SUPPORTING INFORMATION

Alchemical Free Energy Calculations of Watson–Crick and

Hoogsteen Base Pairing Interconversion in DNA

Inacrist Geronimo and Marco De Vivo*

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via

Morego 30, Genoa 16163, Italy

***Corresponding author:** Marco De Vivo, Email: <u>marco.devivo@iit.it</u> **General unbiased MD simulation protocol.** The systems were minimized for 1000 steps using the steepest descent algorithm, followed by the conjugate gradient algorithm, until the maximum force was less than 100 kJ mol⁻¹ nm⁻¹. Subsequently, the systems were heated to 300 K (isolated AT-rich DNA) or 310 K (binary 8-oxoguanine (8OG)-damaged DNA/polymerase μ complex) for 100 ps in the NVT ensemble and equilibrated for 500 ps in the NPT ensemble with all heavy atoms restrained. Constant temperature was maintained using Langevin dynamics¹ with a time coupling constant of 2 ps. A constant pressure of 1 bar was maintained using the Berendsen algorithm² during equilibration, and the Parrinello–Rahman algorithm³ during production with a time coupling constant of 2 ps. Periodic boundary conditions were applied, and long-range electrostatic interactions were calculated using the particle mesh Ewald method⁴ with a real-space cut-off of 12 Å. Bonds with hydrogen were constrained using the LINCS algorithm,⁵ which allowed a time step of 2 fs.

Charge derivation for 8OG. Geometry optimization of the *anti* and *syn* conformations of 8OG at the MP2/6-31G* level and electrostatic potential calculations at the HF/6-31G* level were performed using Gaussian 09.⁶ Subsequently, a multi-conformational restrained electrostatic potential^{7,8} fitting over the two 8OG conformations was performed using antechamber.⁹ Only the charges of the purine, C1', and H1' atoms were derived, while the rest of the atoms were constrained to have the same charges as those in undamaged deoxyguanosine (Table S1).

Atom name	Atom type	Charge	Atom name	Atom type	Charge
N9	N*	-0.004566	H1	Н	0.348606
C8	С	0.408236	C2	CA	0.717325
08	0	-0.490468	N2	N2	-0.811768
N7	NA	-0.548021	H21	Н	0.372421
H7	Н	0.398226	H22	Н	0.372421
C5	CB	0.007740	N3	NC	-0.529776
C6	С	0.609879	C4	CB	0.106197
O6	0	-0.625336	C1′	СТ	0.543252
N1	NA	-0.576626	H1′	H2	-0.176142

Table S1. Derived partial charges of 8-oxoguanine.^a

^{*a*} For the other atoms, the atom types and charges are the same as those of deoxyguanosine.

resid	ue	5	8AS	rtp 84	AS q - 1	.2					
125	Р		5	8ÅS	Ρ́	125	1.165900	30.9700			
126	02		5	8AS	0P1	126	-0.776100	16.0000			
127	02		5	8AS	0P2	127	-0.776100	16.0000			
128	0S		5	8AS	05'	128	-0.495400	16.0000			
129	CI		5	8AS	C5 '	129	-0.006900	12.0100			
130	H1		5	8AS	H5 '	130	0.075400	1.0080			
131	н		5	845	H5''	131	0.075400	1.0080			
132	CT		5	845	C4'	132	0.162900	12.0100			
133	ні		5	845	H4'	133	0 117600	1 0080			
134	05		5	845	04'	134	-0.369100	16,0000	DUM OS	0.00000	1.0000
135	ст		5	845	č1'	135	0 543252	12 0100		0.000000	1 0000
136	н2		5	845	н <u>т</u> ,	136	-0 176142	1 0080		0.000000	1 0000
137	N*		5	845	NQ	137	-0 004566	14 0100		0.000000	1 0000
138	ĉ		5	845	68	138	0.004300	12 0100		0.000000	1 0000
130	ñ		5	845	08	130	-0 400250	16 0000		0.000000	1 0000
140	NA		5	845	N7	1/0	-0.548021	14 0100		0.000000	1 0000
1/1	ц		5	845	Н7	1/1	A 308226	1 0020		0.000000	1 0000
142	CB		5	845	C5	142	0.000220	12 0100		0.000000	1 0000
1/3	c		5	0A5 0AC	60	1/13	0.007740	12.0100		0.000000	1 0000
143	0		5	045	06	143	0.005875	16 0000		0.000000	1 0000
144	NA		5	045	N1	144	-0.025550	14 0100		0.000000	1 0000
145			5	045		145	0.370020	1 0000		0.000000	1.0000
140	п сл		5	045	C2	140	0.340000	12 0100		0.000000	1.0000
147			5	045	ND	147	0.717525	14 0100		0.000000	1.0000
148			2	845	1121	148	-0.811/08	14.0100		0.000000	1.0000
149	н		2	0A5	1122	149	0.372421	1.0080		0.000000	1.0000
120	H		2	BAS	HZZ ND	150	0.372421	1.0080		0.000000	1.0000
151			2	BAS	N3	101	-0.529776	14.0100	DUM_NC	0.000000	1.0000
152	CB		5	BAS	C4 C21	152	0.100197	12.0100	DOW_CR	0.000000	1.0000
122	CE		2	BAS	C3.	153	0.071300	12.0010			
154	HI		5	8A5	H3 COL	154	0.098500	1.0080	DUM CT		1 0000
155	CI		5	845	C2.	155	-0.085400	12.0100		0.000000	1.0000
156	HC		5	8AS	HZ	156	0.071800	1.0080	DUM_HC	0.000000	1.0000
157	HC		5	885	HZ	157	0.071800	1.0080	DOM_HC	0.000000	1.0000
158	05		5	8AS	03	158	-0.523200	16.0000			
159	DUM_C	12	5	8AS	D04 ·	159	0.000000	1.0000	05	-0.369100	16.0000
160	DUM_C		5	8AS	DC1	160	0.000000	1.0000	CI	0.543252	12.0100
161	DUM_F	12	5	8AS	DH1'	161	0.000000	1.0000	H2	-0.1/6142	1.0080
162	DUM_N	¶** -	5	8AS	DN9	162	0.000000	1.0000	N*	-0.004566	14.0100
163	DUM_C	-	5	8AS	DC8	163	0.000000	1.0000	C	0.408236	12.0100
164	DUM_C)	5	8AS	D08	164	0.000000	1.0000	0	-0.490468	16.0000
165	DUM_N	AV.	5	8AS	DN7	165	0.000000	1.0000	NA	-0.548021	14.0100
166	DUM_F	1	5	8AS	DH7	166	0.000000	1.0000	н	0.398226	1.0080
167	DUM_C	СВ	5	8AS	DC5	167	0.000000	1.0000	СВ	0.007740	12.0100
168	DUM_C	-	5	8AS	DC6	168	0.000000	1.0000	C	0.609879	12.0100
169	DUM_C)	5	8AS	D06	169	0.000000	1.0000	0	-0.625336	16.0000
170	DUM_N	A	5	8AS	DN1	170	0.000000	1.0000	NA	-0.576626	14.0100
171	DUM_H	ł	5	8AS	DH1	171	0.000000	1.0000	н	0.348606	1.0080
172	DUM_C	CA	5	8AS	DC2	172	0.000000	1.0000	CA	0.717325	12.0100
173	DUM_N	12	5	8AS	DN2	173	0.000000	1.0000	N2	-0.811768	14.0100
174	DUM_F	ł	5	8AS	DH21	174	0.000000	1.0000	Н	0.372421	1.0080
175	DUM_F	ł	5	8AS	DH22	175	0.000000	1.0000	Н	0.372421	1.0080
176	DUM_N	IC	5	8AS	DN3	176	0.000000	1.0000	NC	-0.529776	14.0100
177	DUM_C	СВ	5	8AS	DC4	177	0.000000	1.0000	СВ	0.106197	12.0100
178	DUM_C	CT.	5	8AS	DC2'	178	0.000000	1.0000	СТ	-0.085400	12.0100
179	DUM_F	łC	5	8AS	DH23	179	0.000000	1.0000	нс	0.071800	1.0080
180	DUM_H	łC	5	8AS	DH24	180	0.000000	1.0000	НС	0.071800	1.0080

Figure S1. [atoms] Directive of the GROMACS topology file showing the transformation of real atoms to virtual atoms and vice versa. When the atom is virtual, the atom type is prefixed by "DUM_" and the charge is zero.

Table S2. Reference glycosyl torsion angles, H-bond distances, and H-bond angles for the harmonic restraints obtained from unbiased MD simulations of isolated AT-rich DNA with Watson–Crick (WC) or Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2).

	WC	HG
Glycosyl torsion angle	-102.6	64.9
H-bond distance (Å)/angle (°)		
hb _{WC}	3.0/10.9	-
hb _{HG}	-	3.1/10.9
hb _C	3.0/11.4	2.9/14.3

Table S3. Reference torsion angles for the harmonic restraints obtained from unbiased MD simulations of the DNA polymerase μ binary complex with *anti* or *syn* 8-oxoguanine (see Scheme 2).

Torsion angle	anti	syn
Glycosyl (°)	-97.8	64.8
Base-flipping (°)	2.8	9.1

Figure S2. (A) Time evolution of backbone RMSDs in isolated AT-rich DNA with Watson–Crick (WC, grey) and Hoogsteen (HG, green) base pairing modes of A4:T9. Terminal base pairs were excluded from the calculation. (B) Comparison of the two structures from unbiased MD simulations.

Restrain											FEP											
λ	0	1	2	3	4	5	λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	.41	.29	.13	.08	.05	.04	0	.47	.32	.17	.04											
1	.29	.27	.18	.11	.08	.07	1	.32	.33	.26	.08	.01										
2	.13	.18	.20	.18	.16	.14	2	.17	.26	.33	.20	.04										
3	.08	.11	.18	.21	.21	.21	3	.04	.08	.20	.45	.22	.01									
4	.05	.08	.16	.21	.24	.25	4		.01	.04	.22	.59	.14									
5	.04	.07	.14	.21	.25	.29	5				.01	.14	.74	.10	20	01						
							б						.10	.68	.20	.01						
λ	0	1	2	3	4	5	7							.20	.64	.15						
0	.29	.26	.21	.14	.06	.04	8							.01	.15	.72	.11					
1	26	24	21	16	08	05	9									.11	.71	.16	.01			
-	.20	.24	.21	.10	.00	.05	10										.16	.54	.24	.05	.01	
2	.21	.21	.21	.18	.11	.07	11										.01	.24	.47	.21	.05	.02
3	.14	.16	.18	.21	.18	.13	12											.05	.21	.33	.24	.16
4	.06	.08	.11	.18	.28	.29	13											.01	.05	.24	.35	.34
5	.04	.05	.07	.13	.29	.42	14												.02	.16	.34	.47

Figure S3. Overlap matrices for the three stages of transformation of A4:T9 from Watson–Crick to Hoogsteen base pairing. The element O_{ij} is the probability of observing a sample from state *i* (*i*th row) in state *j* (*j*th column). The recommended minimum probability for adjacent states (highlighted by thick black lines) is 0.03.¹⁰

Figure S4. Time evolution of the glycosyl torsion angles of *anti* and *syn* A4 at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S5. Time evolution of the glycosyl torsion angles of *anti* and *syn* A4 at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S6. Time evolution of the glycosyl angles of *anti* and *syn* A4 at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

Figure S7. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S8. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S9. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

Figure S10. Time evolution of backbone RMSDs in the DNA polymerase μ binary complex with 8-oxoguanine in the (A) *syn* and (B) *anti* conformations. The flexible loop 1 (C369–F385), which was missing from the crystal structure and added by modeling, was excluded from the calculation.

Restrain											FEP											
λ	0	1	2	3	4	5	λ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	.35	.25	.14	.10	.09	.08	0	.49	.32	.15	.03											
1	.25	.23	.16	.13	.12	.11	1	.32	.33	.25	.09	.01										
2	.14	.16	.18	.18	.17	.17	2	.15	.25	.33	.23	.04										
3	.10	.13	.18	.19	.20	.20	3	.03	.09	.23	.42	.22	.01									
Δ	09	12	17	20	21	22	4		.01	.04	.22	.58	.15									
	.05	.12	/	.20	.21	.22	5				.01	.15	.72	.12								
5	.08	.11	.17	.20	.22	.23	6						.12	.70	.17	.01						
λ	0	1	2	3	4	5	7							.17	.67	.15						
0	.23	.21	.19	.16	.11	.09	8							.01	.15	.73	.11					
1	.21	.21	.19	.17	.12	.10	9									.11	.73	.15	.01			
2	10	10	10	17	14	10	10										.15	.61	.21	.03		
2	.19	.19	.19	.1/	.14	.12	11										.01	.21	.46	.23	.07	.02
3	.16	.17	.17	.18	.17	.15	12											.03	.23	.36	.26	.12
4	.11	.12	.14	.17	.22	.24	13												.07	.26	.35	.32
5	.09	.10	.12	.15	.24	.30	14												.02	.12	.32	.54

Figure S11. Overlap matrices for the three stages of transformation of 8-oxoguanine from *anti* to *syn* conformation. The element O_{ij} is the probability of observing a sample from state *i* (*i*th row) in state *j* (*j*th column). The recommended minimum probability for adjacent states (highlighted by thick black lines) is 0.03.¹⁰

Figure S12. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (8OG) at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S13. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (80G) at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S14. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (8OG) at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

References

- (1) Pastor, R. W.; Brooks, B. R.; Szabo, A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. *Mol. Phys.* **1988**, *65*, 1409–1419.
- (2) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. *J. Chem. Phys.* **1984**, *81*, 3684–3690.
- (3) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. **1981**, 52, 7182–7190.
- (4) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. *J. Chem. Phys.* **1995**, *103*, 8577–8593.
- (5) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. *J. Comput. Chem.* **1997**, *18*, 1463–1472.
- (6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02. Gaussian, Inc.: Wallingford CT 2016.
- Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280.
- (8) Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. Application of the Multimolecule and

Multiconformational RESP Methodology to Biopolymers: Charge Derivation for DNA, RNA, and Proteins. J. Comput. Chem. **1995**, 16, 1357–1377.

- (9) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. *J. Mol. Graph. Model.* **2006**, *25*, 247–260.
- (10) Klimovich, P. V; Shirts, M. R.; Mobley, D. L. Guidelines for the Analysis of Free Energy Calculations. J. Comput. Aided. Mol. Des. 2015, 29, 397–411.