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SUMMARY
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia
caused bymutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes includemito-
chondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje
neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia.
Here, we performmulti-omic profiling in sacsin knockout (KO) cells and identify alterations inmicrotubule dy-
namics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA struc-
ture, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS
mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cere-
bellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal
and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins
is a causal molecular deficit in ARSACS.
INTRODUCTION

Autosomal recessive spastic ataxia of Charlevoix-Saguenay

(ARSACS) is a childhood-onset neurological disease character-

ized by pyramidal spasticity, cerebellar ataxia, and Purkinje cell

loss, which is thought to have both neurodegenerative and neu-

rodevelopmental components (Vermeer et al., 1993). ARSACS

was initially believed to be restricted to the Charlevoix-

Saguenay region of Quebec, Canada, due to a founder effect

mutation (Bouchard et al., 1978). However, since the discovery

of the causal gene, more than 170 distinct mutations in SACS

have been identified worldwide, and ARSACS is now estimated

to be the second most common autosomal recessive cerebellar

ataxia (Engert et al., 2000; Synofzik et al., 2013).

Sacsin/DNAJC29 expression is ubiquitous but is especially

high in large neurons in brain regions associated with motor sys-

tems, including layer-V pyramidal neurons in the motor cortex
Cell R
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and cerebellar Purkinje cells (Saunders et al., 2018). Sacsin is a

large 520 kDa modular protein with domains that implicate it in

molecular chaperone and protein quality control systems (An-

derson et al., 2010; Parfitt et al., 2009). These include an N-termi-

nal ubiquitin-like domain, regions of homology to the ATPase

domain of Hsp90, and a functional J-protein domain, suggesting

that sacsin has the ability to modulate Hsp70 chaperone activity.

However, the large size of sacsin has hampered biochemical

and structural investigations into its function. Patient-derived

fibroblasts and sacsin knockout (KO) cell models demonstrate

reorganization of the vimentin intermediate filament cytoskel-

eton, altered mitochondrial network dynamics and trafficking,

decreased mitochondrial respiration, and increased mitochon-

drial stress (Bradshaw et al., 2016; Duncan et al., 2017;

Gentil et al., 2019; Girard et al., 2012; Lariviere et al., 2015). Ap-

tamer-based proteomics in sacsin KO SH-SY5Y neuroblastoma

cells also found altered expression of proteins involved in
eports 41, 111580, November 1, 2022 Crown Copyright ª 2022 1
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synaptogenesis and cell engulfment (Morani et al., 2020).

Sacs(�/�) mice recapitulate the motor deficits and cerebellar at-

rophy observed in ARSACS patients, and undergo progressive

age-dependent loss of cerebellar Purkinje neurons, abnormal

bundling of non-phosphorylated neurofilament (Lariviere et al.,

2015, 2019), and changes to the structure of Purkinje neuron

synapses in the deep cerebellar nucleus (DCN) (Ady et al., 2018).

While these cellular phenotypes may affect neuron function

and survival, their precise relationship to neurodegeneration in

ARSACS is unclear. For example, diverse neurodegenerative

diseases exhibit altered mitochondrial dynamics and intermedi-

ate filament phenotypes (Didonna and Opal, 2019; Stanga et al.,

2020), although whether these phenotypes are causal or merely

components of a conserved neurodegenerative cascade is an

important unanswered question (Gan et al., 2018). Here, we

take a multi-omic approach to determine how the loss of sacsin

causes these phenotypes and why this disease manifests as a

cerebellar ataxia. Our data suggest that altered trafficking of syn-

aptic adhesion proteins is a causal molecular deficit in ARSACS.

RESULTS

Comprehensive proteomic characterization of sacsin
KO cells
To understand the molecular deficiencies in ARSACS, we gener-

ated a sacsin KO human SH-SY5Y cell line (Figure S1A), which is

widely used to model neurodegenerative diseases (Xicoy et al.,

2017). Consistent with ARSACS patient fibroblasts (Duncan

et al., 2017) and Sacs(�/�) mice (Lariviere et al., 2015), KO cells

had abnormal bundling and asymmetric partitioning of multiple

intermediate filaments, including vimentin (Figures 1A and

S1B), neurofilament heavy, and peripherin (Figures S1C–S1E).

As phosphorylation is a key post-translational modification con-

trolling intermediate filament assembly and disassembly (Snider

and Omary, 2014), we performed quantitative proteomic and

phosphoproteomic profiling of sacsin KO cells (Table S1). We

identified decreased abundance of several proteins previously

described in ARSACS patient fibroblasts, including vimentin,

the mitochondrial protein ATP5J, and the autophagy-regulated

scaffold SQSMT1/p62 (Duncan et al., 2017) (Figure 1B and

Table S1). Among the overabundant proteins were the tau-

tubulin kinase 1 (TTBK1) and microtubule-associated protein

tau (MAPT) (Figures 1B and S1F–S1I), which was hyperphos-

phorylated at several sites (Figures S1J–S1L). To assess the

functional significance of each phosphosite, we analyzed our

data in light of a recent machine-learning approach that esti-

mated the effects of individual phosphosites on organism fitness

(Ochoa et al., 2020). This analysis identified several highly func-

tional hypophosphorylated residues in vimentin and the nuclear

lamina intermediate filaments LMNA/LMNB2 (Figure 1C), which

is intriguing considering that ARSACS neurons have altered nu-

clear shape and positioning (Duncan et al., 2017). Other hypo-

phosphorylated proteins included the focal adhesion (FA) protein

zyxin (ZYX) and ataxin 2-like protein (ATXN2L). In addition to tau,

several other microtubule-regulating proteins were hyperphos-

phorylated, including the primary cilia protein ARL3 (Zhou

et al., 2006), and the scaffold stathmin (STMN1), which promotes

microtubule assembly in a pS16-dependent fashion (Di Paolo
2 Cell Reports 41, 111580, November 1, 2022
et al., 1997). When analyzing changes in phosphorylation cor-

rected for changes in total protein levels, the most hypophos-

phorylated proteins were RPS6, NLM1, and ATXN2L, which

have been implicated in neuronal autophagy and likely reflect

increased autophagy in sacsin KO cells (Figure S1M) (Duncan

et al., 2017; Key et al., 2020; Klionsky et al., 2021; Tang et al.,

2021). The most hyperphosphorylated residues were again in

microtubule-related proteins, such as HN1/JPT1 and ARL3. In

all, these results suggest that altered phosphorylation may be

a contributing factor to cellular ARSACS phenotypes.

Kinases are attractive drug targets (Krahn et al., 2020) but are

typically lowly expressed and difficult to detect with standard

proteomics. Therefore, we enriched for kinases using multi-

plexed kinase inhibitor beads and performed quantitative mass

spectrometry (Cooper et al., 2013). The kinome was broadly

altered in sacsin KO cells (Figures S1N and S1O; Table S1). Inter-

estingly, specific families were generally misexpressed in similar

directions. For example, the tyrosine kinase family (TK) members

were generally downregulated, while CMGC family members

were generally upregulated (Figure 1D). Strikingly, we identified

ten overexpressed kinases which directly phosphorylate tau at

residues that were hyperphosphorylated in sacsin KO cells

(Figures 1E and S1N). The most overabundant kinase, BRSK2,

and additional CAMK familymembersMARK1/2/3, all phosphor-

ylate Ser262 in the microtubule-binding domain of tau (Ando

et al., 2016; Kishi et al., 2005) (Figures 1E–1H). Phosphorylation

of tau Thr231 byDYRK1A is also associatedwith the detachment

of tau frommicrotubules (Coutadeur et al., 2015; Sengupta et al.,

1998). In pathological settings, tau overabundance and hyper-

phosphorylation can cause the aggregation of insoluble tau

and the formation of neurofibrillary tangles. However, we did

not find evidence of increased tau aggregation in either undiffer-

entiated or neuronally differentiated sacsin KO cells (Figure S1P).

Yet, independent of aggregation, tau phosphorylation can affect

microtubule stability, interfere with motor protein function, and

disrupt axonal trafficking (Dixit et al., 2008; Ikezu et al., 2020;

Stoothoff and Johnson, 2005). Combined with the altered phos-

phorylation of other microtubule-related proteins, these data

suggest that microtubule structure or function may be altered

in sacsin KO cells.

Microtubule organization and dynamics are altered in
sacsin KO cells
We next sought to determine whether microtubule structure and

functionare affected in sacsinKOcells.We found that cage-like vi-

mentinbundles formaroundg-tubulin, amarker of themicrotubule

organizing center (MTOC), which is a central hub for microtubule

nucleation and cargo transport (Martin and Akhmanova, 2018)

(Figures 2A and S2A). Acetylated a-tubulin, amicrotubule-stabiliz-

ing post-translational modification, was increased in sacsin KO

cells without affecting total a-tubulin distribution or level

(Figures 2B–2D). To assess microtubule dynamics, we treated

cells with the microtubule destabilizer nocodazole and found

enhanced microtubule polymerization following nocodazole

washout (Figures 2E and 2F). Sacsin KO cells also demonstrated

increasedmicrotubule polymerizationanddisorderedmovements

as assessed by live cell imaging of themicrotubule plus-end bind-

ing protein EB1:GFP (Figures 2G and 2H; Videos S1 and S2).
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Figure 1. Proteomic profiling of sacsin KO cells

(A) Representative confocal images of control (WT) and sacsin KO SH-SY5Y neuroblastoma cells immunostained for the intermediate filament protein vimentin.

Scale bars, 10 mm.

(B) Global proteomic profiling of sacsin KO SH-SY5Y cells. Significance cutoffs: p < 0.05 and log2 fold change (f.c.) ±0.4, denoted by black outline.

(C) Functional analysis of altered phosphosites in sacsin KO cells. y axis is the functional score assigned by Ochoa et al. (2020), with higher scores reflecting

increased effects on fitness. Dot color and size reflect log2 f.c. Black outlines label phosphosites with p < 0.05 and log2 f.c. ±0.4.

(D) Phylogenetic tree of the kinome in sacsin KO cells. Color indicates log2 f.c. of kinase abundance, size indicates�log10 p value. Underlined abbreviations refer

to phylogenetically related kinase families.

(E) Protein map of tau isoform 2 (2N4R). Phosphosites identified in phosphoproteomic profiling are labeled above diagram. Tau kinases identified in the kinome

profiling are listed below, indicating validated phosphosites. Colored circles correlate with log2 f.c. of differentially expressed phosphosites or kinases.

(F–H) Western blot and quantification for BRSK2, and the BRSK2 target residue pTAU S262. n = 3, SEM, Student’s t test, ***p < 0.001.

Article
ll

OPEN ACCESS
Mitochondrial trafficking in neurons is dependent on microtu-

bules (Melkov and Abdu, 2018), and tau overexpression and

hyperphosphorylation can cause decreased mitochondrial traf-

ficking (Ando et al., 2016; Lopes et al., 2017; Reddy, 2011),

buildup of mitochondria around the MTOC (Ebneth et al., 1998),

and DRP1 mislocalization and reduced mitochondrial fission

(DuBoff et al., 2012; Manczak and Reddy, 2012). In ARSACS,

mitochondria also accumulate around proximal dendrites (Girard

et al., 2012) and exhibit reduced DRP1-dependent fission (Brad-

shaw et al., 2016). We observed occlusion of mitochondria
around vimentin bundles (Figure S2B) with no alterations in the

actin cytoskeleton (Duncan et al., 2017) (Figure S2C). To assess

how these alterations affect mitochondria in neurons, we per-

formed neuronal differentiation of SH-SY5Y cells (Shipley et al.,

2016). While wild-type (WT) and sacsin KO cells expressed indis-

tinguishable levels of neuronal markers, neurites were fewer and

shorter in sacsin KO cells (Figures S2D–S2G), contained fewer

mitochondria (Figure S2H), and had diminished mitochondrial

movement (Figure S2I and Video S3). Our proteomics data also

identified several hyperphosphorylated kinesin proteins, which
Cell Reports 41, 111580, November 1, 2022 3
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Figure 2. Altered microtubule structure and dynamics in sacsin KO cells

(A) Confocal immunofluorescent images of sacsinWT/KO cells stained for vimentin, and theMTOCmarker g-tubulin. Arrowheads point to themost intense signal

in each cell, showing that vimentin bundles surround the MTOC in sacsin KO cells. Scale bar, 10 mm.

(B) Confocal images of immunostaining for a-tubulin, neurofilament heavy, and acetylated tubulin in WT and sacsin KO cells. Arrowheads mark coincidence of

acetylated tubulin and neurofilament bundles, suggesting that acetylated tubulin structures are found in proximity to neurofilament bundles, but also localize

throughout the cell. Scale bar, 10 mm.

(C and D) Quantification of images in (B). n = 3, SEM, Student’s t test.

(E) Confocal images of WT/KO cells treated with nocodazole (NDZ) labeled for a-tubulin and acetylated tubulin at indicated time points following nocodazole

washout. Scale bar, 10 mm.

(F) Quantification of (E). n = 3 coverslips, SEM, one-way ANOVA with Tukey’s post test.

(G) Representative TIRFmicroscopy images fromWT and sacsin KO cells expressing EB1-GFP.Microtubule growth tracks are color codedmarking their position

over time. Insets show the enlargement of outlined regions and movement of individual comets over time (circles). Numbers refer to seconds.

(H) Quantification of microtubule polymerization velocity marked by EB1-GFP movement in WT/KO cells (F and Video S1). n = 34 WT and n = 25 sacsin KO cells

from three independent experiments, Student’s t test, **p < 0.01.
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shuttle mitochondria along microtubule tracts (Frederick and

Shaw, 2007) (Table S1). In all, these results demonstrate that

the loss of sacsin affects microtubule structure, dynamics, and

function, in agreement with recent findings demonstrating that

sacsin directly interacts with microtubules (Francis et al., 2022).

FA organization and dynamics are disrupted in sacsin
KO cells
To more systematically characterize our proteomic datasets, we

performed gene ontology (GO) analysis for the total proteome
4 Cell Reports 41, 111580, November 1, 2022
and phosphoproteome (Figures 3A and 3B; Table S2). The top

associated terms in the proteome were related to ‘‘focal adhe-

sions,’’ including ‘‘integrin signaling,’’ ‘‘actin filament,’’ and

‘‘regulation of protein localization to plasma membrane.’’ ‘‘Focal

adhesion’’ was also a top term in phosphoproteome, suggesting

that FA proteins are affected at both the total protein and post-

translational levels. FAs are plasma-membrane-associated

macromolecular assemblies that physically link the intracellular

cytoskeleton and extracellular matrix (ECM). FAs are composed

of integrin receptors bridging the ECM with actin bundles, which
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interact with microtubules and intermediate filaments to coordi-

nate dynamic regulation of FA structure (Ezratty et al., 2005;

Leube et al., 2015; Seetharaman and Etienne-Manneville,

2019). In the brain, FAs are critical for structural remodeling dur-

ing axon growth, synapse formation, and maintenance (Kilinc,

2018). Immunolabeling for the core FA proteins paxillin and vin-

culin revealed decreased FA number, area, and aspect ratio in

sacsin KO cells (Figures 3C and S3A–S3G) while total levels of

these proteins were unaffected (Figure S3H and Table S1). While

paxillin is primarily localized at FAs, it also is known to interact

with the MTOC (Robertson and Ostergaard, 2011), and we

observed perinuclear accumulation of paxillin coinciding with

the vimentin bundle (Figure S3A). Microtubules regulate vinculin

localization to FAs (Ng et al., 2014), andwe found reduced vincu-

lin and vimentin dynamics in sacsin KO cells using fluorescence

recovery after photobleaching (FRAP) (Figures 3D, S3I, and S3J).

We next removed cell bodies with hypotonic shock, leaving only

the structural remnants of cell-ECM interactions, and again

found reduced vinculin structures, suggesting that the mislocal-

ization of adhesion proteins also results in decreased cell-ECM

interactions (Figures S3K–S3N). These findings were consistent

in sacsin KO HEK293 cells, which were generated using an alter-

native CRISPR-Cas9 genome-editing strategy (Duncan et al.,

2017) (Figures S3O–S3S). Our proteomics data also revealed

decreased levels of several integrin proteins (Figure S3T). Local-

ization of ITGAV to FAs was diminished in sacsin KO cells (Fig-

ure 3E), while ITGA6 was sequestered in the vimentin bundle

(Figure S3U). In all, these data suggest that the trafficking, struc-

ture, and function of multiple FA proteins is affected in sacsin KO

cells.

To determine whether levels of adhesion proteins were also

affected in neurons, we performed quantitative proteomics of

primary cortical neuron cultures derived from embryonic day

15.5 Sacs(�/�) mice (Figure S3V and Table S1). These cultures

are composed of �75% NeuN+ neurons, but also contain a

smattering of other cell types such as astrocytes (Pearson

et al., 2016). While no proteins passed statistical cutoffs in

both datasets (p < 0.05, log2 fold change ±0.4), comparing levels

of proteins which were significantly affected in either dataset re-

vealed a statistically significant relationship, suggesting that a

subset of proteins is affected in both cellular contexts (Figure 3F).

Notably, these proteins included vimentin and several integrins.

The most differentially expressed proteins in cortical cultures

included neuron-specific proteins, such as Nrsn1, which binds

tubulin and plays a role in vesicular trafficking (Ida et al., 2004;

Kiyonaga-Endou et al., 2016), and astrocyte-specific proteins,

such as the intermediate filament protein GFAP (Murtinheira

et al., 2022). This may suggest that multiple cell types are

affected by the loss of sacsin.Whenwe analyzed statistically sig-
Figure 3. FA and integrin localization is altered in sacsin KO cells

(A and B) GO term analysis of differentially expressed proteins (A) and phosphor

(C) Confocal images of WT/KO SH-SY5Y cells immunolabeled for vimentin and t

(D) FRAP analysis of the FA protein vinculin in cells expressing tomato-VCL. 2 3

monitored over 50 cycles of imaging with a 1-s interval. n = 10 cells from each o

(E) Confocal images of cells immunolabeled for ITGAV. Scale bar, 10 mm.

(F) Scatterplot of statistically significant proteins identified in either SH-SY5Y or p

correlation coefficient.
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nificant proteins by GO term analysis, we saw similar processes

as those identified in SH-SY5Y cells (Figure 3A), including ‘‘cell

adhesion molecule binding,’’ ‘‘actin filament bundle,’’ and ‘‘focal

adhesion’’ (Figure S3W). As the proteins input into each GO term

analysis were completely non-overlapping, this suggests that

the loss of sacsin affects cytoskeletal and FA structures inde-

pendent of cellular context.

Modulating PTEN-FAK signaling rescues cellular
deficits in sacsin KO cells
Beyond providing structural support for cells, FAs are enriched

with many signaling proteins, which transmit signals from the

extracellular milieu to effectors in the cytoplasm and nucleus.

A master regulator of FA signaling is the FA kinase (FAK/PTK2)

(Sulzmaier et al., 2014). FAK is recruited to integrin adhesion

complexes through interactions with paxillin (Brown et al.,

1996) and is activated via autophosphorylation at Tyr397

following integrin receptor binding to the ECM (Zhao and

Guan, 2011). FAK regulates neuronal outgrowth and synapse

formation by phosphorylating multiple downstream effectors of

FA signaling (Rico et al., 2004) (Figure 4A). Although total levels

of FAK were unaltered in sacsin KO cells, pFAK was significantly

reduced, as was its localization to FAs (Figures 4B, 4C, S4A, and

S4B). JNK and paxillin, downstream targets of activated pFAK

(Zhao and Guan, 2011), were also hypophosphorylated, without

corresponding changes in protein levels (Figures 4B and S4C–

S4G; Table S1). These data suggest that FAK signaling is sup-

pressed in sacsin KO cells, possibly through disengagement

with FAs.

We next considered the mechanism by which FAK signaling is

suppressed in sacsin KO cells. The phosphatase PTEN, which

dephosphorylates FAK and negatively regulates FAK activity

(Tamura et al., 1999), was elevated in sacsin KO cells

(Figures 4B and S4H). To investigate whether increased PTEN

is a general consequence of intermediate filament disorganiza-

tion, we treated WT SH-SY5Y cells with simvastin (Trogden

et al., 2018), which induced vimentin bundling and perinuclear

accumulation but did not affect PTEN levels (Figures S4I–S4K).

Conversely, reducing PTEN by small interfering RNA (siRNA)-

mediated knockdown to WT levels in sacsin KO cells

(Figures 4D and 4E) increased pFAK and pPAX (Figures 4D,

4F, and 4G), reduced the frequency of perinuclear vimentin

accumulation, and increased the number of FAs (Figures 4H–

4J). FAs also play an important role in the migratory behaviors

of cells (De Pascalis and Etienne-Manneville, 2017), and sacsin

KO cells exhibited migration deficits in scratch and transwell

migration assays (Figures S4L–S4O), which were rescued by

PTEN knockdown (Figures S4P and S4Q). Together these results

indicate that increased PTEN activity contributes, at least in part,
ylation (B) in SH-SY5Y cells (p < 0.05, log2 f.c. cutoff ±0.4).

he FA protein vinculin.

2-mm regions of interest were bleached with a 568-nm laser. Recovery was

f three independent experiments.

rimary cortical cultures (p < 0.05, log2 f.c. cutoff ±0.4). Statistical test: Pearson
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Figure 4. Targeting upstream FA regulator PTEN rescues FA and vimentin bundling phenotypes in sacsin KO cells

(A) Regulators and effectors of FA signaling.

(B) Western blots for regulators FAK, pFAK-Tyr397, total and phosphorylated JNK, total and phosphorylated PAX, phosphorylated JUN, and PTEN in total cell

lysates from sacsin KO and control cells.

(C) Confocal images of cells immunolabeled for pFAK. Scale bar, 10 mm.

(D) Western blots of WT/KO cells treated with siRNAs targeting PTEN or scrambled.

(E–G) Quantification of PTEN (E), pFAK (F), and pPAX (G) levels in WT/KO cells treated with scrambled or PTEN targeting siRNAs. n = 3, SEM, Student’s t test,

*p < 0.05, ***p < 0.001.

(H) Confocal images for cells transfected with siRNAs targeting PTEN or scrambled, and immunolabeled for vimentin and vinculin. Arrowheads indicate cells with

prominent FAs, arrows indicate cells with absent or reduced perinuclear accumulations of vimentin. Scale bars, 10 mm.

(I and J) Quantification of the incidence of sacsin KO cells with perinuclear accumulations of vimentin (I) or vinculin-positive FAs (J) 48 h after transfection with

siRNAs targeting PTEN or scrambled siRNAs. n = 3 replicates, >100 cells in each replicate, SEM, Student’s t test, *p < 0.05, ****p < 0.0001.
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to the intermediate filament and FA phenotypes in sacsin KO

SH-SY5Y cells.

Membrane-bound synaptic adhesion molecules are
mislocalized in sacsin KO cells
FAs act as signal transduction hubs to integrate information from

the outside of the cell to the inside. Some FA proteins, including
paxillin and zyxin (Figure 1C), can shuttle to the nucleus and

function as transcriptional co-regulators in a phosphorylation-

dependent manner (Dong et al., 2009; Suresh Babu et al.,

2012). Interestingly, GO term analysis for proteins with altered

phosphorylation were highly enriched for terms related to RNA

processing, including ‘‘RNA binding,’’ ‘‘cytoplasmic stress gran-

ules,’’ ‘‘spliceosome,’’ and ‘‘nuclear body’’ (Figure 3B and
Cell Reports 41, 111580, November 1, 2022 7
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Table S2), suggesting that the altered phosphorylation land-

scape may be affecting the transcriptome. Therefore, we next

performed RNA sequencing (RNA-seq) of neuronally differenti-

ated SH-SY5Y cells (Figure S5A and Table S3). We found 876

differentially expressed genes (false discovery rate [FDR]

<0.05, log2 fold change ±0.4), suggesting that the loss of sacsin

has profound effects on the transcriptome (Figure S5A). Protein

interaction mapping revealed altered expression of multiple

ECM proteins, integrins, and regulators of integrin activation

(Figure S5B). Interestingly, changing the total levels or activity

of specific integrins can affect the expression of other integrin

subunits, a phenomenon called ‘‘integrin crosstalk’’ (Samarzija

et al., 2020). The observation that multiple integrins were

affected at both the protein and RNA levels suggests that altered

integrin localization may activate regulatory feedback loops

which affect the expression of genes that play a role in mem-

brane-based signaling. Indeed, GO term analysis of differentially

expressed genes identified terms implicating membrane-related

processes, including ‘‘postsynaptic membrane,’’ ‘‘axon termi-

nus,’’ ‘‘endomembrane system,’’ and ‘‘cytoplasmic vesicle

membrane’’ (Figure S5C). In all, these data suggest that the

altered phosphorylation landscape in sacsin KO cells affects

mRNAs encoding for proteins involved in membrane-related

processes.

Cell surface proteins are frequently under-represented in pro-

teomics experiments owing to low expression and biochemical

properties (Bausch-Fluck et al., 2015). Indeed, while 26% of

the genes detected by RNA-seq were detected in the proteome,

only 11% of differentially expressed genes (which were enriched

for membrane proteins) were detected in the proteome (Fig-

ure S5D). Therefore, to better characterize membrane and sur-

face proteins, we incubated live cells with biotin, labeling cellular

and exosome membrane/surface proteins, followed by neutravi-

din purification, and analysis by quantitative mass spectrometry

(Nunomura et al., 2005) (Figure 5A and Table S1). This approach

identified an additional 870 proteins not in our initial proteomic

datasets (Figure S5E). Proteins with altered surface expression

in sacsin KO cells included several signaling receptors (FGFR1,

LRP4) and GTP-binding proteins involved in signal transduction

(GNG2, GNG8) (Figure 5B). Two of the most affected membrane

proteins were the synaptic adhesion proteins neuronal cell adhe-

sion molecule (NRCAM) and neurofascin (NFASC), which form a

molecular complex and have been linked tomovement disorders

(Kurolap et al., 2022; Kvarnung et al., 2019; Smigiel et al., 2018)

(Figures 5B and 5C). We next compared membrane proteins

found in both proteomic and surfaceome datasets, reasoning

that conflicting levels between cell surface and total protein

levels could reflect improper membrane recycling, precocious

membrane localization, or deficits in membrane-bound traf-

ficking. Many proteins with altered surface levels showed no or

even opposing change in total protein levels (Figure 5D and

Table S1). Among the most mislocalized proteins were synaptic

adhesion proteins, including multiple integrins (ITGA1, ITGB1,

ITGA3), neuronal cell adhesion molecules (NRCAM, CNTN1,

LSAMP), the FA regulator RET/GFRA3 heterodimer, the microtu-

bule-binding protein DCX, and AHNAK, a 700 kDa scaffolding

protein with diverse yet poorly understood function (Davis

et al., 2015) (Figure 5D).
8 Cell Reports 41, 111580, November 1, 2022
GO term analysis of proteins with altered surface levels sug-

gested deficits in processes related to vesicle packaging and

transport (Figure 5E). These included eight exosomal Rab pro-

teins, which were increased in the surfaceome and not affected

at the total protein level (Figure S5F and Table S1). Rabs are a

diverse family of GTPases that coordinate multiple aspects of

membrane protein trafficking, including FA turnover, and integrin

endo-/exocytosis (Moreno-Layseca et al., 2019). Specific Rabs

also regulate trafficking between the Golgi and the endosomal

network (RAB8A, RAB10), bidirectional Golgi/endoplasmic retic-

ulum (ER) trafficking (RAB2A, RAB18), and epidermal growth

factor receptor (EGFR) internalization (RAB7A) (Bakker et al.,

2017; Galea and Simpson, 2015). Kinome profiling also identified

multiple regulators of Rab activity and trafficking, including

PIK3R4 and PIK3C3, which regulate PTEN activity through local-

ization to vesicles in a microtubule-dependent fashion (Naguib

et al., 2015).

To assess trafficking and localization deficits in sacsin KO

cells we investigated the localization of the ECM protein fibro-

nectin, which is packaged into vesicles in the ER and Golgi (Kii

et al., 2016) and trafficked to the cell periphery along microtu-

bules (Noordstra and Akhmanova, 2017). Fibronectin was not

affected in any of our proteomics datasets, allowing us to inves-

tigate mislocalization independent of changes in protein level or

phosphorylation. In WT HEK293 cells, fibronectin puncta were

organized in ‘‘chains,’’ which appear collapsed around the vi-

mentin bundle in sacsin KO cells (Figure 5F). Staining for the

ER marker KDEL revealed that fibronectin is retained in the ER

in HEK293 and SH-SY5Y sacsin KO cells (Figures 5G and

S5G), suggesting that membrane-bound trafficking is affected

in sacsin KO cells.

We next used Ingenuity Pathway Analysis to assess whether

the misregulated cell surface proteins are associated with any

pathological conditions. Resoundingly, the terms were associ-

ated with disease traits reminiscent of ARSACS, including

‘‘movement disorders,’’ ‘‘neurodegeneration,’’ and ‘‘progressive

neurological disorder’’ (Figure 5H). Notably, three of the most

mislocalized proteins, NFASC, NRCAM, and CNTN1, form

molecular complexes that are important for axon guidance

(Pollerberg et al., 2013), maintenance of synapses by astrocytes

(Takano et al., 2020), and interactions between Purkinje neuron

axons and glia (Bhat et al., 2001). KOmice or humans which har-

bor mutations in each of these genes develop cerebellar ataxias

with features that resemble ARSACS (see discussion).

Integrin trafficking and synaptic structure are affected
in ARSACS mice
Cerebellar atrophy is an early clinical feature of ARSACS (Martin

et al., 2007; Synofzik et al., 2013). In the ARSACS mouse model,

the progressive death of Purkinje neurons begins around post-

natal day 90 (P90) (Lariviere et al., 2015) and is well under way

by P120 (Figure 6A). To determine whether any of the proteins

that were mislocalized in our sacsin KO cell model were also

affected in the brain, we focused on mice at P60, which is

when behavioral deficits first emerge but prior to Purkinje neuron

death (Lariviere et al., 2015). ITGA1, which was among the most

mislocalized proteins in sacsin KO cells (Figure 5D), is normally

localized in nuclear Cajal bodies and Purkinje axons in Sacs(+/�)
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Figure 5. The loss of sacsin affects the localization of cell adhesion proteins

(A) Western blot of cell surface protein purification, illustrated by themembrane protein ATP1A1, and the nuclear pore protein NUP98. After purification ATP1A1 is

detectable only in conditions that were treated with biotin, and NUP98 is no longer detected, suggesting labeling specificity and enrichment of cell surface

proteins.

(B) Mass spectrometry of cell surface proteins in sacsin KO SH-SY5Y cells. Significance cutoffs: p < 0.05 and log2 fold change (f.c.) ±0.4, denoted by black

outline. Proteins which pass these cutoffs, but were also detected in biotin negative controls, were not considered for downstream analysis (Table S1).

(C) Western blot of NFASC in total lysate (left), and fractionated cytoplasmic or membrane fractions in WT and sacsin KO cells.

(D) Levels of proteins detected in both cell surface and proteomic datasets. Proteins are colored by the disparity between these two datasets (f.c. surface and f.c.

proteome), with red indicating more, and blue less membrane abundance relative to total protein levels. Black outlines are proteins with p < 0.05, log2 f.c. ± 0.4 in

the surface dataset.

(E) GO term analysis of proteins differentially localized in membrane of sacsin KO cells (p < 0.05, log2 f.c. ±0.4).

(F and G) Confocal images for fibronectin and vimentin (F) and ER marker KDEL (G) in WT and sacsin KO HEK293 cells. Scale bars, 10 mm.

(H) Disease enrichment analysis with Ingenuity Pathway Analysis of differentially localized surface proteins (p < 0.05, log2 f.c. ±0.4).
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mice (Figures 6B and 6C). However, in Sacs(�/�) mice, we

observed striking accumulation of ITGA1 in the soma and den-

dritic trunk (Figures 6B–6D). Axonal swelling near the Purkinje

neuron soma is a consistent feature in Sacs(�/�) mice (Lariviere

et al., 2015), and we also observed ITGA1 accumulation in these

structures (Figure S6A). In contrast, we observed a decrease of

ITGA1 in Purkinje neuron axon tracts (Figures 6E–6G), likely re-

flecting reduced ITGA1 trafficking.

Purkinje axons synapse onto neurons in the DCN, which in turn

project tomultiple brain regions. As the primary output hub of the

cerebellum (Ito, 2002), alterations in the Purkinje-DCN circuit

have substantial effects on both motor and non-motor pro-

cesses (Baek et al., 2022; Sathyamurthy et al., 2020), and are

observed in multiple neurodegenerative ataxias (Barron et al.,

2018; Feng et al., 2022;Walter et al., 2006). We observed striking

disorganization of Purkinje neuron synapses in the DCN in

Sacs(�/�) mice at P60 (Figure 6H) and P120 (Figures S6B and

S6C), in agreement with a previous report (Ady et al., 2018).

The number of Purkinje synapses on each DCN neuron was

reduced in Sacs(�/�) mice (Figure 6I), while the size of Purkinje

axon termini apposed to DCN neurons was substantially

increased (Figure 6J). We observed accumulation of ITGA1 in

large CALB+ structures in Sacs(�/�) mice, suggesting that while

ITGA1 trafficking is not altogether abolished in Sacs(�/�) mice,

ITGA1 does accumulate in these pathological swellings

(Figures S6D and S6E). Interestingly, we also observed

increased ITGA1 staining in the cell bodies of DCN neurons

(Figures 6K and S6F) and accumulation of ITGA1 in the large-

diameter dendrites of DCN neurons (Figures 6K and 6L). This

pattern was similar to the dendritic ITGA1 accumulation seen

in Purkinje neurons (Figure 6C), suggesting that altered protein

localization is not unique to Purkinje neurons. As DCN neurons

project throughout the brain, the physical disruption between

Purkinje and DCN neurons suggests that cerebellar output to

multiple brain regions may be directly affected in ARSACS.

The loss of sacsin disrupts protein-protein interactions
To identify how the loss of sacsin causes abnormal protein traf-

ficking, we performed quantitative label-free mass spectrometry
Figure 6. Altered localization of membrane proteins and synapses in A

(A) Confocal imaging of Purkinje neurons in littermate controlled P120SACS(+/�) an

calbindin-D28K (CALB1) and neuronal marker (NEUN). Sacs(+/�) mice are phenot

(B) Confocal image of cerebellum in P60 mice, stained for integrin A1 (ITGA1), on

ITGA1 staining in white matter axonal tracts. Scale bar, 200 mm.

(C) High magnification of ITGA1 staining in the Purkinje neuron layer in P60 mice

(D) Quantification of ITGA1 accumulation in cerebellar sagittal sections. Abnorma

than 3 standard deviations above themean in Sacs(+/�) mice. A replicate is defined

per animal, �240 Purkinje counted neurons per section. n = 3 litters, SEM, paire

(E) Confocal image of Purkinje axon tracts through the NEUN+ granule cell layer,

(F and G) Zoomed-in region from (E), single z-plane. Dashed lines (F) mark whitem

paired t test.

(H) Representative confocal image of the DCN in P60mice, demonstrating synapti

Scale bar, 20 mm.

(I and J) Quantification of images from (H). For each large-diameter DCN neuron w

to each DCN neuron using an automated analysis pipeline (see STAR Methods).

(K) Confocal image of DCN neurons, with NEUN channel overexposed to enh

arrowhead DCN neuron soma. Scale bar, 20 mm.

(L) Quantification of images from (K). Projections were defined as small (5–15

Quantification in Figure S6F provides quantification of DCN neuron soma.
of proteins which co-immunoprecipitate with endogenous sac-

sin in WT SH-SY5Y cells. KO cells were also used to control

for non-specific protein pull-down. Our analysis identified 96

proteins as putative sacsin interactors, including vimentin and

vinculin (Table S4). Immunofluorescence revealed sacsin puncta

in and around vinculin-positive FAs (Figures S7A and S7B) and in

close proximity to vimentin structures, with sacsin often being

between them (Figure 7A). Reciprocal co-immunoprecipitation

(co-IP) experiments confirmed interactions between sacsin, vi-

mentin, and vinculin, but the interaction between vimentin and

vinculin was dramatically reduced in sacsin KO cells (Figure 7B).

NFASC has been reported to interact with vimentin (Sistani et al.,

2013), leading us to wonder whether NFASC may also interact

with FA proteins. Co-IP experiments identified an interaction be-

tween NFASC and vinculin, which was dramatically reduced in

sacsin KO cells (Figure 7C). These results suggest that sacsin

promotes the formation and/or stabilization of adhesion protein

interactions.

To identify central proteins whichmay explain the cellular phe-

notypes in sacsin KO cells, we performed STRING network anal-

ysis (Szklarczyk et al., 2019). We considered all proteins altered

in any of our datasets and assessed only high-confidence phys-

ical or regulatory interactions. k-Means clustering of network in-

teractions identified three clusters, which highlight complemen-

tary pathways by which sacsin contributes to cell structure and

signaling (Figure 7D). Central to cluster 1 is the interaction be-

tween sacsin and intermediate filament proteins, which interact

with a variety of cell surface receptors. Combined with our

biochemical experiments, this suggests that the loss of sacsin

leads to improper localization of adhesion proteins to the plasma

membrane, possibly through decreased protein interactions be-

tween intermediate filaments, adaptors, and adhesion proteins.

The network also highlighted the microtubule-associated kinase

MAST1, which stabilizes PTEN (Valiente et al., 2005) and is pro-

tected from proteasomal degradation by the sacsin interactor

HSP90B1 (Pan et al., 2019).

Cluster 2 is composed of the interaction between sacsin,

chaperone network proteins, and microtubules, which in

concert regulate membrane protein processing, trafficking, and
RSACS mice

dSACS(�/�) mice, demonstrating substantial Purkinje cell loss. Purkinjemarker

ypically normal, analogous to unaffected human carriers. Scale bar, 200 mm.

e of the most mislocalized proteins in KO cells (Figure 5D). Arrowheads denote

. Scale bar, 20 mm.

l accumulation was defined as mean ITGA1 intensity in dendritic arbor greater

as a sex-matched het/KO animal from the same litter. Average of two sections

d t test (litter as pairing variable).

and NEUN� white matter tracts in P60 mice. Scale bar, 20 mm.

atter axonal tracts for quantification (G). n = 3, SEM, replicates defined as in (D),

c changes between Purkinje neuron synaptic termini and NEUN+DCN neurons.

e counted the number (I) and size (J) of CALB+ structures immediately adjacent

Replicates defined as in (D), n = 4, paired t test.

ance projections. Closed arrowheads mark DCN neuron projections, open

mm diameter) NEUN+/DAPI� structures. Replicates defined as in (D), n = 4.
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localization (McClellan et al., 2007). Multiple heat-shock protein

(HSP) chaperones were part of the sacsin interactome (Fig-

ure 7D), including the marker of ER stress HSPA5/BIP and

several HSP90 proteins, which can stabilize FAK, modulate cell

migration (Xiong et al., 2014), and regulate microtubules (Quinta

et al., 2011). Recent evidence suggests HSP90 is essential for

microtubule acetylation (Wu et al., 2020), suggesting that the

loss of sacsin may alter microtubule stability via HSP proteins

(Figures 2B–E). HSPs also regulate Rab proteins (Chen and

Balch, 2006) (cluster 3), which have diverse roles in vesicular traf-

ficking, including PTEN and EGFR trafficking (Shinde and Mad-

dika, 2016). Rabs are highly enriched in synapses, play key roles

in endo- and exocytosis, and are linked to many neurodegener-

ative diseases (Kiral et al., 2018). The increased surface abun-

dance of multiple Rab proteins without corresponding changes

in total Rab levels is consistent with the precocious microtubule

stability and dynamics we observe in sacsin KO cells. GO term

analysis revealed that 65% of sacsin interacting proteins are

involved in exosome-related processes, with additional interac-

tors being implicated in unfolded protein binding (HSPs) and FAs

(Figure S7C). In all, these results suggest that sacsin plays a

direct role in bridging protein quality control systems, microtu-

bule-dependent vesicular transport, and membrane localization

of adhesion proteins.

DISCUSSION

This study identifies sacsin as a central regulator of multiple as-

pects of cellular structure, including intermediate filament archi-

tecture, microtubules, protein trafficking, and FAs. The complex

and intertwined relationships between these processes compli-

cates our understanding of their precise pathophysiological rele-

vance, but our results raise some intriguing possibilities. Sacsin

possesses a functional J domain, which interacts with HSP70

chaperone proteins (Genest et al., 2019; Parfitt et al., 2009) (Fig-

ure 7D). HSPs play a role in ubiquitin-dependent turnover of in-

termediate filaments (Gavriilidis et al., 2018), and neurofilament

bundling in ARSACS neurons can be rescued byHSP expression

(Gentil et al., 2019). Sacsin also possesses an ATPase

domain with homology to HSP90 proteins. The sacsin interactor

HSP90B1 stabilizes FAK (Xiong et al., 2014), suggesting that

restoring FAK signaling may rescue intermediate filament struc-

ture through HSP activity (Figures 4 and 7D). It is also possible

that sacsin transiently interacts with HSP90-regulated kinases,

such as FAK (Xiong et al., 2014), and has a more direct role at

FAs. HSP70/90 complexes bind to microtubules in an acetyla-
Figure 7. The loss of sacsin disrupts protein-protein interactions

(A) Airyscan confocal analysis of sacsin, vimentin, and transfected tdTomato:vi

vimentin tracts and FAs. Scale bar, 10 mm.

(B) Vimentin or sacsin were immunoprecipitated from WT and sacsin KO SH-SY

analyzed by western blot.

(C) Co-IP of NFASC and vinculin in WT and sacsin KO cells shows that the intera

NFASC being substantially overexpressed in SACS KO cells (Figure 5C). n = 3, S

(D) STRING protein interaction map depicting proteins quantified in this study. L

>0.7). We removed proteins with redundant interactions for clarity (for example, m

sacsin interactome profiling are circled, with the thick circles marking interactors i

replicates. Proteins are colored by log2 f.c. in proteome (left half) and cell surface

gray background.
tion-dependent fashion (Giustiniani et al., 2009) and interact

with hyperphosphorylated tau to increase tau’s interaction with

microtubules (Lackie et al., 2017). Since HSPs are known to

regulate all of the protein clusters with deficits in sacsin KO cells

(Figure 7D), we hypothesize that the interaction between HSPs

and sacsin may be an especially critical interaction that is lost

in ARSACS. Furthermore, as illustrated by sacsin’s mediation

of the interaction between intermediate filaments and FAs,

changes in additional as yet uncharacterized protein-protein in-

teractions may explain specific ARSACS phenotypes, such as

disrupted autophagy, nuclear morphology, and aberrant locali-

zation of mitochondria.

Proper localization of synaptic adhesion proteins is critical for

neuronal health and is disrupted in many neurodegenerative dis-

eases (Kiral et al., 2018). As cell adhesion proteins, integrins play

key roles in modulating axon outgrowth, dendritic arborization,

and regulating synaptic structure and function (Park and Goda,

2016). More specifically, multiple integrins and pFAK are local-

ized to dendritic spines in cultured Purkinje neurons, where

they regulate spine remodeling (Heintz et al., 2016). However, lit-

tle is known about the role of ITGA1 in the brain (Murase and

Hayashi, 1998), and the lack of a mechanistic connection be-

tween ITGA1 localization and the changes to synaptic structure

in ARSACS mice is a limitation of our findings. As multiple levels

of data suggest that integrins as a class are affected in sacsin KO

cells (proteomics, transcriptomics, and surfaceomics), exploring

the localization of additional integrin subunits may shed light on

this question. Furthermore, integrins are in general most highly

expressed during brain development (Nieuwenhuis et al.,

2018). Thus, defining when changes in integrin mislocalization

and synaptic structure first emerge may yield important insight

into the pathomechanistic origins of ARSACS.

Our data also suggest that restoring FA signaling by reducing

PTEN levels may rescue some cellular deficits in sacsin KO SH-

SY5Y cells. PTEN is highly enriched in axons, where it regulates

neurite outgrowth, organelle trafficking, and synaptic plasticity

(Kreis et al., 2014). Reducing PTEN activity with competitive pep-

tides, small molecules, or genetically have shown therapeutic

potential in acute models of axonal injury and stroke (Park

et al., 2008; Shabanzadeh et al., 2019) as well as a progressive

neurodegenerative tauopathy (Benetatos et al., 2020). As PTEN

directly regulates multiple pathways, including PI3K/AKT/

mTOR, targeting downstream components of PTEN-dependent

regulatory cascades may also have therapeutic potential (Jacobi

et al., 2022) and bypass concerns over PTEN’s roles in neurode-

velopment and tumor suppression (Skelton et al., 2020).
nculin staining in WT SH-SY5Y cells, demonstrating sacsin localization along

5Y cells, and co-immunoprecipitated proteins (sacsin, vinculin, vimentin) were

ction between VCL and NFASC is greatly reduced in sacsin KO cells, despite

EM, Student’s t test, ***p < 0.001.

ines between proteins indicate high-confidence interactions (interaction score

ost integrins have largely overlapping interactomes). Proteins identified in the

dentified in all replicates and the thin circles marking interactors identified in <3

proteome (right half). Clusters identified by k-means clustering are marked by
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However, as we did not detect evidence of increased PTEN

levels in our primary cortical culture proteomic data, determining

whether PTEN signaling is hyperactive in Purkinje cells in

ARSACS requires further investigation. Nevertheless, as the

above examples achieve neuroprotective effects by reducing

PTEN activity in multiple neurodegenerative contexts, this

approach remains an intriguing strategy.

Why do mutations in sacsin, which is expressed throughout

the brain, present as a cerebellar ataxia? Proteins whose abun-

dance or localization is altered in sacsin KO cells, and which also

cause cerebellar ataxia, could suggest a causal molecular defi-

ciency in ARSACS. The interactions between NFASC, NRCAM,

and CNTN1 are critical for brain development, and mutation of

each causes phenotypes reminiscent of ARSACS. Cntn1 KO

mice have deficits in axon guidance and develop cerebellar

ataxia (Berglund et al., 1999). Nrcam KO mice have phenotypes

only in lobules 4/5 of the cerebellar vermis (Sakurai et al., 2001),

which are also specifically affected in ARSACS (Ady et al.,

2018; Lariviere et al., 2015, 2019). Lastly, human mutations

in NFASC which selectively remove the 155 kDa glial isoform

cause congenital hypotonia, demyelinating neuropathy (as in

ARSACS), and severe motor coordination deficits (Smigiel

et al., 2018), while mutations of the neuron-specific 186 kDa

NFASC isoform cause cerebellar ataxia (Kvarnung et al., 2019).

These convergent phenotypes lead us to hypothesize that

improper localization of synaptic cell adhesion molecules may

be a causal molecular deficiency in ARSACS.

In development, if an axon fails to make productive synaptic

connections and receive neurotrophic input from nearby cells,

molecular cascades are activated, which cause localized prun-

ing of non-productive axonal branches (Dekkers et al., 2013).

This process, which initiates at the synapse and advances

back toward the cell body, is referred to as the dying backmodel,

and can cause neuronal death (Raff et al., 2002). Although this is

a normal mechanism to ensure proper wiring of the nervous

system in the face of stochastic errors in axon guidance, this pro-

cess is co-opted inmany neurodegenerative disorders, including

amyotrophic lateral sclerosis (Dadon-Nachum et al., 2011), Alz-

heimer’s disease (Salvadores et al., 2017), Huntington’s disease

(Han et al., 2010), Parkinson’s disease (Dauer and Przedborski,

2003), and hereditary spastic paraplegias (Fink, 2013). A com-

mon molecular thread across these diseases is microtubule-

based axonal transport (Morfini et al., 2009), and many of the

proteins implicated in the aforementioned diseases were also

identified in this study (e.g., tau, tau kinases, Rabs, synaptic

adhesion proteins). This leads us to speculate that the loss of

sacsin alters microtubule function, resulting in improper traf-

ficking of synaptic adhesion proteins, deficits in synaptic struc-

ture, activation of axonal degeneration, and ultimately Purkinje

cell death. A mechanistic exploration of this hypothesis will be

necessary for the development of rationally designed therapeu-

tic strategies aimed at delaying or preventing ARSACS progres-

sion by restoring synaptic structure and function.

Limitations of the study
The precise molecular function of sacsin remains elusive, in part

because of the difficulty of performing biochemical assays with

such a large protein. We attempted to shed light on sacsin’s
14 Cell Reports 41, 111580, November 1, 2022
function by identifying interacting proteins, but an important lim-

itation of co-IP experiments is that many of the interactions may

be indirect. Determining which proteins interact directly with

sacsinmay help clarify themechanism bywhich sacsin regulates

the processes we describe in this study. While we provide mul-

tiple lines of evidence that microtubule-dependent trafficking

of membrane proteins is affected in sacsin KO SH-SY5Y cells,

and some evidence in primary cortical neuron cultures and cere-

bellar neurons in the brain, a more systematic exploration of this

phenotype in Purkinje neurons is warranted. Specifically,

analyzing integrin localization at Purkinje synapses, the activity

of PTEN/FAK signaling, and the role of vesicular transport and

membrane protein turnover will be necessary to assess the

physiological relevance of our findings. Furthermore, of the

many cellular phenotypes that have been found in ARSACS,

teasing apart which are causal and which are merely a part of

neurodegenerative processes is necessary to understand the

fundamental role of sacsin in the brain. We posit that exploring

the neurodevelopmental aspects of this disease, prior to the

onset of the neurodegenerative cascade, may help shed light

on this question.
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acetylated tubulin Cell Signaling #5335; RRID:AB_10544694

Alexa Fluor 488 Life Technologies A-11029; RRID:AB_2534088

Alexa Fluor 488 Life Technologies A-11008; RRID:AB_143165

Alexa Fluor 568 Life Technologies A-11004; RRID:AB_2534072

Alexa Fluor 568 Life Technologies A-11011; RRID:AB_143157

Alexa Fluor 633 Life Technologies A-21052; RRID:AB_2535719

Alexa Fluor 633 Life Technologies A-21070; RRID:AB_2535731

Alexa Fluor 633 Phalloidin Life Technologies A22284

alpha-tub ThermoFisher MA1-80017; RRID:AB_2210201

anti-rabbit HRP Fisher #PI31466

API SIGMA D9542

ATP1A1 Cell Signaling #3010; RRID:AB_2060983

Beta-Actin Abcam ab8226; RRID:AB_306371

BRSK2 Cell Signaling 5460S

CALB1 Novus NBP2-50028

FAK CST 71433S; RRID:AB_2799801

Fibronectin Abcam ab268020

gamma-tubulin ThermoFisher MA1-19421; RRID:AB_1075282

GAPDH Abcam ab8245; RRID:AB_2107448

Integrin alpha 6 Abcam ab235905

Integrin beta1 Abcam ab134179

Integrin alpha V Abcam ab179475; RRID:AB_2716738

IRDye�680 RD Li-Cor 926–68070

IRDye�680 RD Li-Cor 926–68071

IRDye�6800 CW Li-Cor 926–32210

IRDye�6800 CW Li-Cor 926–32211

ITGA1 BiCell 10001

JNK CST 9252S; RRID:AB_2250373

KDEL Enzo Life Sciences ADI-SPA-827-D

MAP2 Abcam Ab5392; RRID:AB_2138153

NES Abcam Ab22035; RRID:AB_446723

NEUN Millipore ABN90P; RRID:AB_2341095

NFH Abcam Ab8135; RRID:AB_306298

NUP98 Cell Signaling #2598; RRID:AB_2267700

p-FAK (Tyr397) ThermoFisher 44–625G; RRID:AB_2533702

p-JNK (Tyr183/185) CST 4668S; RRID:AB_823588

p-JUN (Ser 73) CST 3270S; RRID:AB_2895041

p-Paxillin (Tyr118) CST 69363S; RRID:AB_2174466

Paxillin CST 12065S; RRID:AB_2797814

PRKCG Santa-Cruz sc-211; RRID:AB_632234

PRPH Abcam Ab4666; RRID:AB_449340

PTEN Santa-Cruz sc-7974; RRID:AB_628187

Sacsin Abcam ab181190
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Sacsin Abcam Cab80195; RRID:AB_10714400

SYN1 Abcam Ab8; RRID:AB_2200097

TAU p262 ThermoFisher 44-750-G; RRID:AB_2533743

tau S199 Abcam Ab81268; RRID:AB_1641106

TAU5 Abcam Ab80579; RRID:AB_1603723

Vimentin Abcam ab8978; RRID:AB_306907

Vimentin Abcam ab16700; RRID:AB_443435

Vinculin ThermoFisher MA5-11690; RRID:AB_10976821

Chemicals, peptides, and recombinant proteins

Nocodazole Sigma #SML1665

all-trans retinoic acid Sigma #R2625

Brain-Derived Neurotrophic Factor Sigma #B3795

dibutyryl cyclic AMP Santa Cruz sc-201567A

MitoTracker Green FM Invitrogen #M7514

Critical commercial assays

Tau Aggregation Kit Cisbio 6FTAUPEG

Minute Plasma Membrane Protein Isolation

and Cell Fractionation Kit

Invent SM-005

Deposited data

PRIDE This paper PXD036906

SRA This paper GSE214213

Experimental models: Cell lines

SH-SY5Y this study ATCC CRL2266

HEK293T Duncan et al. 2017 ATCC CRL1573

Experimental models: Organisms/strains

C57BL/6-Sacstm2Bebr/J The Jackson Laboratory Strain #:033221

Oligonucleotides/primers

WT SACS F:

GCTGTCAGGGGGAAATCTGATAAAG

The Jackson Laboratory N/A

WT SACS R:

GCAGCACCTTTAGACAAAAGATTGC

The Jackson Laboratory N/A

KO SACS F:

CAACCTTGGAGAAACTGTGCCTG

The Jackson Laboratory N/A

KO SACS R:

CACCGACGCCAATCACAAACAC

The Jackson Laboratory N/A

PTEN siRNA Pool Horizon 5728

Recombinant DNA

hCas9 Addgene #41815

pGFP-EB1 Addgene #17234

tdTomato:Vinculin Addgene #58146

EGFP-Vimentin-7 Addgene #56439

Software and algorithms

ImageJ Fiji NIH https://imagej.net/software/fiji/downloads

CellProfiler Broad www.cellprofiler.org

MaxQuant Max Planck https://www.maxquant.org

Zen Black and Zen Blue Zeiss https://www.zeiss.com/microscopy/en/

products/software/zeiss-zen.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Justin Wolter (justin_wolter@

med.unc.edu).

Materials availability
Cell lines generated in this study are freely available from the lead authors upon request.

Data and code availability
d A list of all cell lines used in each figure are provided in Table S1. Themass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2022) partner repository with the dataset identifier

PXD036906. The RNA-seq dataset generated during the current study is available in the Gene Expression Omnibus (GEO) re-

pository under project identifier GSE214213.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Human female SH-SY5Y neuroblastoma cells were obtained from the American Type Culture Collection and were grown in 1:1 Dul-

becco’sMinimumEagleMedium (DMEM)/Ham’s F12medium, plus 10%heat-inactivated fetal bovine serum,100 U/mL penicillin and

100 mg/mL streptomycin. Human female HEK293T cell lines were obtained from the American Type Culture Collection and were

grown in DMEM, plus 10% heat-inactivated fetal bovine serum,100 U/mL penicillin and 100 mg/mL streptomycin.

Animals
All animal procedures used in this study were approved by the Institutional Animal Care and Use Committee at the University of North

Carolina at Chapel Hill. Mice were housed in an AAALAC accredited facility in accordance with the Guide for the Care and Use of

Laboratory Animal. All animal procedures were approved by the University of North Carolina at Chapel Hill Institutional Animal

Care and Use Committee (IACUC). Sacs(�/�) mice were a kind gift from Dr. Stefan Strack. Sacs(+/�) mice were generated by mating

Sacs KOmice with wild type C57BL/6J mice (Jackson Laboratories). Primers for genotyping are as follows: WT allele forward primer:

5’ - GCTGTCAGGGGGAAATCTGATAAAG –3’, WT allele reverse primer: 5’ - GCAGCACCTTTAGACAAAAGATTGC –3’, Sacs KO

allele forward primer: 5’ - CAACCTTGGAGAAACTGTGCCTG – 3’, Sacs KO allele reverse primer: 5’ - CACCGACGCCAATCAC

AAACAC –3’.

Mouse primary cortical cultures
Cortices were isolated from E15.5 mouse pups (Simon et al., 2019). Cortices from each animal were dissociated in papain (Pierce,

88285) and DNase (Sigma, D4513) for 30 min at 37�C, and filtered through a 70 mm filter. Each animal was genotyped during dissec-

tion using the above PCR primers, and cortices from either WT or KO animals were pooled independent of sex. Cells were plated into

3 wells of poly-D-lysine coated 6 well plates at 1 3 106 cells per well in Neurobasal medium (Life Technologies) containing 5% fetal

bovine serum (Invitrogen), B27 (17504–044, Invitrogen), Antibiotic-Antimycotic (15240–062, Invitrogen) and GlutaMAX (35050–061,

Invitrogen). On day 3, we performed a full media change, replacing with the abovemedia with serum omitted, and supplemented with

the antimitotic FDU to inhibit proliferation of non-neuronal cell types. We performed 50%media changes every third day. Pooled cul-

tures from each litter was considered a single replicate.

METHOD DETAILS

Antibodies
A detailed list of antibodies and dilutions used in this study is provided in Table S5.

Genome editing to generate sacsin KO SH-SY5Y cells
An SH-SY5Y cell line with the sacsin truncation mutation M783* was generated using CRISPR/Cas9. We cloned the SACS targeting

guide RNA (gRNA) TTTCATGGCTTAAGATGGTTTGG (PAM sequence underlined) into the p1261_GERETY_U6_BasI_gRNA vector

for expression of the gRNA under control of the U6 promoter. The gRNA expression vector was co-transfected with a Cas9 expres-

sion vector (hCas9, Addgene # 41815) and a targeting vector with homology arms to introduce the M783* mutation along with a pu-

romycin selection cassette (pMCS-SACStrunc-PB:PGKpuroDtk) using Lipofectamine 3000. Puromycin-resistant clones were

selected and screened by PCR and sequencing.
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Proteomic, phosphoproteomic sample preparation: SH-SY5Y
SH-SY5Ywere grown to�80%confluency in 13 T75 flasks for harvesting. SH-SY5Y flasks were placed on ice, washed twice with ice

cold PBS and harvested by scraping cells in lysis buffer (50 mMHEPES, pH 7.5, 150mMNaCl, 0.5% Triton X-100, 1mMEDTA, 1mM

EGTA, 10mMNaF, 2.5mMNa3VO4, complete protease inhibitor cocktail (Roche), and phosphatase inhibitor cocktail 2 and 3 (Sigma).

Lysates were sonicated by pulsing once at 30% for 10 s and then twice at 40% for 10 s with 10 s rest on ice between each pulse

(Branson 150 Sonifier). Lysate was transferred to microcentrifuge tube and spun at 14,0003 g for 10 min at 4�C. Lysate was filtered

through a 0.2 mm syringe filter and stored at �80�C until all replicates were collected. Protein concentration was quantified using a

Bradford assay. Cell lysates (1mg, n = 3) were acetone precipitated overnight and stored at�20�C. Protein pellets were resuspended

in 8M urea, then reduced with 5M DTT at 56�C for 30 min and alkylated with 15mM iodoacetamide in the dark at RT for 45 min. Sam-

ples were diluted to 1M urea, then digested overnight with trypsin (Promega) at 1:100 trypsin:protein ratio. Samples were acidified

then desalted using C18 desalting spin columns (Pierce). A peptide BCA colorimetric assay (Pierce) was performed and 500mg of

each sample was individually labeled with TMT6 reagent (Thermo). After labeling efficiency was confirmed, the TMT6 labeled sam-

ples were mixed and desalted using C18 desalting spin column (Pierce). A 100mg aliquot was set aside for global proteome analysis,

and was fractionated into 4 fractions using a High pH reversed phase fractionation spin column (Pierce). The rest of the sample

(�3mg) was enriched for phosphopeptides using Ti-MACmagnetic beads (ReSyn Biosciences). The Ti-MAC eluate was fractionated

into 3 fractions using High pH reversed phase fractionation spin column. Global proteome and phosphoproteome fractions were

dried down via vacuum centrifugation and stored at �80�C until LC/MS/MS analysis.

MIB/MS kinome enrichment
Multiplexed inhibitor bead (MIB) kinase enrichment was performed as previously describedwith a slightly modified bead composition

(Arend et al., 2017). Cells were lysed in MIB-MS buffer (50 mmHEPES, pH 7.5, 150 mmNaCl, 0.5% Triton X-100, 1 mm EDTA, 1 mm

EGTA, 10 mmNaF, Phosphatase Inhibitor Mixture 2 (Sigma, P5726) and 3 (Sigma P0044), and 2.5 mmNaV04 plus Protease Inhibitor

Mixture (Roche). Samples were sonicated and clarified by centrifugation at 14,000g and filtered through a 0.2 mm filter (Corning,

#431219). Protein was quantified by Bradford assay. Specifically, each sample was applied to an individual 350 mL Poly-Prep chro-

matography column (Bio-Rad) containing the following immobilized kinase inhibitors: CTx-0294885, PP58, Purvalanol B, UNC2147A,

VI-16832, UNC8088A. Proteinswere eluted fromcolumns by boiling in elution buffer (100mmTris-HCl, pH 6.8, 0.5%SDS, 1% b-mer-

captoethanol) for 15 min. Samples were incubated at room temperature for 30 min in the dark. dl-DTT was added to bring the final

concentration to 10 mm and samples were incubated at room temperature for in the dark for 5 min. Samples were concentrated to a

final volume of�100 mL in 10K Amicon Ultra centrifugal concentrators and proteins were purified by methanol chloroform extraction.

Samples were re-suspended in 50 mm HEPES, pH 8.0, and digested with sequencing grade porcine trypsin (Promega) overnight at

37�C. Samples were extracted with ethyl acetate 3 times to remove residual detergent, desalted using Pierce C-18 spin columns, and

submitted to the UNC Michael Hooker Proteomics Core for LC/MS/MS analysis.

Primary cortical culture sample prep
On day 10 post plating lysates from primary cortical cultures were acetone precipitated overnight and stored at �20�C. Protein pel-

lets (500 mg, n = 3 per genotype) were resuspended in 8Murea, then reducedwith 5MDTT at 56�C for 30min and alkylatedwith 15mM

iodoacetamide in the dark at RT for 45min. Samples were diluted to 1M urea, then digested overnight with trypsin (Promega) at 1:100

trypsin:protein ratio. Samples were acidified then desalted using C18 desalting spin columns (Pierce). A peptide BCA colorimetric

assay (Pierce) was performed and 300mg of each sample was individually labeled with TMT6 reagent (Thermo). After labeling

efficiency was confirmed, the TMT6 labeled samples were mixed and desalted using C18 desalting spin column (Pierce). The

TMT sample (3 mg total) was fractionated using high pH reversed phase HPLC (Mertins et al., 2018). Briefly, the peptide samples

were separated by offline high pH reverse-phase HPLC (Agilent 126) and fractionated over a 90 min method, into 96 fractions using

an Agilent Zorbax 300 Extend-C18 column (3.5-mm, 4.63 250mm). Mobile phase A containing 4.5mM ammonium formate (pH 10) in

2% (vol/vol) LC-MS grade acetonitrile, and mobile phase B containing 4.5 mM ammonium formate (pH 10) in 90% (vol/vol) LC-MS

grade acetonitrile were used for separation. The 96 resulting fractions were then concatenated in a non-continuous manner into 24

fractions, dried down via vacuum centrifugation and stored at �80�C until LC-MS/MS analysis.

Cell surface labeling
23 106 SH-SY5YWTand sacsin KO cells were each plated in nine 10 cmdishes, and cultured until 95%confluent (�3 days) (n = 3 per

cell line). To identify proteins which purify non-specifically, an additional replicate of WT/KO lines were processed as below, but

without the addition of Biocytin hydrazide. Cells were lifted using CellStripper Dissociation Reagent (Corning, #25056CI) for

20 min at 37�C and resuspended in 1X PBS (pH 6.5) + 1.6 mM NalO4 and rotated at 4�C for 20 min in the dark. Cells were washed

three times then resuspended in 1X PBS (pH 6.5) + 10mM Aniline + 1mM Biocytin hydrazide and incubated at room temperature for

60min, then at 4�C for 20min while rotating. After three PBSwashes, cell pellets were resuspended in RIPA, rotated at 4�C for 30min,

and sonicatedwith 1 s pulses at 20%power for 1min. To enrich for the labeled surface proteins, cells were centrifuged 15,000 rpm for

10 min at 4�C and supernatant was incubated in washed Neutravidin High-Capacity Resin (ThermoFisher #29204) for one hour at

4�C. Resin was added to gravity column and washed with RIPA, 1X PBS (pH 7.4) + 1M NaCl, Ammonium Bicarbonate (ABC) +

2M Urea then resuspended in ABC + 2M Urea +5 mM tris(2-carboxyethyl)phosphine (TCEP) and incubated at room temperature
Cell Reports 41, 111580, November 1, 2022 e4
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in the dark at 55�C shaking at 300 rpm for 30min. Iodoacetamide (IAM) was then added to a final concentration of 11mM and shaken

at room temp for 30 min in the dark. Resin was centrifuged at 500g for 5 min and resuspended in 1 mL ABC + 2M urea containing

20 mg trypsin (Fisher #P8101) to fragment peptides at RT overnight. To desalt, samples were acidified to pH < 2 with 10% trifluoro-

acetic acid (TFA) in C-18 spin column (ThermoFisher #89873), washed, and resuspended in 40% acetonitrile +0.1% formic acid then

dried with vacuum centrifugation and stored at �80�C.

LC-MS/MS analysis
Kinome, proteome, and phosphoproteome were analyzed by LC/MS/MS using an Easy nLC 1200 coupled to a QExactive HF mass

spectrometer (Thermo Scientific). Samples were injected onto an Easy Spray PepMap C18 column (75 mm id3 25 cm, 2 mm particle

size) (Thermo Scientific) using a 120 min method. The gradient for separation consisted of 5–50% mobile phase B at a 250 nL/min

flow rate, where mobile phase A was 0.1% formic acid in water and mobile phase B consisted of 0.1% formic acid in 80% ACN. The

QExactive HF was operated in data-dependent mode where the 15 most intense precursors were selected for subsequent HCD

fragmentation.

For kinome samples, QExactive HF was operated as previously described (Arend et al., 2017). QExactive HF resolution for the

precursor scan (m/z 350–1600) was set to 120,000 with a target value of 3 3 106 ions and a maximum injection time of 100 ms.

MS/MS scans resolution was set to 60,000 with a target value of 13 105 ions and a maximum injection time of 100 ms. The normal-

ized collision energy was set to 27% for HCD with an isolation window of 1.6 m/z. Dynamic exclusion was set to 30 s, peptide match

was set to preferred, and precursors with unknown charge or a charge state of 1 and R8 were excluded.

For TMT proteome and phosphoproteome samples (each biological replicate analyzed in duplicate), QExactive HF resolution for

the precursor scan (m/z 350–1600) was set to 60,000 with a target value of 3 3 106 ions and a maximum injection time of 100 ms.

MS/MS scans resolution was set to 60,000 with a target value of 1 3 105 ions and a maximum injection time of 100 ms. Fixed first

mass was set to 110 m/z and the normalized collision energy was set to 32% for HCD with an isolation window of 1.2 m/z. Dynamic

exclusion was set to 30 s, peptide match was set to preferred, and precursors with unknown charge or a charge state of 1 and R8

were excluded.

Cell surface samples and the primary cortical culture samples were analyzed by LC-MS/MS using a Thermo Easy nLC 1200

coupled to a Thermo Fusion Lumos mass spectrometer. Samples were injected onto a Thermo PepMap C18 trap column, washed,

then loaded onto an Easy Spray PepMap C18 analytical column (75 mm id3 25 cm, 2 mm particle size) (ThermoFisher). The samples

were separated over a 120 min method, where the gradient for separation consisted of 5–45% mobile phase B at a 250 nL/min flow

rate; mobile phase Awas 0.1% formic acid in water andmobile phase B consisted of 0.1% formic acid in 80%acetonitrile. For the cell

surface samples, MS1 orbitrap scans were collected at a resolution of 120,000 and 1e6 AGC target. TheMS2 scans were acquired in

the Orbitrap at 15,000 resolution, with a 1.25e5 AGC, and 50ms maximum injection using HCD fragmentation with a normalized en-

ergy of 30%. Dynamic exclusion was set to 30 s and precursors with unknown charge or a charge state of 1 andR8 were excluded.

For the primary cortical culture TMT proteome fractions (24 total), the Lumoswas operated in SPS-MS3mode (McAlister et al., 2014),

with a 3s cycle time. Resolution for the precursor scan (m/z 400–1500) was set to 120,000 with an AGC target set to standard and a

maximum injection time of 50 ms. MS2 scans consisted of CID normalized collision energy (NCE) 32; AGC target set to standard;

maximum injection time of 50 ms; isolation window of 0.7 Da. Following MS2 acquisition, MS3 spectra were collected in SPS

mode (10 scans per outcome); HCD set to 55; resolution set to 50,000; scan range set to 100–500; AGC target set to 200% with

a 100 ms maximum inject time.

Proteomic data analysis
Kinome, proteome and phosphoproteome raw data files were analyzed with MaxQuant version 1.6.1.0 and searched against the re-

viewed human database (downloaded Feb 2017, containing 20,162 entries), using Andromeda within MaxQuant. Enzyme specificity

was set to trypsin, up to two missed cleavage sites were allowed, carbamidomethylation of C was set as a fixed modification and

oxidation of M and acetyl of N-term were set as variable modifications. For phosphoproteome samples, phosphorylation of S,T,Y

was set as a variable modification. For phosphoproteome samples, phosphorylation of S,T,Y was set as a variable modification.

For proteome and phosphoproteome samples, TMT6plex of peptide N-termini & K was set as a fixed modification and the quanti-

tation type was set to reporter ionMS2. For kinome label-free quantitation, match between runs was enabled. A 1%FDRwas used to

filter all data. For kinome data, a minimum of two peptides was required for label-free quantitation using the LFQ intensities.

Cell surface proteome raw data files were processed using MaxQuant version 1.6.15.0 and searched against the reviewed human

database (downloaded Feb 2020, containing 20,350 entries), using Andromeda within MaxQuant. Enzyme specificity was set to

trypsin, up to two missed cleavage sites were allowed, carbamidomethylation of C was set as a fixed modification and oxidation

of M and acetyl of N-term were set as variable modifications. A 1% FDR was used to filter all data and match between runs was

enabled. A minimum of two peptides was required for label-free quantitation using the LFQ intensities.

For all proteomic datasets, proteins with a missing value in one replicate were imputed using the KNN imputation method, proteins

with two or more missing values were removed from analysis. Linear Models for Microarray Data (LIMMA) was used to calculate log2

fold change of LFQ intensity and perform statistical analysis (Ritchie et al., 2015). FDR was calculated using Benjamini-Hochberg

adjusted p values. For proteins identified in the surfaceome, we annotated them as ‘Membrane’’ or ‘Exosome’ based on DAVID bio-

informatics database. Proteins which were identified in unlabeled controls (no biotin) were removed from further analysis. Proteins
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with p < 0.05 and log2 fold change of KO/WT ±>0.4 were included in downstream analyses. The Kinome tree was generated on

CORAL (Metz et al., 2018).

Tau aggregation assay
The Homogenous Time Resolved Fluorescence (HTRF) (Degorce et al., 2009) Tau aggregation kit (Cisbio, MA) was used to determine

tau aggregate levels in undifferentiated and differentiated SH-SY5Y lysates using Fluorescence Resonance Energy Transfer (FRET).

Cells were scraped in ice-cold PBS and pelleted followed by lysis using buffer provided in the kit. Protein lysates were quantified

using Bradford assay. Serially diluted cell lysates were tested in duplicate in a 96 well to determinate the optimal concentration of

protein lysates. Anti Tau-d2 and anti tau-Tb conjugates were diluted 1:50 from stock to a final volume, which was calculated based

on the total number of samples. The two conjugates were diluted separately, mixed at equal ratios and vortexed before 10mL were

added to 10mL (10mg total concentration) of the protein lysates in each well. Lysates and conjugates were then incubated for 2h at

room temperature and the plate was read on the CLARIOstar plate reader using the HTRF filter cube which allows for sequential

detection of Donor and Acceptor fluorescence. Signal was measured as the peak ratio of 655nm (acceptor fluorescence) to

620nm (donor fluorescence). The results of the two emission signals were plotted as HTRF Ratio or DeltaF% values.

GO term analysis
For GO term graphs, the list of significant genes for each proteomic experiment were input into geneontology.com with human

genome as the background, Fisher’s exact test with FDR correction (Gene Ontology, 2021). Graphs include terms in all categories

(biological processes, molecular function, cellular component). Due to the hierarchical nature of GO terms in Panther (i.e. groups of

terms have a nested nature to assign relationships between them) we only considered the most proximal term in each hierarchy to

ensure terms were specific and directly comparable. These proximal terms are listed as ‘‘PARENT’’ in Table S2. All terms underneath

each parent are also listed for reference. Terms were ranked by FDR value and the top ten non-redundant top terms were included in

each figure. All terms, including graphs, were generated using R scripts from bio-protocol.org (https://doi.org/10.21769/BioProtoc.

3429).

Western blots
Cells were lysed with RIPA buffer and 20 ug protein was loaded per lane and on a Novex 4–12% (4–20% for BRSK2) Tris-Glycine gel

(ThermoFisher). Protein was transferred to PVDF and blocked with 1X Blocker BSA (ThermoFisher). Blots were washed and incu-

bated with primary antibodies followed by HRP secondary antibodies (ThermoFisher). Protein was quantified using ImageJ software.

Each lane was normalized to the relative density of GAPDH/ACTB.

Cell surface protein isolation (Figure 5A) was validated through western blot by collecting 250 mL resin (bound to cell surface pro-

teins) from the wash column and centrifuging at 2000xg for 5 min to pellet resin and remove residual 50mM ABC + 2M Urea. Resin

was then resuspended in 250 mL 2X Laemmli buffer with 5% 2-mercaptoethanol. The control sample contained 10 mL of total cell

lysates (collected prior to resin addition) from SH-SY5Y WT and sacsin KO cells. The samples were run on a 4–15% TGX Bio-Rad

pre-stained gel (Bio-Rad #4568094) and transferred to a PVDF membrane, which was blocked in 5% milk in 1X TBST. Primary

antibodies were diluted 1:1000 in 5% BSA in 1X TBST. Goat anti-rabbit HRP secondary antibody was diluted 1:5000 in 5% milk.

Remaining immunoblotting was performed as described previously (Duncan et al., 2017).

Fractionated western blots
SH-SY5Y WT and sacsin KO cells were fractionated with the Minute Plasma Membrane Protein Isolation and Cell Fractionation Kit

(Invent). The cytoplasmic fraction was lysed in Buffer A and the plasma membrane fraction was lysed in RIPA buffer, both fractions

contained protease inhibitor (Pierce). Proteins were diluted 1:1 with 23 laemmli buffer with betamercaptoethanol and run on TGX

prestained gels (Biorad). Total protein images were obtained before transferring onto a PVDF membrane. Individual protein levels

were normalized to total protein image using Image J software for quantification.

Endogenous co-immunoprecipitation
SH-SY5Y cells were subjected to chemical cross-linking

The cleavable, homo-bifunctional cross-linker dithiobis[succinimidylpropionate] (DSP; Pierce, Rockford, IL, USA) was diluted to a

final concentration of 1mM in PBS and added to the cultured cells. After incubation for 1h at room temperature, cross-linking was

stopped by addition of Tris (pH 7.5) to a final concentration of 20mM. Cells were then washed twice in ice-cold PBS, before the cells

were harvested in RIPA buffer (NFASC IP) or 50mM Tris-HCl pH7.4 + 150mMNaCl + 1mM EDTA +0.5% Triton X-100, supplemented

with protease inhibitors (Pierce/Roche) and incubated on ice for 5 min (sacsin/VIM IP).

Sacsin and vimentin IP

A small aliquot of supernatant was removed for analysis by immunoblotting (input fraction) the remaining supernatant was incubated

with rabbit monoclonal anti-vimentin antibody or rabbit monoclonal anti-sacsin overnight at 4�C on a rotor. After 16 h 50mL of

magnetic beads (Sigma, Poole, UK) were washed twice in PBS-Tween 0.1% buffer, before being recovered in a magnetic separator.

The beads were then resuspended within the cell lysate already incubated with the antibody for 2h at room temperature and washed.
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NFASC IP

Protein concentration was assessed with a Bradford assay and a small aliquot of supernatant was removed for analysis by immu-

noblotting (input fraction). 300 mg of the sample were used for the immunoprecipitation. First, 20 mL of protein A magnetic beads

(73778, CST) washed with 13 Cell Lysis buffer (9803, CST) were added to the samples for 20 min for preclearing. Next, beads

were removed and 5 mL of the precipitation antibody, anti-neurofascin (PA5-78668, Invitrogen) or normal rabbit IgG isotype control

(2729, CST), were added to the samples and incubated overnight at 4�C on a rotor. After 16 h, fresh prewashedmagnetic beads were

added to the samples and rotated at room temperature for 20 min before being recovered in a magnetic separator and washed five

times with 13 Cell Lysis Buffer.

Cell culture immunostaining image acquisitions
All cell culture samples, with the exception of samples prepared for microtubule staining, were fixed with 4%PFA and permeabilized

with 0.1 to 0.3% Triton X-100. For microtubule staining, samples were fixed with 100%methanol for 20 min at �20�C. Non-specific
binding was reduced by blocking in 5% Normal donkey serum or 1% bovine serum albumin (BSA)+10% normal goat serum. Cells

were incubated with primary antibodies for a minimum of 1 h at RT, followed by incubation with labelled secondary antibodies, Phal-

loidin, and Hoechst for 1 h at RT. Samples were mounted either in Fluoro-Gel mounting medium (ElectronMicroscopy Sciences, Cat.

# 17985–30) or ProLong Diamond Antifade Mountant (Invitrogen, Cat. #P36961). Widefield images were captured with GE IN Cell

2200 high content imaging system equipped with a Plan Fluor 203/0.75 NA air objective. Confocal images were acquired using

an inverted Olympus FV3000RS. Plan Apo 603/1.4 NA oil (Olympus) or Plan Apo 303/1.05 NA silicon oil (Olympus) objectives

were used. SIM images were acquired and reconstructed in 3D-SIM mode using a Nikon N-SIM system equipped with a Plan

Apo TIRF 1003/1.49 NA oil objective.

For FA immunolabelling, coverslips were coated with 10mg/mL fibronectin solutions overnight. Confocal microscopy was per-

formed using a LSM880 (Zeiss) with a 633 objective and an AiryScan module. Quantification of incidence of cells with perinuclear

vimentin accumulation and incidence of FA was performed blind to experimental status. Imaging processing was carried out with

Zen Blue software (Zeiss). FA isolation from cells was performed by hypotonic shock to remove cells while leaving FAs intact, as

described previously (Kuo et al., 2012). Isolated FAs were then immunolabelled to detect vinculin and analysed using confocal mi-

croscope with quantification as described previously. All image processing steps were carried out using ImageJ software.

Focal adhesion
EB1-GFP imaging, tracking and quantification

For Total Internal Reflection Fluorescence (TIRF) imaging, SH-SY5Y cells were cultured on 35 mm glass bottom dishes (Mattek) and

transfected with plasmid expressing EB1-GFP using FuGene transfection reagent (Promega). pGFP-EB1 was a gift from Lynne Cas-

simeris (Addgene plasmid #17234). TIRF live cell imaging was carried out 24 h after transfection on an inverted Nikon Eclipse Ti2

equipped with a Plan Apo TIRF 1003/1.49 NA oil (Nikon) objective. TIRF images were captured at single z-plane, every second

for a period of 1 min. Tracking of EB1-GFP comet was performed using the FIJI plugin TrackMate with the following analysis settings:

Laplacian of Gaussian detector with an estimated spot diameter of 0.16 mm, subpixel localization enabled, simple LAP tracker, min-

imum number of spots on track >9, and maximum number of spots on track <35. Each trajectory was visually inspected to confirm

tracking accuracy. Mean track velocities were plotted and statistical analyses were performed using GraphPad Prism 9.0.

Nocodazole treatment experiment
SH-SY5Y cells were treated with 10 mM nocodazole (Sigma, Cat. #SML1665) or DMSO control for 3 h at 37�C. Washout of nocoda-

zole was performed by one wash with ice old PBS and one wash with pre-warmed media. Cells were fixed with 100% methanol at

indicated timepoints. Measurement of microtubule staining in untreated cells and repolymerization after nocodazole washout were

performed on images constructed with maximum intensity projections. Areas occupied by microtubules and cells were thresholded

and quantified using a custom CellProfiler pipeline. Microtubule density was quantified by thresholding and normalizing area occu-

pied by microtubules to cell area.

SH-SY5Y neuronal differentiation
SH-SY5Y cells were differentiated using a modified version of a previously described method (Shipley et al., 2016). Cells were grown

to near confluence under normal maintenance conditions prior to the start of differentiation. 13 105 cells/well were seeded in a 6 well

plate. After 24 h media was changed to DMEM containing 2% Fetal Bovine Serum (FBS: Gibco, #A3840001) and10 mM of all-trans

retinoic acid (ATRA: Sigma, #R2625). At day 4 cells were passaged and resuspended in neurobasal media (Gibco, #21103049) sup-

plemented with B27 (Gibco, #17504044) 50 ng/mLBrain-Derived Neurotrophic Factor (BDNF: Sigma, #B3795), and 10 mMRA. At day

12 media was supplemented with 2 mM dibutyryl cyclic AMP (dc-AMP: Santa Cruz, sc-201567A). Media was changed every other

day with fresh aliquots of RA, BDNF and dcAMP. Cells were harvested at day 15 for downstream analysis.

MitoTracker green FM live imaging
Light sheet fluorescence microscopy was used to image mitochondrial movement. Cells were incubated with 100 nM of MitoTracker

Green FM (Invitrogen, Cat. #M7514) for 20 min at 37�C and then washed with prewarmed media prior to imaging. Mitochondrial
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movements along the neurites were captured every at 0.5 mmz-steps, 10 s intervals, for 3min on a ASI’s RAMM frame (ASI), equipped

with Mizar TILT light sheet illumination module (Mizar Imaging LLC), Prime 95B sCMOS (Photometrics) camera, and a Plan Apo TIRF

1003/1.45 NA oil (Nikon) objective. Prior to fluorescence imaging, a brightfield image was captured to confirm presence of neurites.

Kymographs of mitochondrial movement along neurites were generated using the line tools and resliced command in FIJI.

Plasmids and siRNAs
Plasmids encoding tdTomato:Vinculin (Addgene #58146) or vimentin-EGFP (Addgene #56439) were transfected with Lipofectamine

3000 in Opti-Mem (ThermoFisher) according to the manufacturer’s instructions. To induce vimentin bundle cells were treated for 4 or

24 h with 10 mm simvastatin, in their standard culture medium. For PTEN knockdown a combination of four siRNAs targeting PTEN

were used (ON-TARGETplus Human PTEN [5728] siRNA - SMARTpool: Target sequence1#: Sense GAUCAGCAUACACAAAUUA,

Antisense: UAAUUUGUGUAUGCUGAUC; Target sequence2#: Sense GACUUAGACUUGACCUAUA, Antisense: UAUAGGU

CAAGUCUAAGUC; Target sequence3#: Sense GAUCUUGACCAAUGGCUAA, Antisense: UUAGCCAUUGGUCAAGAUC; Target

sequence4#: Sense CGAUAGCAUUUGCAGUAUA, Antisense: UAUACUGCAAAUGCUAUCG). These siRNAs were at a concentra-

tion of 10 nm each and were transfected in combination using Lipofectamine 3000 (ThermoFisher), according to the manufacturer’s

instructions. A negative control siRNA with no significant sequence similarity to human gene sequences was used as a control.

Fluorescence recovery after photobleaching (FRAP)
Cells were transfected with plasmid encoding vimentin-EGFP or tdTomato:Vinculin. 48 h post transfection FRAP experiments were

conducted as described previously using an LSM880 microscope (Zeiss) (Girard et al., 2012). 2mm x 2mm regions of interest in cells

expressing vimentin-EGFP or tdTomato:Vinculin were excited with the 488 nm or 568nm laser lines respectively. Following photo-

bleaching regions of interest were imaged a minimum of 50 cycles with a 1 s interval. Image and data acquisition were performed

using Zen Black and Zen Blue software (Zeiss). Fluorescence intensity in the photo-bleached regions at each time point were quan-

tified as a percentage of fluorescence intensity before photobleaching.

Transwell migration assays
Cell migration and invasion abilities were assessed using Transwell cell culture inserts (BD Biosciences). For the cell migration assay,

2.53104 cells in 500 mL in serum-freemediumwere seeded directly into thewells of Transwell chambers with 8 mm-poremembranes.

Medium containing 10% FBS, was added into the lower chamber. After 24h, cells were fixed and stained with 2%Giemsa blue stain

(Sigma). Cells adhering to the upper surface of the membrane were removed using a cotton applicator. Cells on the lower side of the

membrane were counted. Five fields were randomly selected per cell line and the mean number of cells quantified.

Scratch assay
Cells were detached from the tissue culture plate using 0.25%Trypsin-EDTA solution and plated at the appropriate number of cells in

a 6-well plate for 100% confluence in 24 h. In a sterile environment the monolayer was scratch with a pipette tip forming a 1-2mm

scratch from one edge of the well to the other. The media was removed and replaced with 2mL of fresh media. Following the gen-

eration and inspection of the wound the plate was placed in an incubator set at 37�C and 5% CO2. Pictures were taken at different

time points. A time-lapse microscope with a controlled temperature at 37�C and 5% CO2, was also used in parallel experiments.

Tissue collection and immunostaining
Mice were anesthetized using pentobarbital and perfused with 4% PFA in PBS via transcardiac perfusion. Tissue was dissected and

drop-fixed in 4% PFA for 24 h at 4�C, followed by a 48-h incubation in 30% sucrose at 4�C. Tissue was mounted in M1 Embedding

matrix (ThermoFisher) and stored at�80�C. Tissue was sectioned on a CryoStar NX50 (ThermoFisher) in 40mm sections. Slices were

transferred into 200mL of permeabilization buffer (5% NDS, 0.3% Triton X-100, 2% DMSO, 0.01% Sodium Azide, 1X PBS) for 60 min

on a shaker at room temperature. Following the incubation, buffer was removed and 200mL of primary antibodies diluted in staining

buffer were added for 24–48 h with gentle rocking at room temperature. Sections were washed with PBST (0.3% Triton X-100/1X

PBS) three times for 10 min, followed by 2 h room temperature incubation with gentle rocking in the dark in 100 mL staining buffer

with secondary antibodies. The secondary antibody was removed and DAPI diluted to 1:1000 was added for 5 min before 3 washes

in PBST (0.1% Triton X-100/1X PBS). Slices were mounted on Superfrost Plus slides (ThermoFisher), dried, and �200mL mounting

medium (Sigma, Polyvinyl alcohol mounting medium with DABCO�, antifading) was added prior to placing a cover slip. Slides were

dried overnight prior to imaging. Images were acquired on the Nikon 710 confocal microscope.

Image quantification
Raw image Z-stacks were visualized in FIJI. To quantify Calb+ synapses onto DCN Neun+ neurons (Figures 6I and 6J), we selected

individual DCN neurons that were �20–25 um in diameter using only the NEUN channel (being blind to CALB1 staining). For each

DCN neuron the single Z-stack at the widest diameter was manually isolated. Each DCN neuron was then analyzed using a custom

CellProfiler pipeline. In brief, wemeasuredmean intensity and size of Calb+ objects within 1 mmof each DCNneuron. n = 4 animals for

each genotype, two sections per animal, for a total of 137DCNneurons. Images in Figures 6L andS6Fwere quantified using a custom

CellProfiler pipeline. In brief, soma and axons were isolated based on their sizes, and mean intensity was calculated for each object.
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Sacsin interactome analysis
Proteins were extracted from 8.53 106 cells of KO andWTSH-SY5Y cell lines using 500 mL of the lysis buffer (RIPAwith phosphatase

and protease inhibitors (EDTA free, Merk). The lysates were cleared by centrifugation (13000g) for 15 min at 4�C and then incubated

with 1/50 dilution of anti-sacsin antibody (Abcam, ab181190) overnight at 4�C with slow rotation. Protein A Dynabeads (Merk) were

equilibrated with the ice-cold lysis buffer and incubated with each cell lysate/antibodymix for 2 h at 4�Cwith slow rotation. The beads

were thenwashedwith the ice-cold lysis buffer and the bound proteins were eluted with 40mL of 2xLaemmli buffer. The samples were

then heated at 95�C for 5 min, centrifuged and loaded onto the NuPAGETM 4 to 12%, Bis-Tris, 1.5 mm, Mini Protein Gel

(ThermoFisher). The gels were resolved in 13 MOPC for 2 h at 4�C and then stained with SimplyBlue SafeStain (ThermoFisher) ac-

cording to the manufacturer’s protocol. Each gel lane was then cut into 10 fragments and the proteins were extracted from the gel

using trypsin digest protocol as previously described (Patel et al., 2009). Digests were analyzed using a Waters NanoAcquity Ultra-

Performance Liquid Chromatography system and data processed using PLGS v3.0.2 (Waters, UK). For protein interactome analysis

we only focused on proteins which were completely absent from all KO lysates, as these are the most stringent, high-confidence

interactors. However, several proteins were identified in both WT/KO lysates, but had substantially reduced intensity values in KO

cells. These proteins are also included in Table S4.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each experiment, the statistical test used, sample size, definition of a replicate, and precision measures are defined in the cor-

responding figure legend. Center points in all figures are mean of all replicates. Statistical tests were performed using either R or

Excel.
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Extended Data Figure 1 – sacsin KO SH-SY5Y cells recapitulate cellular phenotypes consistent with 
known deficits 

a. Western blot for sacsin and ACTB demonstrating the loss of sacsin in SH-SY5Y KO cells. 
b. Coefficient of variation of vimentin pixel intensity values across the cell, with lower values indicating 

uniform distribution and higher values indicating polarized distribution. n = 3, S.E.M., Student’s t-test, 
****p<0.0001. 

c. Representative confocal images of WT and sacsin KO cells immunostained for the neurofilament heavy 
chain. 



d. Coefficient of variation of NFH pixel intensity. n = 3, S.E.M., Student’s t-test, *p<0.05. 
e. Representative confocal images of WT and sacsin KO cells immunostained for peripherin, an 

intermediate filament protein found in neurons in the peripheral nervous system. 
f-i.  Western blot analysis quantification of pan-tau (Tau5) in sacsin KO and WT cells in undifferentiated 

(f,g) and neuronally differentiated (h,i) SH-SY5Y cells. n = 3-4, S.E.M., Student’s t-test, *p<0.05, 
**p<0.01. 

j. Phosphoproteomic analysis of sacsin KO cells. Green circles mark specific phosphorylated residues on 
tau. 

k,l. Western blot and quantification of phosphorylated tau at serine 199. n = 3, S.E.M., Student’s t-test, 
*p<0.05. 
m. Phosphopeptide levels compared to changes in total protein levels. Color scale reflects the difference in 

log2 f.c. between each dataset. Black outline marks phosphosites with p<0.05 and log2 f.c. -/+0.4. 
n. Kinome profiling of sacsin KO cells. Green circles mark kinases which are known to directly 

phosphorylate tau. 
o. Principle component analysis of all kinases identified in kinome profiling data (Supp. Table 1). 

Unsupervised hierarchical clustering separated WT and KO cells (grey shading), suggesting 
widespread changes in the kinome of sacsin KO cells. 

p. Biochemical analysis of tau aggregation using homogeneous time resolved fluorescence (HTRF) and 
anti-Tau antibodies conjugated with either Tb (donor) or d2 (acceptor) fluorophores. Graph represents 
the HTRF ratio, or Delta f%, of the two emission signals comparing WT/KO SH-SHY5Y lysates. n = 3, 
S.E.M., Student’s t-test, n.s. = not significant. 

 



 



Extended Data Figure 2 – Microtubule and mitochondria deficits in sacsin KO cells 
a. Super resolution structural illumination microscopy images showing accumulation of gamma-tubulin 

within perinuclear vimentin bundles of sacsin KO cells.  White arrows point to centrioles, yellow 
arrowheads highlight the presence of gamma-tubulin within vimentin bundles in KO cells. Dashed white 
lines denote boundaries between adjacent cells. Scale bar = 1um. 

b. Representative confocal images of WT and sacsin KO cells stained for the mitochondria membrane 
potential dependent dye CMXRos, vimentin, and nuclei (DAPI). Arrowheads highlight the exclusion of 
mitochondria from vimentin bundles. 

c. Representative confocal images of WT and sacsin KO cells immunostained for mitotracker, actin, and 
nuclei (DAPI). Arrowheads highlight the exclusion of mitochondria from vimentin bundles.  

d. Representative phase contrast brightfield images of WT and sacsin KO cells across 15 days of neuronal 
differentiation.  

e,f. Quantitation of the number of projections per field (e) and length of projection (f) of WT/KO cells 
demonstrating significantly reduced number and length of projections in sacsin KO cells. n = 3, S.E.M., 
Student’s t-test, *p<0.05, ***p<0.001. 

g. Confocal images of WT/KO cells after 15 days in differentiation conditions, stained for neuronal 
markers microtubule associated protein 2 (MAP2) and synapsin1 (SYN1), and the intermediate filament 
protein nestin (NES), a marker of immature neurons. Scale bar = 10 µm. 

h. Mitochondria labeled with mitoTracker GreenFM in neurites (highlighted in yellow) of 15 day 
differentiated WT/KO cells demonstrating the lack of elongated mitochondria in sacsin KO neurites. 
Images were snapshots from live-cell time-lapse imaging.  

i. Kymograph illustrating mitochondrial transport along neurites of differentiated WT/KO cells. Note that 
mitochondrial undergo both retrograde and anterograde movement in control but are relatively static in 
sacsin KO cells. Scale bar = 10 µm. 

 



 



Extended Data Figure 3 – FAs are disrupted in sacsin KO cells 
a. Representative confocal image of WT/KO cells labelled with vimentin and paxillin. Arrowhead marks the 

PAX positive MTOC, which is sequestered in the vimentin bundle in SACS KO cells. Scale bar = 10 
µm. 

b-g. Quantification of images from Fig. 3c (b-d), and Extended Data Figure 3a (e-g). Aspect ratio = 
width:height ratio. n = 3 independent cultures, S.E.M., Student’s t-test, **p<0.01, ***p<0.001, 
****p<0.0001. 

h. Western blot for vinculin, showing that levels of the FA protein are unaltered in KO cells. 
i,j. FRAP analysis of perinuclear vimentin (i), and filamentous vimentin on the periphery of the cell away 

from vimentin bundle (j). Cells were transfected with EGFP-VIM expression vector and defined 2×2 μm 
regions of interest were bleached with a 488-nm laser. Recovery was monitored over 50 cycles of imaging 
with a 1-s interval. n=10 cells from each of three independent experiments. 

f. Representative image of cover slips treated with hypotonic shock to remove cell bodies, leaving FAs 
retained through ECM interaction. Staining for the FA protein vinculin. Scale bar = 10 µm. 

l-n. Quantification of the incidence, area, and aspect ratio of paxillin positive FAs in WT/KO cells treated 
with hypotonic shock. n = 3 independent cultures, S.E.M., Student’s t-test, **p<0.01, ****p<0.0001. 

o. Western blot for sacsin and ACTB demonstrating the loss of sacsin in HEK293 KO cells. 
p. Confocal images of HEK293 cells immunolabeled for vimentin, vinculin, and actin. Scale bar = 10 µm. 
q-s. Quantification of images from Supp. Fig. 3p, suggesting FA deficits are consistent with SH-SY5Y cells.   

n = 3 independent cultures, S.E.M., Student’s t-test, ***p<0.001, ****p<0.0001. 
t.  Changes in levels of integrin proteins quantified by mass-spectrometry (data from Supplementary Table 

1, Fig. 1b). n = 3, S.E.M. 
u.  Representative confocal images of cells immunolabeled for ITGA6. Scale bar = 10 µm. 
v.  Global proteomic profiling of primary cortical cultures derived from E15.5 Sacs(-/-) mice. Cutoffs for 

significance were p<0.05 and log2 fold change (f.c.) -/+0.4, denoted by black outline. n=3 litters, 
replicate defined as litter mate control cultures from Sacs(+/+) and Sacs(-/-) mice. 

w.  GO term analysis of differentially expressed proteins in primary cortical cultures (p<0.05, log2 f.c. cutoff 
-/+0.4). 

 
 
 

  



 
Extended Data Figure 4 – Modulating PTEN rescues cellular phenotypes in sacsin KO cells 

a-h. Quantification of immunoblots from Fig. 4c. Intensity normalized to ACTB. n=3 biological replicates, 
S.E.M., Student’s t-test, **p<0.01, ***p<0.001. 

i. Representative confocal images of the induction of vimentin bundling by simvastin. Scale bars = 10 µm. 
j. Quantification of vimentin bundling phenotype induced by simvastin over time. 
k. Western blot of PTEN levels in 24-hour simvastin treated WT cells, suggesting that vimentin bundling 

does not affect PTEN levels. 
l,m. Representative bright field images of a scratch assay of WT/KO SH-SY5Y cells. Red and yellow lines 

mark the edge of the wound after 0 and 24 hours of recovery, respectively (l). Quantification of scratch 
closure in WT/KO 24 hours after the scratch was made. n = 3 independent cultures, S.E.M., Student’s t-
test, ****p<0.0001. 

h. Representative images of WT/KO SH-SY5Y cells in Transwell chambers with 8 µm pores 24 hours after 
plating, fixed and stained with Giemsa blue. Arrows mark cell bodies, scale bar = 20 µm.  

i. Quantification of the number of migrated cells after 24 hours, normalized to WT. n = 3 biological 
replicates, S.E.M., Student’s t-test, ****p<0.0001. 

j. Representative images of WT/KO SH-SY5Y cells transfected with the indicated siRNAs, and plated in 
Transwell chambers. Scale bar = 20 µm.  

k. Quantification of Transwell assay 24 hours after plating. n = 5 per cell line/condition, S.E.M., Student’s 
t-test, *p<0.05, ***p<0.001. 



 
Extended Data Figure 5 – Altered transcription of synaptic adhesion and vesicular proteins 

a. RNA-seq of 15 day neuronally differentiated SH-SY5Y cells. 
b. Interaction network of cell adhesion proteins that are differentially expressed.  
c. GO term analysis of differentially expressed genes suggests that synaptic and vesicular transport 

genes are altered in neurons (p<0.05, log2 f.c. -/+ 0.5). 



d. Overlapping gene/protein identification from RNAseq and proteomics, showing that DEGs were not 
detected as readily in proteomics, as proteins that were not differentially expressed at the RNA level. 
Statistics: Hypergeometric test. 

e. Euler diagram of protein identification across all mass-spec datasets. 
f. Log2 f.c. of Rab proteins in proteome and surfaceome datasets. Asterisks refer to statistical significance 

in each dataset. No Rabs were significantly affected in the proteome. n = 3, S.E.M., Student’s t-test, 
*p<0.05, **p<0.01. 

g. Representative confocal images of cells immunolabelled for fibronectin and KDEL in in WT/KO SH-
SY5Y cells. Scale bar =10 µm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Extended Data Figure 6 – Cerebellar imaging in SACS KO mice 

a. Purkinje cell layer in P120 mice. Arrowhead marks ITGA1 accumulation in axonal swellings. Scale bar 
= 20 µm. 

b. Sagittal cerebellar section, marking the general DCN region analyzed in Figs. 6h-l, S6c-f. 
c. DCN in P120 mice, demonstrating substantial disruption of Purkinje neuron termini on DCN neurons. 

Scale bar = 20 µm. 
d,e.DCN in P60 mice. Arrowheads mark large CALB1+ structures, with accumulation of ITGA1. Scale bar = 

20 µm. 
a. Quantification of images in Fig. 6k. Large diameter DCN neuron soma defined as NEUN+/DAPI+ where 

diameter is between 20-25 µm. Replicates defined as in Fig. 6d, n=4, paired t-test.  
 



 
Extended Data Figure 7 – sacsin interactors 

a. Representative confocal image for sacsin and vinculin in WT SH-SY5Y cells demonstrating sacsin 
colocalizes with FAs.  

b. Representative confocal image for sacsin KO cells processed in parallel to (a), demonstrating the 
specificity of sacsin staining.  

c. GO term analysis of all proteins identified in the sacsin co-IP interactome (Supplementary Table 4). 
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