iScience, Volume 25

## Supplemental information

The role of Phe150 in human

voltage-gated proton channel

Xin Wu, Lu Zhang, and Liang Hong

## SUPPLEMENTARY INFORMATION

The role of Phe150 in human voltage-gated proton channel

Xin Wu, Lu Zhang, Liang Hong



Figure.S1 hH<sub>v</sub>1 F150 mutations affect voltage-dependent activation of the channel. Related to Figure 1. Representative currents were recorded in HEK293 cells expressing WT(150F) (**A**), F150A (**B**), F150W (**C**), or F150R (**D**),  $pH_i=pH_0=6.0$ . For clarity, only the first and last traces elicited by the depolarization pre-step are shown. The corresponding pulse protocols are shown above the current traces.



Figure.S2 The size of side chain does not correlate with  $H_v1$  voltage-dependent activation. Related to Figure 1. The  $V_{1/2}$  values obtained from *G-V* curves are plotted with size of the substituted side chain at position F150. There were no significant correlations between the size of side chain and the  $V_{1/2}$  values.



Figure. S3 F149 and M151 do not interact with R2 and R3 during the channel activation. Related to Figure 2. A. Summary of  $|\Delta\Delta G_0|$  determined by the double mutant cycle analysis. A significant interaction between two residues was defined as a  $|\Delta\Delta G_0| > 4.2 \text{ kJ/mol}$  (dot line). B-E. Effects of mutations on the *G-V* relationship of the channels. Voltage-dependent channel activations were shown for R2K with F149 (R2K(F149)) and R2K with F149W (R2K(F149W)) (B), R3K(F149) and R3K(F149W) (C), R2K(M151) and R2K(M151W) (E), and R3K(M151) and R3K(M151W) (F). In B-C, the dash line (black) represented *G-V* curve of WT channel (F149), and the dash line (red) represented *G-V* curve of WT channel (M151), and the dash line (red) represented *G-V* curve of WT channel (M151), and the dash line (red) represented *G-V* curve of M151W. Lines indicate fits of the data to a *Boltzmann* function. Proton currents were recorded in HEK293 cells expressing H<sub>v</sub>1 mutations, pHi=pH<sub>0</sub>=6.0. Data are represented as mean ± SEM.



Figure. S4 Double mutant cycle analysis indicates F150 interacts with D112E. Related to Figure 2. Voltage-dependent channel activations were shown for F150W with D112 (F150W(D112)) and F150W with D112E (F150W (D112E)), the dash line (black) represented *G-V* curve of WT channel (D112), and the dash line (red) represented *G-V* curve of D112E. The combination F150W-D112E had  $|\Delta\Delta G_0|$  value (6.0 kJ/mol) larger than 4.2 kJ/mol, indicating a thermodynamic coupling between F150 and D112. Lines indicate fits of the data to a *Boltzmann* function. Proton currents were recorded in HEK293 cells expressing H<sub>v</sub>1 mutations, pH<sub>i</sub>=pH<sub>o</sub>=6.0. Data are represented as mean ± SEM.



**Figure.S5 Effects of D112E on the interactions between F150 and R2/R3.** Related to Figure 2. **A.** Summary of  $|\Delta\Delta G_0|$  determined by the double mutant cycle analysis. A significant interaction between two residues was defined as a  $|\Delta\Delta G_0| > 4.2 \text{ kJ/mol}$  (dot line). **B-C.** Voltage-dependent channel activations were shown for R2K-F150W with D112 (R2K-F150W(D112)) and R2K-F150W with D112E (R2K-F150W (D112E)) (**B**), R3K-F150W with D112 (R3K-F150W(D112)) and R3K-F150W with D112E (R3K-F150W (D112E)) (**C**). In **B-C**, the dash line (black) represented *G-V* curve of WT channel (D112), and the dash line (red) represented *G-V* curve of D112E. Lines indicate fits of the data to a *Boltzmann* function. Proton currents were recorded in HEK293 cells expressing H<sub>v</sub>1 mutations, pH<sub>i</sub>=pH<sub>0</sub>=6.0. Data are represented as mean ± SEM.



Figure.S6 Effects of R2K on the activation kinetics of the channel. Related to Figure 3. **A.** Representative rising currents recorded from R2K. Currents were measured from a holding potential of -60 mV to test potentials ranging between -60 and +120 mV in 10 mV steps. **B.** The channel opening time constant  $T_{act}$  in WT or R2K mutation.  $T_{act}$  was obtained from *exponential* fit to rising currents. Proton currents were recorded in HEK293 cells expressing H<sub>v</sub>1 mutations, pH<sub>i</sub>=pH<sub>0</sub>=6.0. Data are represented as mean ± SEM.



**Figure.S7 Effects of R3K on the deactivation kinetics of the channel.** Related to Figure 4. **A.** Representative tail currents recorded from R3K. The tail currents were elicited by a prepulse to 120 mV, in 10 mV decrements from 0 to -60 mV. The dotted line box represents the zoomed area. **B.** The deactivation (channel closing) time constant  $T_{deact}$  in WT or R3K mutation.  $T_{deact}$  was obtained from *exponential* fit to tail currents. Proton currents were recorded in HEK293 cells expressing H<sub>v</sub>1 mutations, pH<sub>i</sub>=pH<sub>o</sub>=6.0. Data are represented as mean ± SEM.



**Figure.S8 Cysteine cross linking analysis for positions F150 and R3.** Related to Figure 4. **A-B.** Representative proton currents measured in an inside-out patch from a *Xenopus* oocyte expressing H<sub>v</sub>1 F150C (**A**) or F150C-R3C (**B**) before (black traces) and after (gray traces) addition 2  $\mu$ M Cd<sup>2+</sup> in the bath solution, pH<sub>i</sub>=pH<sub>0</sub>=6.0. Currents were measured from a holding potential of -60 mV to the test potential of +120 mV in inside-out patch configuration. The dash lines represent 0 pA. **C.** Summary of reduction of proton current produced by Cd<sup>2+</sup>. Data are represented as mean ± SEM. \**p* < 0.05, paired, two-tailed Student's t test.

Channel V<sub>1/2</sub>(mV) k(mV) n F150A 6 37.9±3.5 10.9±0.6 F150C 8 41.8±3.6 12.1±0.7 F150D 5 16.4±5.1 14.0±0.7 F150E 6 -8.3±3.5 14.5±0.8 150F(WT) 10 61.7±2.7 11.6±0.4 F150G 8 39.4±3.1 13.6±0.7 F150H 8 -26.9±3.4 10.7±0.5 F150I 6 53.7±3.3 11.9±0.6 F150K 5 -49.7±4.6 10.1±0.9 F150L 4 26.9±3.6 12.3±0.6 F150M 6 56.3±3.2 11.4±0.5 F150N 5 8.1±3.1 12.7±0.7 F150P 6 -7.7±4.2 13.1±0.7 F150Q 8 -6.9±3.4 11.1±0.5 F150R 4 -23.6±5.2 11.6±0.8 F150S 8 29.8±2.5 13.2±0.7 F150T 8 22.9±2.7 15.6±0.8 F150V 6 31.8±3.2 11.1±0.7 F150W 9 5.8±3.2 13.4±0.9 F150Y 5 7.0±3.2 10.7±0.6

Table.S1 Effects of F150 mutations on the voltage-dependent activation of  $H_v$ 1 channels. Related to Figure 1.

 $V_{1/2}$  and *k* values were derived from the *Boltzmann* fit and obtained from fitting conductance versus voltage (*G-V*) relations. Values shown as mean ± SEM.

Table.S2 The physicochemical properties of amino acids including hydrophobicityand side chain volume.Related to Figure 1.

| Amino acid at | Hydrophobicity   | Hydrophobicity     | Side chain volume |
|---------------|------------------|--------------------|-------------------|
| position 150  | (Kyte-Doolittle) | (Goldman-Engelman- | (Å <sup>3</sup> ) |
|               |                  | Steitz)            |                   |
| A             | 1.8              | 1.6                | 88.6              |
| С             | 2.5              | 2.0                | 108.5             |
| D             | -3.5             | -9.2               | 111.1             |
| E             | -3.5             | -8.2               | 138.4             |
| F             | 2.8              | 3.7                | 189.9             |
| G             | -0.4             | 1.0                | 60.1              |
| Н             | -3.2             | -3.0               | 153.2             |
| I             | 4.5              | 3.1                | 166.7             |
| К             | -3.9             | -8.8               | 168.6             |
| L             | 3.8              | 2.8                | 166.7             |
| М             | 1.9              | 3.4                | 162.9             |
| N             | -3.5             | -4.8               | 114.1             |
| Р             | -1.6             | -0.2               | 112.7             |
| Q             | -3.5             | -4.1               | 143.8             |
| R             | -4.5             | -12.3              | 173.4             |
| S             | -0.8             | 0.6                | 89.0              |
| Т             | -0.7             | 1.2                | 116.1             |
| V             | 4.2              | 2.6                | 140.0             |
| W             | -0.9             | 1.9                | 227.8             |
| Y             | -1.3             | -0.7               | 193.6             |

Table.S3 Effects of mutations in S2 and S4 segments on the voltage-dependentactivation of Hv1 channels. Related to Figures 1-2.

| Channel         | n  | V1/2(mV)  | k(mV)    | ΔG₀(kjmol⁻¹) | ΔΔG₀ (kjmol⁻¹) |
|-----------------|----|-----------|----------|--------------|----------------|
| WT              | 10 | 61.7±2.7  | 11.6±0.4 | 13.1±0.3     | n/a            |
| R1K             | 6  | 117.2±3.4 | 14.3±1.3 | 20.8±1.2     | n/a            |
| R2K             | 6  | 25.3±4.0  | 10.2±1.0 | 6.1±0.4      | n/a            |
| R3K             | 8  | 96.6±5.1  | 14.1±1.0 | 17.2±0.6     | n/a            |
| N4K             | 6  | 52.7±2.3  | 8.0±0.9  | 17.1±1.5     | n/a            |
| F150W           | 9  | 5.8±3.2   | 13.4±0.9 | 0.8±0.5      | n/a            |
| F150W-R1K       | 7  | 78.9±4.7  | 17.6±0.9 | 11.1±0.3     | 2.7±1.4        |
| F150W-R2K       | 7  | 22.1±2.1  | 14.7±1.1 | 3.8±0.4      | 10.1±0.9       |
| F150W-R3K       | 6  | 119.2±3.2 | 17.8±1.2 | 17.0±1.2     | 12.1±1.5       |
| F150W-N4K       | 6  | 6.8±2.3   | 8.3±1.0  | 2.6±1.0      | 2.2±1.8        |
| D112E           | 8  | 43.3±3.6  | 10.8±0.6 | 10.3±1.1     | n/a            |
| D112E-F150W     | 6  | 15.8±2.6  | 10.7±0.7 | 3.9±0.9      | 6.0±1.6        |
| D112E-F150W-R2K | 6  | 31.7±0.9  | 14.0±1.0 | 5.8±0.6      | 4.9±1.4        |
| D112E-F150W-R3K | 6  | 125.0±3.0 | 16.3±1.4 | 19.8±2.2     | 5.8±2.6        |
| F149W           | 6  | 57.5±2.1  | 12.3±0.4 | 11.6±0.6     | n/a            |
| F149W-R2K       | 5  | 18.8±1.5  | 9.2±0.7  | 5.1±0.4      | 0.6±0.9        |
| F149W-R3K       | 5  | 98.6±4.9  | 18.8±1.2 | 13.1±0.9     | 2.6±1.3        |
| M151W           | 6  | 44.2±3.5  | 9.7±0.6  | 11.7±1.5     | n/a            |
| M151W-R2K       | 4  | 54.0±3.1  | 16.5±0.6 | 8.1±0.4      | 3.5±1.6        |
| M151W-R3K       | 4  | 83.3±4.3  | 17.0±0.7 | 12.2±0.9     | 3.6±1.8        |

 $V_{1/2}$  and *k* values were derived from the *Boltzmann* fit and obtained from fitting *G*-*V* relations. Values shown as mean ± SEM.  $\Delta G_0$  and  $|\Delta \Delta G_0|$  were determined by the equations shown in the methods. *n/a*, not applicable.

| Constructs | Туре    | Primer Sequences (5' to 3')                 |  |
|------------|---------|---------------------------------------------|--|
| F150A      | Forward | GAGCATCACCATCTTGGTCTTTGCTATGATGGAGATCATC    |  |
|            | Reverse | GATGATCTCCATCATAGCAAAGACCAAGATGGTGATGCTC    |  |
| F150C      | Forward | GCATCACCATCTTGGTCTTTTGTATGATGGAGATCATC      |  |
|            | Reverse | GATGATCTCCATCATACAAAAGACCAAGATGGTGATGC      |  |
| F150D      | Forward | CATGAGCATCACCATCTTGGTCTTTGATATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATATCAAAGACCAAGATGGTGATGCTCATG |  |
| F150E      | Forward | CATGAGCATCACCATCTTGGTCTTTGAGATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATCTCAAAGACCAAGATGGTGATGCTCATG |  |
| F150G      | Forward | GAGCATCACCATCTTGGTCTTTGGTATGATGGAGATCATC    |  |
|            | Reverse | GATGATCTCCATCATACCAAAGACCAAGATGGTGATGCTC    |  |
| F150H      | Forward | CATGAGCATCACCATCTTGGTCTTTCATATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATATGAAAGACCAAGATGGTGATGCTCATG |  |
| F150I      | Forward | GAGCATCACCATCTTGGTCTTTATTATGATGGAGATCATC    |  |
|            | Reverse | GATGATCTCCATCATAATAAAGACCAAGATGGTGATGCTC    |  |
| F150K      | Forward | CATGAGCATCACCATCTTGGTCTTTAAGATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATCTTAAAGACCAAGATGGTGATGCTCATG |  |
| F150L      | Forward | GCATCACCATCTTGGTCTTTTTGATGATGGAGATCATC      |  |
|            | Reverse | GATGATCTCCATCATCAAAAAGACCAAGATGGTGATGC      |  |
| F150M      | Forward | CATGAGCATCACCATCTTGGTCTTTATGATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATCATAAAGACCAAGATGGTGATGCTCATG |  |
| F150N      | Forward | CATGAGCATCACCATCTTGGTCTTTAATATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATATTAAAGACCAAGATGGTGATGCTCATG |  |
| F150P      | Forward | GAGCATCACCATCTTGGTCTTTCCTATGATGGAGATCATC    |  |
|            | Reverse | GATGATCTCCATCATAGGAAAGACCAAGATGGTGATGCTC    |  |
| F150Q      | Forward | CATGAGCATCACCATCTTGGTCTTTCAGATGATGGAGATCATC |  |
|            | Reverse | GATGATCTCCATCATCTGAAAGACCAAGATGGTGATGCTCATG |  |
| F150R      | Forward | CATGAGCATCACCATCTTGGTCTTTAGGATGATGGAGATCATC |  |

 Table S4. List of primers used for mutagenesis.
 Related to STAR Methods.

|             | Reverse | GATGATCTCCATCATCCTAAAGACCAAGATGGTGATGCTCATG |
|-------------|---------|---------------------------------------------|
| F150S       | Forward | CATGAGCATCACCATCTTGGTCTTTAGTATGATGGAGATCATC |
|             | Reverse | GATGATCTCCATCATACTAAAGACCAAGATGGTGATGCTCATG |
| F150T       | Forward | CATGAGCATCACCATCTTGGTCTTTACTATGATGGAGATCATC |
|             | Reverse | GATGATCTCCATCATAGTAAAGACCAAGATGGTGATGCTCATG |
| F150V       | Forward | GCATCACCATCTTGGTCTTTGTTATGATGGAGATCATC      |
|             | Reverse | GATGATCTCCATCATAACAAAGACCAAGATGGTGATGC      |
| F150W       | Forward | GAGCATCACCATCTTGGTCTTTTGGATGATGGAGATCATC    |
|             | Reverse | GATGATCTCCATCATCCAAAAGACCAAGATGGTGATGCTC    |
| F150Y       | Forward | GAGCATCACCATCTTGGTCTTTTATATGATGGAGATCATC    |
|             | Reverse | GATGATCTCCATCATATAAAAGACCAAGATGGTGATGCTC    |
| R1K (R205K) | Forward | CCTGCTGATTCTGCTCAAGCTGTGGCGGGTG             |
|             | Reverse | CACCCGCCACAGCTTGAGCAGAATCAGCAGG             |
| R2K (R208K) | Forward | CTCCGGCTGTGGAAGGTGGCCCGGATC                 |
|             | Reverse | GATCCGGGCCACCTTCCACAGCCGGAG                 |
| R3K (R211K) | Forward | GCTGTGGCGGGTGGCCAAGATCATCAATGGG             |
|             | Reverse | CCCATTGATGATCTTGGCCACCGCCACAGC              |
| N4K (N214K) | Forward | GTGGCCCGGATCATCAAAGGGATTATCATCTC            |
|             | Reverse | GAGATGATAATCCCTTTGATGATCCGGGCCAC            |
| R3C (R211C) | Forward | CTGTGGCGGGTGGCCTGCATCATCAATGGG              |
|             | Reverse | CCCATTGATGATGCAGGCCACCGCCACAG               |
| D112E       | Forward | GGTTCTGGAAGCCCTCCTGGTGCTTGCTG               |
|             | Reverse | GAGGGCTTCCAGAACCACCAAGCAGATGATG             |
| F149W       | Forward | CTTGGTCTGGTTTATGATGGAGATCATCTTTAAATTATTTG   |
|             | Reverse | CCATCATAAACCAGACCAAGATGGTGATGCTCATG         |
| M151W       | Forward | CTTTTTTGGATGGAGATCATCTTTAAATTATTTGTC        |
|             | Reverse | GATCTCCATCCAAAAAAAGACCAAGATGGTGATGCTC       |