, thus showing that 

the DW at the FM-SAF boundary is extremely thermally stable. 
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Supplementary Note 10. Domain wall propagation from FM to SAF region 

in the tilted FM-SAF junctions 

 

Figure S10 | Domain wall injection into tilted FM-SAF junctions. a, Illustration of domain 

wall propagation from FM to SAF region in the tilted FM-SAF junctions. b, Schematic 

illustrations and Kerr microscope images of domain wall injection from FM to SAF region at 

𝜃௃ = 60°. 

Let us assume that the DW cross sectional area 𝐴௎ெ  in the upper layer is 𝐴௎ெ =

𝑡௎ெ𝑥 cot 𝜃௃ where 𝑥 is the distance between the junction endpoint and the DW (see Fig. S10a).  

As the DW propagates (i.e. 𝑥 increases) reaching 𝑥 = 𝑤 tan 𝜃௃ in the tilted junction region, 

𝐴௎ெ = 𝑡௎ெ𝑤.  Consequently, we find that 
ௗ஺ೆಾ

ௗ௫
= 𝑡௎ெ cot 𝜃௃ thereby showing that the larger 

𝜃௃ is the smaller is 
ௗ஺ೆಾ

ௗ௫
.  This means that the gradient of DW volume to be nucleated decreases 

with increasing 𝜃௃, as the DW propagates in the junction region, consequently making it easier 
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for the DW to propagate at larger 𝜃௃. This is clearly shown in experiments as shown in Fig. 

S10b. At 𝜃௃ = 60°, the DW can be initialized by following the shape of junction in the presence 

of external field (DW initialization). However, the DW relaxation is observed and the shape of 

DW becomes straight which is perpendicular to the wire as soon as the field is vanished (DW 

relaxation). Afterwards, the DW can be injected from the position where the DW faces to the 

junction area (black dashed box) and propagates into SAF region (injection).  
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Supplementary Note 11. Sequential multi-DW initialization and injection in 

FM-SAF junction 

 
Figure S11 | Sequential DW initialization and multi-bit injection from the FM into the 

SAF region in a racetrack. a, Sequential Kerr microscopy images of injection of eighteen 

DWs from the FM region into the SAF region. The racetrack is 3 µm wide and 40 µm long. 

The FM-SAF junction with 𝜃௃ = 0° is designated by the white dashed line. Each Kerr image 

is taken after a combination of field and current pulse applications.  Bright and dark contrast 

correspond to down (↓) and up (↑) domains, respectively. b, Cycles of field and current pulses 

versus cumulative time corresponding to Kerr images in (a). Each cycle is denoted by the black 

dashed line, which is repeated eighteen times. 
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By taking advantage of the large difference in coercivity and spin-flop field between 

the FM and SAF regions, DWs can be readily and reliably created by applying an external field.  

The field |𝐻௭| is chosen to be |𝐻௖
ிெ|(≈ 0.1 kOe) < |𝐻௭| < |𝐻௦௙

ௌ஺ி|(≈ 3 kOe) such that a DW 

is nucleated in the FM region.  The created DW is injected into the SAF region by current 

pulses. By repeating the DW nucleation and injection cycle, we demonstrated multi-DW 

injection, as shown in Fig. S11a.  Each cycle for DW injection consists of a field pulse of ± 20 

mT for 2 sec and a current pulse of 0.76 ×  10଼ A cmିଶ for 10 ns (see Fig. S11b). An external 

field is set to zero when the current pulse is applied. Consequently, eighteen DWs can be 

successfully injected with wall-to-wall distances of ~1.4 µm.  The domain bit sizes can be 

modulated by the amplitude and length of the current pulse.   
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Supplementary Note 12. Determination of DW injection across the FM-SAF 

junction 

 

 
 
Figure S12 | Determination procedure of DW injection across a FM-SAF junction. a, 

Logic flow diagram of determination procedure of DW injection from FM to SAF region across 

junction by current pulse. b, Schematics and corresponding Kerr microscope images of DW 

injection procedure. White dashed lines represent the FM-SAF junction, and black arrows 

indicate the DW injected into the SAF region.  

The optical resolution of a Kerr microscope limits the confirmation of DW injection 

across the interface.  Fortunately, our FM-SAF junctions with their novel magnetic 

configuration by design allows us to carry out extremely precise and reliable confirmation 

of DW injection across the interfaces by combining Kerr microscopy with the application 
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of easy axis magnetic fields that are larger than the DW propagation fields, as follows.  Here 

let us take a ↑↓ DW at the FM-SAF junction in which the FM and the SAF regions are on the 

left and right-hand side, respectively. 

a. When the DW is observed to be clearly injected across the interface from Kerr 

microscope, we are sure that the DW is injected since the DW has been displaced by 

more than the Kerr microscope resolution. 

b. When the DW is observed not to be injected by current pulse from Kerr microscope, an 

easy axis magnetic field is applied to check if the DW is actually injected across the 

interface.  First, let us consider a DW that is initially in the FM region at the FM-SAF 

junction.  If the DW was successfully injected across the interface so that it moves to 

the SAF region, the application of a negative 𝐻௭ (−𝐻௭ < 0.4 kOe: propagation field in 

the SAF region) would move the DW from the left to the right since the total DW 

configuration in the SAF region is ↓↑ (Note that the upper layer moment is larger than 

the lower layer).  On the other hand, if the DW fails to be injected so that it still sits in 

the FM region, a negative 𝐻௭  (−𝐻௭ < 30 Oe: propagation field in the FM region) 

would move the DW from the right to the left.  Consequently, the DW moving direction 

by a negative 𝐻௭ is opposite depending on whether the DW is successfully injected 

across the interface or not, from which we can rigorously judge the DW injection.  Since 

the propagation field in the SAF region (~0.4 kOe) is significantly larger than the FM 

region (~30 Oe), the application of 𝐻௭ in-between two propagation fields, i.e., 30 Oe <

−𝐻௭ < 0.4 kOe can also tell whether the DW is injected across the interface.  Fig. S12b 

describes this method to judge the DW injection across the interface. 

c. The same protocol as above can be applied to the case that the DW is injected from the 

SAF into the FM region. 
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Supplementary Note 13. The energy barriers for field and current-driven 

DW motion 

 

Figure S13 | Illustration of DW depinning and energy landscapes for ↑↓  DW 

configuration. a, DW depinning from a local energy barrier by external magnetic field for the 

FM and SAF cases. b, DW trapping by external magnetic field in a global energy barrier for a 

FM-SAF junction. c, STT or SOT induced DW depinning in the absence of external magnetic 

fields including thermal fluctuation induced magnetic fields for FM, SAF and FM-SAF 

junction. 

Let us clarify the field-, the STT- and SOT-driven DW motions. The STT and SOT are 

generated by current.  The DW angle corresponds to the azimuthal angle 𝜙 since the polar 

angle 𝜃 =
గ

ଶ
 in the middle of DW.   Importantly, note that the energy landscape and barrier is 

a function of DW position 𝑞 solely by definition as shown in Fig. S13 above.  

a. Field-driven DW motion 

The reviewer is right that in the steady state the DW angle 𝜙 does not change but the DW 

position defined by 𝜃 changes by an easy axis component of field.  For the FM or SAF case, 

an easy axis field that is larger than a threshold value 𝐻௧௛ can displace DWs by tilting the DW 

energy landscape and thereby overcoming the local energy barrier (see Fig. S13a below, and 

note that field components perpendicular to the easy axis do not displace the DWs since they 

do not affect the energy landscapes).  The key point here is that the global energy landscape is 
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uniformly tilted over the whole FM or SAF, which just allows the DW to get out of the local 

energy barrier.  This means that the global energy landscape does not give rise to an additional 

energy barrier in addition to the local barrier. 

In sharp contrast, for the FM-SAF junction the easy axis field fundamentally modifies the 

global energy landscape, thus adding a global energy barrier to the local barrier, as shown in 

Fig. S13b.  This strongly and robustly traps the DW near the junction boundary. 

b. STT-driven DW motion 

STT drives a DW by the law of angular momentum conservation without affecting the energy 

landscape as shown in Fig. S13c.  Thus, the torque induced by the transfer of spin angular 

momentum from the moving electrons into the DW moments actively changes the polar angle 

𝜃, thereby directly displacing and driving the DW11. 

c. SOT-driven DW motion 

SOT drives a DW by a combined mechanism of Dzyaloshinskii-Moriya interaction (DMI) 

induced in-plane field and spin-orbit spin-current induced STT11.  Here the spin-orbit spin-

current induced STT changes the DW angle 𝜙.  This increases the magnetic energy against the 

DMI, thereby changing 𝜃 and displacing the DW.  Hence, the SOT does not affect the energy 

landscape or barrier just like the STT case, as shown in Fig. S13c. 
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Supplementary Note 14. Evaluation of pulsed magnetic field 

 
Fig. S14. Profiles of pulsed magnetic fields measured by Hall probe. a, Measured magnetic 

field pulses with a magnitude of 𝐻௭  ~ 0.35 kOe and corresponding input voltage pulse duration 

from 10 to 100 ms. Black dashed lines and arrows correspond to the applied pulse duration, 

respectively. b, Shape of single pulse magnetic field with 10 ms duration.    

Thermally assisted field-driven DW motion in FM and SAF regions were performed by 

applying single pulsed magnetic fields along the magnetic easy axis with a broad range of pulse 

durations 𝜏௉
ு from 10 ms to 5 s. Single pulses of magnetic field are generated by an Evico 

electromagnetic inductor coil combined with a Kepco bipolar BOP 100-4D power supply and 

a Keithley 2400 pulse generator.  

To evaluate the shape of the magnetic field pulse, a Hall probe sensor combined with a 

digital oscilloscope were employed to measure the pulse shape resulting from the Hall voltage 

in response to the magnetic field changes. As shown in Fig. S14a, the shape of the field pulses 

with different pulse lengths exhibit a rise and fall time, each of ~ 1 ms, and a pulse duration 

corresponding to the nominal input voltage pulse length of from 10 to 100 ms (see arrows). 

Contrary to the nominal input pulse length, the actual magnetic field pulse length is slightly 

longer.  For instance, the 10 ms nominal pulse length has a measured length of ~16 ms, as 

shown in Fig. S14b.   
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Supplementary Note 15. Effect of electrical current fluctuations on DW 

depinning 

At finite temperatures, electrical current fluctuations induced by thermal effects may 

depin DWs if the fluctuations are large enough to overcome the local energy barrier even in 

equilibrium.  Here we quantify the magnitudes of such fluctuations to investigate how they 

affect the DW motion and depinning by following ref. 3 based on the fluctuation-dissipation 

theorem.   

We assume here that the current density randomly fluctuates with a magnitude of 𝛿𝐽 

with respect to the applied current density 𝐽, and independently of each other over a time scale 

of 𝜏.  In typical metallic systems, the Drude model shows that a temporal fluctuation of 𝐽 

decays within 𝜏~10ିଵହ − 10ିଵଷ  sec that corresponds to the electron scattering time. The 

averaged magnitude 𝛿𝐽 is derived from the spectral density function that is given by      

𝑆௃(𝜔) =
ସ௞ಳ்

௏
∙ 𝑅𝑒𝜎(𝜔)     (𝜔 > 0)                                    (S5) 

where 𝜎(𝜔) is the electrical conductivity at frequency 𝜔, 𝑘஻ is the Boltzmann constant, 𝑇 is 

the temperature, and 𝑉 is the volume of sample. If a DW is depinned within the time ∆𝑡 that is 

much larger than 𝜏, we obtain the average magnitude 𝛿𝐽 by integrating Eq. S1 with respect to 

𝜔, for the interval  0 < 𝜔 < 𝜋/∆𝑡 as follows:  

                 𝛿𝐽 =  ට
௞ಳ்

௏
∙

ఙ

∆௧
        (0 < 𝜔 < 𝜋/∆𝑡)                              (S6) 

where 𝜎 is the d.c. conductivity (𝜔 = 0).  Using 𝑇 = 300 K, 𝜎 ~1.28 × 10଺Ωିଵmିଵ , DW 

volume 𝑉஽ௐ ~2.5 × 10ସ nmଷ and ∆𝑡 = 1 ns, we obtain 𝛿𝐽 ≅ 4.5 × 10ସ A cmଶ⁄ .  These values 

are much smaller than 𝐽௧௛
௜  ~10଻ A/cm2 by more than two orders of magnitude (i = FM, SAF, 

and FM  SAF), thus showing that the DW depinning induced by thermally driven current 

density fluctuations is negligible.  

Following ref. 3, we estimate the DW depinning probability 𝑃  induced by current 

density fluctuations within a long period of time t as follows: 

ln 𝑃 ~ −
(௃ ఋ௃⁄ )మ

ଶ
+ ln(𝑡 ∆𝑡⁄ ).                                        (S7) 

If we take 𝐽௧௛
ௌ஺ி~3.0 × 10଻ A cmଶ⁄ , 𝛿𝐽 ≅ 4.5 × 10ସ A cmଶ⁄ , 𝑡 = 10ଵ଴ sec, and ∆𝑡 = 1 ns,  we 

obtain 𝑃 ~ 𝑒ିଶ.ଶ ×ଵ଴ఱ
~ 10ିଵ଴ఱ

.  Consequently, the depinning probability by 𝛿𝐽 is eventually 

zero over a 300 year (≅ 10ଵ଴ sec) time period. 
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