Writing and erasing O-GIcNAc on casein kinase 2 alpha alters the phosphoproteome

Supporting Information

Authors: Paul A. Schwein¹, Yun Ge¹, Bo Yang¹, Alexandria D'Souza¹, Alison Mody¹, Dacheng Shen¹, Christina M. Woo^{1,*}

¹ Department of Chemistry and Chemical Biology, 12 Oxford St, Cambridge, MA, USA 02138

* Corresponding author: cwoo@chemistry.harvard.edu

Index

Supplementary Figures	2
Supplementary Figure 1 – Endogenous CK2 α Levels Following OGT or OGA Inhibition	2
Supplementary Figure 2 – Phosphoproteomics Workflow	3
Supplementary Figure 3 – Nanobody-OGT Phosphoprotein Level Normalization Box Plot	4
Supplementary Figure 4 – Nanobody-OGT Phosphoprotein Level Principal Component Analysis	5
Supplementary Figure 5 – Nanobody-splitOGA Phosphoprotein Level Normalization Box Plot	t 6
Supplementary Figure 6 – Nanobody-OGA Phosphoprotein Level Principal Component Analysis	7
Supplementary Figure 7 – Nanobody-OGT Phosphosite Level Normalization Box Plot	8
Supplementary Figure 8 – Nanobody-OGT Phosphosite Level Principal Component Analysis	9
Supplementary Figure 9 – Nanobody-splitOGA Phosphosite Level Normalization Box Plot . 1	0
Supplementary Figure 10 – Nanobody-splitOGA Phosphosite Level Principal Component Analysis	1
Supplementary Figure 11 – STRING network of phosphoproteins negatively correlated with CK2 α glycosylation	2
Supplementary Tables	3
Supplementary Table 1 – MS Data (protein level hits)1	3
Supplementary Table 2 – MS Data (site level hits)1	4

Supplementary Figures

Supplementary Figure 1 – Endogenous CK2α Levels Following OGT or OGA Inhibition

HEK293T cells in 6-well plates were treated with 50 μ M OSMI-4b, 100 μ M Thiamet G, or an equivalent volume of DMSO for 12 h before addition of 1X cycloheximide. Cell lysates were then collected at the notated timepoints and were separated by SDS-PAGE. CK2 α and GAPDH protein levels were measured by Western blot, and CK2 α intensity was normalized to the corresponding GAPDH intensity in ImageJ for quantification. Error bars are representative of three independent replicates. A two-tailed Student's *t*-test was used for statistical analysis.

Supplementary Figure 2 – Phosphoproteomics Workflow

Cells were lysed by adding 1 mL of lysis buffer containing phosphatase inhibitors. Protein concentrations were determined by BCA assay. Reduction and alkylation were performed as previously described. S-trap digestion was done according to the manufacturer's instructions resulting in 0.8 mg tryptic peptides/sample. Samples were desalted and dried. The enrichment of phosphopeptides was performed by TiO₂ Phosphopeptide Enrichment Kit. Briefly, approximately 0.8 mg of tryptic peptides were resuspended in 150 μ L of Binding/Equilibration buffer. The suspended peptide sample was added to a pre-equilibrated TiO₂ spin tip and centrifuged at 1000 × g for 5 minutes. The spin tip was then washed with 20 μ L of Binding/Equilibration/Wash Buffer for three times, and eluted by 50 μ L of Elution buffer for two times. The eluates were evaporated to near dryness and subjected to the TMT-labeling. For each sample, 10 μ L the corresponding amine-based TMT 10-plex reagents (10 μ g/ μ L) was added and reacted for 1 h at room temperature. The reactions were quenched with 2 μ L 5% hydroxylamine solution and combined. The combined mixture was concentrated to dryness. High-pH fractionation (ThermoFisher Scientific) was done according to the manufacturer's instructions resulting in 6 fractions.

Supplementary Figure 3 – Nanobody-OGT Phosphoprotein Level Normalization Box Plot Normalization of TMT channels during protein-level analysis of nanobody-OGT phosphoproteomics experiment. Each channel represents GFP-FLAG-CK2 α -EPEA cotransfected with active or inactive nanobody-OGT. nb-OGT = active nanobody-OGT, dnb-OGT = inactive nanobody-OGT.

Supplementary Figure 4 – Nanobody-OGT Phosphoprotein Level Principal Component Analysis

Principal component analysis of nanobody-OGT protein level data indicating independent clustering between the control (inactive nanobody-OGT co-transfection) and treatment (active nanobody-OGT co-transfection). nb-OGT = active nanobody-OGT, dnb-OGT = inactive nanobody-OGT.

Supplementary Figure 5 – Nanobody-splitOGA Phosphoprotein Level Normalization Box Plot

Normalization of TMT channels during protein-level analysis of nanobody-splitOGA phosphoproteomics experiment. Each channel represents GFP-FLAG-CK2 α -EPEA co-transfected with active or inactive nanobody-splitOGA. nb-OGA = active nanobody-splitOGA, dnb-OGA = inactive nanobody-splitOGA.

Supplementary Figure 6 – Nanobody-OGA Phosphoprotein Level Principal Component Analysis

Principal component analysis of nanobody-splitOGA protein level data indicating clustering between the control (inactive nanobody-splitOGA co-transfection) and treatment (active nanobody-splitOGA co-transfection). nb-OGA = active nanobody-splitOGA, dnb-OGA = inactive nanobody-splitOGA.

Supplementary Figure 7 – Nanobody-OGT Phosphosite Level Normalization Box Plot Normalization of TMT channels during site-level analysis of nanobody-OGT phosphoproteomics

experiment. Each channel represents GFP-FLAG-CK2 α -EPEA co-transfected with active or inactive nanobody-OGT. nb-OGT = active nanobody-OGT, dnb-OGT = inactive nanobody-OGT.

Supplementary Figure 8 – Nanobody-OGT Phosphosite Level Principal Component Analysis

Principal component analysis of nanobody-OGT phosphosite level data indicating independent clustering between the control (inactive nanobody-OGT co-transfection) and treatment (active nanobody-OGT co-transfection). nb-OGT = active nanobody-OGT, dnb-OGT = inactive nanobody-OGT.

Supplementary Figure 9 – Nanobody-splitOGA Phosphosite Level Normalization Box Plot Normalization of TMT channels during site-level analysis of nanobody-splitOGA phosphoproteomics experiment. Each channel represents GFP-FLAG-CK2 α -EPEA cotransfected with active or inactive nanobody-splitOGA. nb-OGA = active nanobody-splitOGA, dnb-OGA = inactive nanobody-splitOGA.

Supplementary Figure 10 – Nanobody-splitOGA Phosphosite Level Principal Component Analysis

Principal component analysis of nanobody-splitOGA phosphosite level data indicating clustering between the control (inactive nanobody-splitOGA co-transfection) and treatment (active nanobody-splitOGA co-transfection). nb-OGA = active nanobody-splitOGA, dnb-OGA = inactive nanobody-splitOGA.

Supplementary Figure 11 – STRING network of phosphoproteins negatively correlated with CK2 α glycosylation

Phosphoproteins that significantly increased in enrichment in the nanobody-splitOGA condition or decreased in the nanobody-OGT condition were compiled and imported into STRING for interactome analysis. Only BAP1 and RING1 are functionally associated (with ubiquitination of histones).

Supplementary Tables

Supplementary Table 1 – MS Data (protein level hits)

Gene Name	PDB ID	Log ₂ (FC)	P value	Log ₂ (FC)	P value	Reported
		UGI	UGI	UGA	UGA	
MARCKS	P20066	1 36750281	3 8657E 07	0.000162	0 8081/825	Sub.:
	C129900	1.30730201	0.01876606	0.0733866	0.09014025	No
	013547	1.19323032	0.01070000	0.000380	0.30002011	100 Voc ³⁰
HMGB2	D26583	1.00712439	2 0455E 05	-0.0990309 NI/A	0.43190313 N/A	Vos ¹⁷
	C02760	1.00279550	0.00777620	0.0332643	0.6414608	Vos ³⁰
	016851	1.05110032	0.00777023	-0.03320 4 3	0.0414000 NI/Δ	No
EPB4112	043491	1.03007777	5.6632E-06	-0.0670828	0 32753689	No
	P46776	0.99070725	3.5807E-05	-0.0070020 N/Δ	0.32733003 N/Δ	No
RPI 34	P49207	0.95956758	4 3797E-05	-0 5646497	0.00012171	No
	0/3300	0.93300518	0.00016678	0.0040497	0.00012171	No
	D51610	0.93300310	0.00010070	-0.0628110	0.53610673	No
DDS3A	D61247	0.91030703	0.00303234	-0.0020113	0.33013073	No
	01247	0.90041091	0.00299094			No
	043768	0.0030130	9 9768E-05	-0.6537205	6 5355E-05	No
	032MK0	0.83520321	0.01151515	-0.0007200 NI/Δ	0.0000L-00	No
		0.00020021	0.01101010	0.12685104	0.5300/505	No
	006B36	0.7265354	0.00107030	0.0565705	0.0074870	No
		0.7203334	0.00110003	-0.0303733	0.00974079 N/A	No
		0.70570475	0.01207049	0.1387021	0 115/3130	No
NEIC	D08651	0.00323003	0.00001331	-0.1307021 N/Δ	0.11343133 N/Δ	No
	060343	0.0707430	0.00091429	_0.07809/3	0.48076431	No
	P/0025	0.07332403	0.00297030	-0.0700943	0.40070431	No
	P40923	0.03299339	0.01030303	0.03246701	0.10013000	No
05072	067RP7	-0.0310314	0.00000073	0.03240701 N/Δ	0.0000700 N/Δ	No
	092560	-0.0240312	0.00211920			No
		0.60808284	0.01120334	0.650/163	0.00011003	No
KHSBD	002045	0.00030204	3 8665E-05	-0.0534103	0.00011995	No
EXOC3	060645	-0 5971443	0.0486203	-0.1013304 N/Δ	0.29431120 N/Δ	No
RBM34	P42696	0.50702178	0.0400200	-0 37369	0.00385585	No
	05\/789	-0 5898665	0.00000202	-0.0054706	0.0000000000	No
SETX	077333	-0.5050000	0.00721104	-0.0004700 N/Δ	N/A	
MCF2	P10011	-0.5832619	0.00034032	Ν/Α	N/A	No
		0.55998809	0.00114002	-0.0409057	0.53149013	
	095232	0.535550005	0.01000700	-0.0405057 N/Δ	0.00140010 N/Δ	No
RING1	006587	-0 5355431	0.00045075	-0 1315409	0.81440089	No
	001813	0 53464855	0.01300043	-0.6693487	3 1213E-05	No
NCBP3	Q53F19	0.53253321	0.04912922	0.08806703	0 25442596	No
AAGAR		-0.5202489	0.00104418	N/A	Ν/Δ	No
RIOX2		0.51598347	0.00231079	Ν/Δ	N/A	No
	09P0K1	0.50719107	0.00485886	N/A	N/A	No
RPI 37	P61027	0.50432442	0.0053132	Ν/Δ	N/A	No
TFAM	Q00059	0.50214963	0.0122408	0.03561791	0 57239368	No

PABPN1	Q86U42	0.02174837	0.8726238	-1.2207843	0.00080145	No
SRSF2	Q01130	-0.1694018	0.07328998	-0.9482095	3.1687E-06	No
NUFIP2	Q7Z417	0.07818113	0.51571786	0.6055824	0.01815937	No
MOV10	Q9HCE1	N/A	N/A	-0.5864239	0.00018435	No
RBBP7	Q16576	N/A	N/A	-0.568389	0.00683292	No
PPP1R12A	O14974	0.31895842	0.03708686	-0.5415793	0.00054957	No
REEP5	Q00765	N/A	N/A	-0.5286674	7.9512E-05	No
RAD23A	P54725	-0.0433452	0.72509578	-0.5268616	0.01010218	No
TSC2	P49815	0.0960385	0.27813694	0.5065094	0.00076195	No

Supplementary Table 2 – MS Data (site level hits)

Gene	PDB ID	Phospho-	Condition	Log ₂ (FC)	P value	Reported
Name		site				CK2 sub.?
MARCKS	P29966	S170	OGT	1.47934	6.6677E-06	No
HMGB2	P26583	T179	OGT	1.01355	0.00013414	Yes ¹⁷
HDAC1	Q13547	S343	OGT	1.06832832	0.00567005	Yes ³²
HDAC2	Q92769	S394	OGT	1.04528135	0.00861108	Yes ³²
UGP2	Q16851	Y248	OGT	1.02774156	0.00953618	No
CWC25	Q9NXE8	S218	OGT	1.04628939	0.0209202	No
ILF3	Q12906	S382	OGT	1.36850275	0.0200335	No
EPB41L2	O43491	S550	OGT	1.02099418	0.01224519	No
MDC1	Q14676	T404	OGT	2.21424469	0.03398253	Yes ⁴⁸
MDC1	Q14676	S329	OGT	-1.1436185	0.01538304	Yes ⁴⁸
NUFIP2	Q7Z417	T571/S572	OGA	1.02597445	0.00252018	No
PABPN1	Q86U42	S95	OGA	-1.1619051	0.00081583	No