iScience, Volume 25

Supplemental information

Single cell sequencing maps skeletal muscle

cellular diversity as disease

severity increases in dystrophic mouse models

Kholoud K. Saleh, Haibin Xi, Corey Switzler, Emily Skuratovsky, Matthew A. Romero, Peggie Chien, Devin Gibbs, Lily Gane, Michael R. Hicks, Melissa J. Spencer, and April D. Pyle

50:0001936: regulation of endothelial cell proliferation
GO:0045765: regulation of angiogenesis
R-MMU-446728: Cell junction organization
GO:0045446: endothelial cell differentiation
GO:2000047: regulation of cell-cell adhesion mediated by cadherin
GO:1903053: regulation of extracellular matrix organization
GO:0019755: one-carbon compound transport
50:0045216: cell-cell junction organization
50:0032272: negative regulation of protein polymerization
50:0090066: regulation of anatomical structure size
VP1259: Retinol metabolism
50:0050680: negative regulation of epithelial cell proliferation
50:0051345: positive regulation of hydrolase activity
50:0030335: positive regulation of cell migration
GO:0022604: regulation of cell morphogenesis
GO:0007264: small GTPase mediated signal transduction
30:0032526: response to retinoic acid
nmu04640: Hematopoietic cell lineage
50:0001666: response to hypoxia
30:0007163: establishment or maintenance of cell polarity

Α

wt-NSG

mdx-NSG

COLVI CD31 DAPI

С

SUPPLEMENTAL INFORMATION

Supplemental Figures legends

Figure S1 Related to Figure 1: Quality control for scRNA-seq

Violin plots of analyzed samples showing the distribution of the number of genes (nFeature_RNA), number of RNA counts (nCount_RNA) and percent mitochondrial RNA (percent.mt) in (A) replicate 1 and 2 of wt-NSG gastrocnemius muscles. (B) replicate 1 and 2 of mdx-NSG gastrocnemius muscles. (C) Replicate 1 and 2 of gastrocnemius mdxD2-NSG muscles. (D) The integration of all sample replicates. (E) UMAP embedding of all muscles integrated grouped by replicates.

Figure S2 related to Figure 3: Gene expression profile of stromal cell subtypes.

- (A) Heatmap of top 10 genes expressed in each stromal cell subtype.
- (B) Violin plot of an expanded panel gene expression used to identify stromal cells subtypes.

Figure S3 related to Figure 5: Capillary endothelial cell differences

(A) Left: capillary Density of 8 weeks gastrocnemius muscles in each mouse model. Right: IF images of representative gastrocnemius muscle cross-sections of the mouse models used for quantification, only capillaries were counted per cross-section. Scale bar on IF images are at 20 μ m. Quantification was performed using ImageJ on at least 30 images for each mouse, n=3 per mouse model. One Way-ANOVA with Tukey's multiple comparison test, mean+SD, **P*<0.05, ***P*<0.01

- (B) GO enriched terms of DEGs in Capillary EC.1.
- (C) GO enriched terms of DEGS in Capillary EC.2.

Figure S4 related to Figure 6: Outcome of NicheNet's ligand activity prediction released from stromal cells and macrophages in dystrophic muscle and their target gene expression regulated on EC.

Outcome of NicheNet's ligand activity prediction of stromal cells and macrophages in (A) mdx-NSG (wt-NSG as reference). (B) mdxD2-NSG (wt-NSG as reference) and (C) mdxD2-NSG (mdx-NSG as reference). Pearson correlation coefficient was used between prior regulatory potential scores and endothelial cell gene set assignments. Pearson correlation indicates the ability of each ligand to predict the endothelial cell (EC) target gene, therefore better predictive ligands are ranked higher.

NicheNet's ligand-target matrix denoting the regulatory potential between predicted released ligands and target gene from EC in (D) mdx-NSG ECs and (E) mdxD2-NSG ECs (F) mdxD2-NSG ECs (mdx-NSG as reference).

(G) Dot plot showing the average expression of NicheNet's predicted target genes on ECs in wt-NSG and mdx-NSG. (H) Dot plot showing the average expression of NicheNet's predicted target genes on ECs in wt-NSG and mdxD2-NSG. (I) Dot plot showing the average expression of NicheNet's predicted target genes on ECs in mdxD2- NSG and mdx-NSG

Figure S5 related to Figure 7: ECM protein staining in wt-NSG, mdx-NSG and mdxD2-NSG of gastrocnemius muscle cross sections

Immunofluorescence staining of gastrocnemius muscle cross-sections for vasculature (CD31, green), and nuclear marker (DAPI, blue) and column (A) collagen type IV (COLIV, red), (B) collagen type I (COLI, red), (C) Collagen type VI (COLVI, red) (Scale bar at 20 µm).

Figure S6 related to figure 7: Validation of fibronectin and plasminogen activator inhibitor-1 upregulation in severely dystrophic gastrocnemius muscle

- (A) Fibronectin (FN) expression analysis by western blotting in whole muscle lysates of healthy, dystrophic and severely dystrophic muscles (graph show individual data points of fold change to α-Actinin, One way ANOVA with Tukey's multiple comparisons, mean±SD. ****P*≤0.001, *****P*<0.001)</p>
- (B) Sirius red stained gastrocnemius skeletal muscle cross-sections of healthy, dystrophic and severely dystrophic mouse models (Scale bar at 50 µm).
- (C) Immunofluorescence staining for plasminogen activator inhibitor-1 (PAI-1) and CD31 colocalization of gastrocnemius skeletal muscles across the mouse models.

Sample	Cell	Cell Number	Proportion	
	subpopulation			
wtNSG	MuSC	97	2.320574	
wtNSG	MC	62	1.483254	
wtNSG	EC	519	12.41627	
wtNSG	Stromal	2604	62.29665	
wtNSG	Peri	78	1.866029	
wtNSG	Teno	130	3.110048	
wtNSG	Schwann	10	0.239234	
wtNSG	Mphage	639	15.28708	
wtNSG	Neutro	30	0.717703	
wtNSG	Mast	11	0.263158	
mdxNSG	MuSC	123	2.149222	
mdxNSG	MC	57	0.995981	
mdxNSG	EC	222	3.879084	
mdxNSG	Stromal	2446	42.73982	
mdxNSG	Peri	33	0.576621	
mdxNSG	Teno	216	3.774244	
mdxNSG	Schwann	5	0.087367	
mdxNSG	Mphage	2560	44.73178	
mdxNSG	Neutro	38	0.663987	
mdxNSG	Mast	10	0.174734	
mdxNSG	DC	13	0.227154	
mdxD2NSG	MuSC	49	0.444767	
mdxD2NSG	MC	16	0.14523	
mdxD2NSG	EC	249	2.260143	
mdxD2NSG	Stromal	2738	24.8525	
mdxD2NSG	Peri	49	0.444767	
mdxD2NSG	Teno	330	2.995371	
mdxD2NSG	Schwann	10	0.090769	
mdxD2NSG	Mphage	7426	67.40492	
mdxD2NSG	Neutro	64	0.58092	
mdxD2NSG	Mast	6	0.054461	
mdxD2NSG	DC	80	0.72615	

Table S1 related to Figure 1: Cell counts per mouse model

Table S3 related to Figure 5: Top 20 genes expressed in each endothelial cellsubpopulation cluster

p_val	p_val_adj	avg_logFC	pct.1	pct.2	pct.diff	cluster	gene
1.70E-98	3.37E-94	1.062243	0.99	0.733	0.257	Capillary.EC.1	Gpihbp1
9.88E-82	1.95E-77	1.131859	0.947	0.574	0.373	Capillary.EC.1	Rgcc
2.24E-68	4.43E-64	0.865167	0.962	0.727	0.235	Capillary.EC.1	Kdr
2.98E-68	5.90E-64	0.865231	0.96	0.746	0.214	Capillary.EC.1	Tspan13
1.72E-66	3.39E-62	0.863168	0.916	0.61	0.306	Capillary.EC.1	Cd300lg
1.56E-64	3.08E-60	0.626818	0.999	0.824	0.175	Capillary.EC.1	Cdh5
3.70E-64	7.31E-60	1.065456	0.948	0.636	0.312	Capillary.EC.1	Aqp1
4.18E-58	8.27E-54	0.758685	0.94	0.778	0.162	Capillary.EC.1	Cd200
7.53E-56	1.49E-51	0.891523	0.938	0.763	0.175	Capillary.EC.1	Tcf15
4.85E-55	9.60E-51	1.204337	0.789	0.445	0.344	Capillary.EC.1	Timp4
1.86E-54	3.68E-50	0.80661	0.913	0.737	0.176	Capillary.EC.1	Cav2
6.22E-53	1.23E-48	0.831158	0.808	0.487	0.321	Capillary.EC.1	Clic5
7.30E-53	1.44E-48	0.66859	0.996	0.841	0.155	Capillary.EC.1	Ly6c1
1.03E-52	2.04E-48	0.682497	0.872	0.659	0.213	Capillary.EC.1	Ctnnbip1
2.54E-51	5.02E-47	0.738827	0.914	0.646	0.268	Capillary.EC.1	C1qtnf9
1.17E-49	2.31E-45	0.718219	0.841	0.57	0.271	Capillary.EC.1	Jup
1.31E-49	2.58E-45	0.779908	0.866	0.646	0.22	Capillary.EC.1	Lims2
1.22E-48	2.41E-44	0.685654	0.942	0.767	0.175	Capillary.EC.1	Afdn
6.95E-47	1.38E-42	0.811243	0.897	0.676	0.221	Capillary.EC.1	Tcim
1.07E-44	2.11E-40	0.966124	0.58	0.208	0.372	Capillary.EC.1	Car4
1.62E-44	3.20E-40	0.547063	0.944	0.75	0.194	Capillary.EC.1	Emcn
1.29E-90	2.56E-86	1.137749	0.59	0.013	0.577	Capillary.EC.2	Scara5
4.09E-77	8.10E-73	0.536022	0.41	0.005	0.405	Capillary.EC.2	Mme
6.00E-75	1.19E-70	1.300116	0.692	0.032	0.66	Capillary.EC.2	Abi3bp
1.34E-69	2.65E-65	0.750619	0.538	0.016	0.522	Capillary.EC.2	Svep1
4.34E-66	8.59E-62	0.585115	0.538	0.018	0.52	Capillary.EC.2	Zfhx4
2.94E-64	5.81E-60	0.487362	0.385	0.006	0.379	Capillary.EC.2	Sox9
3.96E-64	7.84E-60	0.964631	0.538	0.02	0.518	Capillary.EC.2	Fbln1
3.81E-62	7.54E-58	0.960262	0.513	0.018	0.495	Capillary.EC.2	Gfpt2
2.43E-58	4.80E-54	1.075102	0.513	0.021	0.492	Capillary.EC.2	Dpep1
1.09E-55	2.15E-51	1.194491	0.667	0.045	0.622	Capillary.EC.2	Fndc1
1.27E-55	2.50E-51	0.655964	0.487	0.019	0.468	Capillary.EC.2	Podn
2.30E-55	4.55E-51	1.001715	0.641	0.041	0.6	Capillary.EC.2	Pdgfra
7.12E-51	1.41E-46	1.281911	0.487	0.023	0.464	Capillary.EC.2	Angptl1
2.36E-49	4.68E-45	0.644649	0.436	0.017	0.419	Capillary.EC.2	Arhgap20
6.31E-49	1.25E-44	1.099917	0.615	0.044	0.571	Capillary.EC.2	Loxl1
6.74E-49	1.33E-44	1.238539	0.59	0.04	0.55	Capillary.EC.2	Htra3
2.29E-48	4.54E-44	0.757599	0.538	0.031	0.507	Capillary.EC.2	Scn7a
7.91E-48	1.57E-43	0.677453	0.487	0.024	0.463	Capillary.EC.2	Lpar1
4.74E-46	9.38E-42	0.564926	0.564	0.036	0.528	Capillary.EC.2	Egfr
6.07E-46	1.20E-41	0.535627	0.41	0.016	0.394	Capillary.EC.2	Scara3
2.82E-152	5.58E-148	0.681372	0.768	0.011	0.757	Activated.EC	Arhgap30

1.20E-148	2.37E-144	1.227475	0.826	0.019	0.807	Activated.EC	Fcgr2b
1.17E-144	2.31E-140	1.308057	0.884	0.03	0.854	Activated.EC	Fyb
6.71E-141	1.33E-136	1.156838	0.725	0.012	0.713	Activated.EC	Ms4a6b
1.32E-139	2.61E-135	1.153249	0.841	0.026	0.815	Activated.EC	Adgre1
5.90E-139	1.17E-134	1.83153	0.899	0.037	0.862	Activated.EC	Cybb
3.69E-138	7.30E-134	0.998384	0.855	0.028	0.827	Activated.EC	Ncf2
1.85E-137	3.67E-133	1.321298	0.826	0.026	0.8	Activated.EC	C3ar1
3.35E-137	6.64E-133	1.099285	0.855	0.03	0.825	Activated.EC	Spi1
2.94E-136	5.81E-132	0.711061	0.609	0.004	0.605	Activated.EC	Tnfaip8l2
4.74E-136	9.38E-132	1.157516	0.812	0.024	0.788	Activated.EC	Aif1
1.54E-135	3.05E-131	0.810659	0.768	0.019	0.749	Activated.EC	Clec4a1
3.62E-135	7.17E-131	1.588221	0.855	0.031	0.824	Activated.EC	Ms4a6c
7.76E-134	1.54E-129	1.39379	0.913	0.041	0.872	Activated.EC	Ptprc
1.04E-133	2.05E-129	0.739551	0.667	0.009	0.658	Activated.EC	Dock2
1.21E-132	2.40E-128	1.230584	0.855	0.031	0.824	Activated.EC	Ly86
1.36E-130	2.70E-126	0.957598	0.768	0.021	0.747	Activated.EC	Csf2ra
3.29E-130	6.51E-126	0.731448	0.667	0.01	0.657	Activated.EC	Epsti1
1.72E-129	3.39E-125	0.966317	0.696	0.014	0.682	Activated.EC	Fcgr1
1.01E-128	1.99E-124	1.990227	0.942	0.055	0.887	Activated.EC	Laptm5
4.66E-87	9.22E-83	1.302079	0.664	0.06	0.604	Arterial.EC	Alpl
1.71E-86	3.38E-82	1.458309	0.744	0.093	0.651	Arterial.EC	Sema3g
1.71E-84	3.38E-80	1.770119	0.8	0.127	0.673	Arterial.EC	Fbln5
2.46E-80	4.87E-76	1.729555	0.88	0.177	0.703	Arterial.EC	Stmn2
5.95E-80	1.18E-75	1.017539	0.456	0.018	0.438	Arterial.EC	Gja5
2.67E-79	5.28E-75	1.148044	0.624	0.06	0.564	Arterial.EC	Col8a1
1.80E-67	3.56E-63	0.789036	0.528	0.045	0.483	Arterial.EC	Eps8l2
4.49E-61	8.89E-57	0.706346	0.472	0.037	0.435	Arterial.EC	Crispld1
1.30E-60	2.58E-56	0.782563	0.488	0.043	0.445	Arterial.EC	St8sia6
1.63E-60	3.22E-56	1.355213	0.784	0.166	0.618	Arterial.EC	Gja4
1.46E-58	2.90E-54	1.206113	0.704	0.13	0.574	Arterial.EC	Hey1
2.07E-58	4.09E-54	0.464141	0.264	0.002	0.262	Arterial.EC	Nebl
1.38E-50	2.74E-46	1.280464	0.6	0.104	0.496	Arterial.EC	Edn1
3.49E-42	6.90E-38	0.933705	0.512	0.09	0.422	Arterial.EC	Vegfc
1.73E-37	3.42E-33	0.476869	0.288	0.022	0.266	Arterial.EC	Alox12
3.96E-35	7.83E-31	0.67643	0.44	0.077	0.363	Arterial.EC	Atp2a3
1.46E-33	2.88E-29	0.760157	0.432	0.077	0.355	Arterial.EC	Tgfb2
1.46E-32	2.89E-28	0.831464	0.464	0.099	0.365	Arterial.EC	Palld
3.06E-32	6.06E-28	0.551942	0.392	0.061	0.331	Arterial.EC	Car7
5.44E-31	1.08E-26	1.000036	0.76	0.351	0.409	Arterial.EC	Pdcd4
7.03E-138	1.39E-133	2.182839	0.782	0.025	0.757	Venous.EC	Selp
1.62E-104	3.21E-100	1.273694	0.828	0.062	0.766	Venous.EC	Chp2
7.25E-81	1.43E-76	1.220817	0.69	0.056	0.634	Venous.EC	Slco2a1
6.41E-77	1.27E-72	2.120923	1	0.217	0.783	Venous.EC	Plvap
4.35E-75	8.60E-71	2.06285	0.897	0.146	0.751	Venous.EC	Lrg1
3.61E-74	7.15E-70	0.845658	0.575	0.039	0.536	Venous.EC	Ctnnal1
3.88E-64	7.67E-60	1.898819	0.954	0.239	0.715	Venous.EC	Vwf

6.09E-63	1.20E-58	1.171017	0.862	0.156	0.706	Venous.EC	Ptgs1
7.75E-61	1.53E-56	1.206662	0.356	0.011	0.345	Venous.EC	Ackr1
1.25E-56	2.48E-52	0.832853	0.644	0.076	0.568	Venous.EC	Cysltr1
4.21E-56	8.33E-52	0.981141	0.529	0.049	0.48	Venous.EC	Vcam1
9.33E-56	1.85E-51	0.773888	0.701	0.1	0.601	Venous.EC	Thsd7a
6.20E-54	1.23E-49	1.820038	0.989	0.421	0.568	Venous.EC	Ehd4
1.45E-52	2.87E-48	0.599418	0.414	0.026	0.388	Venous.EC	Lepr
9.73E-51	1.93E-46	0.473249	0.276	0.007	0.269	Venous.EC	Fam174b
3.17E-49	6.28E-45	1.670995	1	0.503	0.497	Venous.EC	ll6st
1.75E-48	3.46E-44	1.280101	0.816	0.193	0.623	Venous.EC	Rasa4
2.53E-46	5.01E-42	0.499891	0.287	0.01	0.277	Venous.EC	Enpp6
3.45E-46	6.82E-42	0.893335	0.471	0.049	0.422	Venous.EC	Lbp
4.11E-46	8.12E-42	0.530151	0.402	0.031	0.371	Venous.EC	Plekha7
1.36E-42	2.68E-38	1.468284	0.92	0.294	0.626	Venous.EC	Eln
2.60E-178	5.15E-174	2.834275	0.941	0.05	0.891	Pericytes	Vtn
2.07E-174	4.10E-170	2.736126	0.901	0.041	0.86	Pericytes	Kcnj8
3.61E-170	7.15E-166	2.418101	0.954	0.065	0.889	Pericytes	Pdgfrb
6.07E-167	1.20E-162	1.855282	0.888	0.039	0.849	Pericytes	Gucy1a1
1.72E-166	3.40E-162	1.920828	0.921	0.051	0.87	Pericytes	Notch3
1.77E-163	3.51E-159	2.356185	0.934	0.064	0.87	Pericytes	Steap4
3.35E-160	6.63E-156	2.506243	0.901	0.059	0.842	Pericytes	Abcc9
3.95E-156	7.81E-152	1.723156	0.875	0.049	0.826	Pericytes	Gucy1b1
1.68E-155	3.32E-151	1.651181	0.803	0.028	0.775	Pericytes	Rgs4
9.01E-154	1.78E-149	1.352332	0.77	0.024	0.746	Pericytes	Heyl
2.21E-153	4.37E-149	1.867014	0.855	0.048	0.807	Pericytes	Higd1b
2.09E-149	4.14E-145	1.805337	0.882	0.062	0.82	Pericytes	Cox4i2
2.05E-143	4.05E-139	2.107985	0.934	0.092	0.842	Pericytes	Aspn
1.05E-141	2.07E-137	1.196336	0.77	0.035	0.735	Pericytes	Arhgef17
5.20E-134	1.03E-129	2.38312	0.934	0.115	0.819	Pericytes	Ndufa4l2
2.23E-133	4.41E-129	1.686806	0.868	0.079	0.789	Pericytes	Cygb
2.32E-127	4.58E-123	1.32045	0.822	0.069	0.753	Pericytes	Lhfp
2.97E-127	5.88E-123	1.109595	0.664	0.023	0.641	Pericytes	ltga7
1.09E-125	2.15E-121	1.188494	0.724	0.037	0.687	Pericytes	Atp1b2
7.59E-125	1.50E-120	1.122424	0.724	0.04	0.684	Pericytes	Cystm1