Supplementary Information

A genome-wide association study with tissue transcriptomics identifies genetic drivers for classic bladder exstrophy

Authors Enrico Mingardo, Glenda Beaman, Philip Grote, Agneta Nordenskjöld, William Newman, Adrian S. Woolf, Markus Eckstein, Alina C. Hilger, Gabriel C. Dworschak,Wolfgang Rösch, Anne-Karolin Ebert, Raimund Stein, Alfredo Brusco, Massimo Di Grazia, Ali Tamer, Federico M. Torres, Jose L. Hernandez, Philipp Erben, Carlo Maj, Jose M. Olmos, Jose A. Riancho, Carmen Valero, Isabel C. Hostettler, Henry Houlden, David J. Werring, Johannes Schumacher, Jan Gehlen, Ann-Sophie Giel, Benedikt C. Buerfent, Samara Arkani, Elisabeth Åkesson, Emilia Rotstein, Michael Ludwig, Gundela Holmdahl, Elisa Giorgio, Alfredo Berettini, David Keene, Raimondo M. Cervellione, Nina Younsi, Melissa Ortlieb, Josef Oswald, Bernhard Haid, Martin Promm, Claudia Neissner, Karin Hirsch, Maximilian Stehr, Frank-Mattias Schäfer, Eberhard Schmiedeke, Thomas M. Boemers, Iris A. L. M. van Rooij, Wouter F. J. Feitz, Carlo L. M. Marcelis, Martin Lacher, Jana Nelson, Benno Ure, Caroline Fortmann, Daniel P. Gale, Melanie M. Y. Chan, Kerstin U. Ludwig, Markus M. Nöthen, Stefanie Heilmann, Nadine Zwink, Ekkehart Jenetzky, Benjamin Odermatt, Michael Knapp, Heiko Reutter

Sample	No of Cases	No of Controls		
GWAS1	98	526		
GWAS2	110	1.177		
Central	172	2.588		
Italy	57	1.325		
Spain	62	279		
Sweden	80	238		
υκ	49	1.219		

Supplementary Table 1. Number of cases and controls for the seven independent samples

Supplementary Table 2. Primer sequences used for EFAN1 re-sequencing

EFNA1 EX1 FWD	AAAGGCGGAGTCGCTAGG
EFNA1 EX1 REV	GGGGTGCTCCCAGATATGAC
EFNA1 EX2 FWD	CTTGGGGTCCAGTGTGAAAT
EFNA1 EX2 REV	GCTAAACAGAGTGCCCAGCA
EFNA1 EX3-4 FWD	GAGTAGGGAGCTGAGAAAGCA
EFNA1 EX3-4 REV	CTCTCAGCCCAACAGGATTC
EFNA1 EX5 FWD	AAGGGGTCTGCTTGAAGAGG
EFNA1 EX5 REV	CGTTTTGAGGCTGCTAGGTG

Legend: exon (EX); Forward (FWD); Reverse (REV).

Supplementary Table 3. Linkage Disequilibrium (LD) blocks coordinates (hg19) for CBE associated

top variants.

Marker	Chromosome (chr)	chr Start	chr End
rs1924557	chr1	n.a.	n.a.
rs4745	chr1	155089883	155142927
rs80215221	chr3	137538620	137558922
rs6874700	chr5	50659788	50748173
rs1790471	chr11	119964758	119968219
rs10862001	chr12	79847040	80114135
rs10853087	chr17	44989888	45046865
rs6024978	chr20	55161209	55175996

Legend: n.a. = no LD association.

Supplementary table 4. Re-sequencing of EFNA1

Patients (n)	cDNA / protein change	exon / intron	SNP ID	gnomAD allele Frequency	Mutation Taster	PolyPhen-2	SIFT	CADD
n=1	93-36T>C	intron1	rs369393260	0.000256				
n=1	c.92+31G>A	intron1	rs372698388	0.00024				
n=1	c.92+117C>A	intron1	not reported	0				
n=1	c.92+147C>G	intron 1	not reported	0				
n=1	c.116T>C p.lle39Thr	exon 2	not reported	0	disease causing	deleterious	possibly damaging	25.3
n=1	c.156G>A p.Pro52=	exon 2	rs376532577	0.000028	=	=	=	21.5
n=1	c.167A>G p.Asp56Gly	exon 2	not reported	0	disease causing	tolerated	benign	22.0
n=1	c.341delT p.Phe114Serfs*28	exon 2	not reported	0	LoF	LoF	LoF	25.6
n=1	c.455-13T>C	intron3	not reported	0				
n=1	c.454+75A>G	intron3	rs1033536381	6.6 x 10 ⁻⁰⁶				
n=1	c.454+61A>T	intron3	not reported	0				
n=1	c.455-52C>T	intron 3	not reported	0				
n=1	c.503C>T p.Ala168Val	exon 4	not reported	0	disease causing	tolerated	benign	6.97
n=1	c.521G>A p.Arg174Gln	exon 5	rs139969988	0.00059	benign	tolerated	benign	5.03

Legend: LoF = Loss-of-function

Supplementary Figure 1: Regional association result of genome-wide significant locus for chromosome 1, region 1.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r²LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 2: Regional association result of genome-wide significant locus for chromosome 1, region 2.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r²LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 3: Regional association result of genome-wide significant locus for chromosome 3.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 4: Regional association result of genome-wide significant locus for chromosome 5.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 5: Regional association result of genome-wide significant locus for chromosome 11

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 6: Regional association result of genome-wide significant locus for chromosome 12

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 7: Regional association result of genome-wide significant locus for chromosome 17

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 8: Regional association result of genome-wide significant locus for chromosome 20

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Yaxes represent $-\log_{10}(P$ -value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). Colours of SNP represent the r² LD-block value. The most significant SNP is labelled in purple.

Supplementary Figure 9: Principal component analysis of Central Europe cohort.

Central Europe

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria. Supplementary Figure 10: Principal component analysis of Spain cohort.

Spain

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Supplementary Figure 11: Principal component analysis of Italy cohort.

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Supplementary Figure 13: Principal component analysis of Sweden cohort

Sweden

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Supplementary Figure 14: Principal component analysis of GWAS 1 strata.

GWAS1

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Supplementary Figure 15: Principal component analysis of GWAS 2 strata.

GWAS2

Only individuals within the red ellipses defined by condition (1) were used for the statistical analysis, individuals outside the red ellipsis were discarded. (CEU) Utah Residents from North and West Europe; (CHB) Han Chinese in Beijing, China; (JPT) Japanese in Tokyo, Japan; (YRI) Yoruba in Ibadan, Nigeria.

Supplementary Fig. 16: Meta-analysis Q-Q plot

This Figure shows the Q-Q plots for the two-sided *P*-values obtained from the GWAS meta-analysis of BEEC. The X axis shows the expected distribution of -log10(*P*-values) under the null hypothesis of no association. The Y axis shows the distribution of the observed -log10(*P*-values) in the meta-analysis. The red line indicates where Y=X.

Supplementary Fig. 17: Manhattan plot of the Genome-Wide Association Studies for the 628 CBE patients and 7,352 ethnically matched controls.

X-axis shows the chromosomes with each dot representing a SNP. *Y*-axis shows $-\log_{10}(P$ -value) of the association of each SNP in the CBE cohort. Continue black horizontal line indicate the threshold of the genome-wide significance at *P*-value of $5*10^{-8}$.

Supplementary Fig. 18: Anatomical structures and details of mouse embryos dissected tissues for RNA-seq.

a) Embryonic day E10.5, transversal section. b) Embryonic day E10.5, sagittal section. c) Embryonic day E12.5, sagittal section. d) Embryonic day E15.5, sagittal section. Nomenclature: cloaca (CL); dorsal aorta (DA); mesonephric tubules (MT); common nephric duct (cnd); genital tubercle (GT); urogenital sinus (UGS); primitive bladder (PBL); urethra (UR); pelvic urethra (PLURT); rectum (R); bladder (BL).

Supplementary Fig. 19: Timelines of mouse embryonic and human embryonic and fetal bladder sampling for RNA-seq used in this study.

Supplementary Fig. 20: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 1, region 1.

Supplementary Fig. 21: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 1, region 2.

Supplementary Fig. 22: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 3.

Supplementary Fig. 23: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 5.

Supplementary Fig. 24: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 11.

Supplementary Fig. 25: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 12.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Y-

axes represent -log₁₀(*P*-value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). The most significant SNP is labelled in purple.

Supplementary Fig. 26: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 17.

Every dot is a SNP in a 1 Megabase (Mb) window. X-axes represent chromosome position of the SNP and the relative genes position in the locus. Y-

axes represent -log₁₀(*P*-value) of each SNP. Blue peaks indicate the Recombination rate (cM/Mb). The most significant SNP is labelled in purple.

Supplementary Fig. 27: Regional association plots for conditional logistic regression in genome-wide significant locus in chromosome 20.

Supplementary Fig. 28. Network analysis of putative candidate genes.

they are physically binding to each other.