SUPPORTING INFORMATION

Alchemical Free Energy Calculations of Watson–Crick and

Hoogsteen Base Pairing Interconversion in DNA

Inacrist Geronimo and Marco De Vivo*

Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via

Morego 30, Genoa 16163, Italy

***Corresponding author:** Marco De Vivo, Email: marco.devivo@iit.it **General unbiased MD simulation protocol.** The systems were minimized for 1000 steps using the steepest descent algorithm, followed by the conjugate gradient algorithm, until the maximum force was less than 100 kJ mol⁻¹ nm⁻¹. Subsequently, the systems were heated to 300 K (isolated AT-rich DNA) or 310 K (binary 8-oxoguanine (8OG)-damaged DNA/polymerase µ complex) for 100 ps in the NVT ensemble and equilibrated for 500 ps in the NPT ensemble with all heavy atoms restrained. Constant temperature was maintained using Langevin dynamics¹ with a time coupling constant of 2 ps. A constant pressure of 1 bar was maintained using the Berendsen algorithm² during equilibration, and the Parrinello–Rahman algorithm³ during production with a time coupling constant of 2 ps. Periodic boundary conditions were applied, and long-range electrostatic interactions were calculated using the particle mesh Ewald method⁴ with a realspace cut-off of 12 Å. Bonds with hydrogen were constrained using the LINCS algorithm,⁵ which allowed a time step of 2 fs.

Charge derivation for 8OG. Geometry optimization of the *anti* and *syn* conformations of 8OG at the MP2/6-31G* level and electrostatic potential calculations at the HF/6-31G* level were performed using Gaussian 09.⁶ Subsequently, a multi-conformational restrained electrostatic potential^{7,8} fitting over the two 8OG conformations was performed using antechamber.⁹ Only the charges of the purine, C1['], and H1['] atoms were derived, while the rest of the atoms were constrained to have the same charges as those in undamaged deoxyguanosine (Table S1).

Table S1. Derived partial charges of 8-oxoguanine. *a*

^{*a*} For the other atoms, the atom types and charges are the same as those of deoxyguanosine.

Figure S1. [atoms] Directive of the GROMACS topology file showing the transformation of real atoms to virtual atoms and vice versa. When the atom is virtual, the atom type is prefixed by "DUM_" and the charge is zero.

Table S2. Reference glycosyl torsion angles, H-bond distances, and H-bond angles for the harmonic restraints obtained from unbiased MD simulations of isolated AT-rich DNA with Watson–Crick (WC) or Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2).

	WC	HG
Glycosyl torsion angle	-102.6	64.9
H-bond distance $(\AA)/angle$ (°)		
hbwc	3.0/10.9	
hb_{HG}		3.1/10.9
$\rm{h}b_{\rm{C}}$	3.0/11.4	2.9/14.3

Table S3. Reference torsion angles for the harmonic restraints obtained from unbiased MD simulations of the DNA polymerase µ binary complex with *anti* or *syn* 8-oxoguanine (see Scheme 2).

Figure S2. (A) Time evolution of backbone RMSDs in isolated AT-rich DNA with Watson–Crick (WC, grey) and Hoogsteen (HG, green) base pairing modes of A4:T9. Terminal base pairs were excluded from the calculation. (B) Comparison of the two structures from unbiased MD simulations.

Restrain													FEP											
λ	$\pmb{0}$	1	2	3	4	5	λ	$\mathsf 0$	$\mathbf 1$	$\overline{2}$	3	4	5	6	7	8	9	10	11	12	13	14		
0	.41	.29	.13	.08	.05	.04	0	.47	.32	.17	.04													
$\mathbf 1$.29	.27	.18	.11	.08	.07	1	.32	.33	.26	.08	.01												
2	.13	.18	.20	.18	.16	.14	$\overline{2}$.17	.26	.33	.20	.04												
3	.08	.11	.18	.21	.21	.21	3	.04	.08	.20	.45	.22	.01											
4	.05	.08	.16	.21	.24	.25	4		.01	.04	.22	.59	.14											
5	.04	.07	.14	.21	.25	.29	5 6				.01	.14	.74	.10 .68										
													.10		.20	.01								
λ	$\mathbf 0$	1	$\overline{2}$	3	4	5	$\boldsymbol{7}$.20	.64	.15								
$\mathbf 0$.29	.26	.21	.14	.06	.04	8							.01	.15	.72	.11							
$\mathbf 1$																								
							9									.11	.71	.16	.01					
	.26	.24	.21	.16	.08	.05	10										.16	.54	.24	.05	.01			
$\overline{2}$.21	.21	.21	.18	.11	.07	11										.01	.24	.47	.21	.05	.02		
3	.14	.16	.18	.21	.18	.13	12											.05	.21	.33	.24	.16		
4	.06	.08	$.11\,$.18	.28	.29	13											.01	.05	.24	.35	.34		
5	.04	.05	.07	.13	.29	.42	14												.02	.16	.34	.47		

Figure S3. Overlap matrices for the three stages of transformation of A4:T9 from Watson–Crick to Hoogsteen base pairing. The element Oij is the probability of observing a sample from state i (ith row) in state j (jth column). The recommended minimum probability for adjacent states (highlighted by thick black lines) is 0.03^{10}

Figure S4. Time evolution of the glycosyl torsion angles of *anti* and *syn* A4 at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S5. Time evolution of the glycosyl torsion angles of *anti* and *syn* A4 at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S6. Time evolution of the glycosyl angles of *anti* and *syn* A4 at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

Figure S7. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S8. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S9. Time evolution of the H-bond distances and angles in the Watson–Crick (WC) and Hoogsteen (HG) base pairing modes of A4:T9 (see Scheme 2) at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

Figure S10. Time evolution of backbone RMSDs in the DNA polymerase μ binary complex with 8oxoguanine in the (A) *syn* and (B) *anti* conformations. The flexible loop 1 (C369–F385), which was missing from the crystal structure and added by modeling, was excluded from the calculation.

Figure S11. Overlap matrices for the three stages of transformation of 8-oxoguanine from *anti* to *syn* conformation. The element Oij is the probability of observing a sample from state *i* (i^{th} row) in state *j* (j^{th} column). The recommended minimum probability for adjacent states (highlighted by thick black lines) is 0.03^{10}

Figure S12. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (8OG) at all λ -states during the "restrain" stage of the transformation (data collected every 20 ps). The harmonic restraints on the real atoms were switched on from state 0 to state 5, while those on the virtual atoms were on at all λ -states.

Figure S13. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (8OG) at all λ -states during the "FEP" stage of the transformation (data collected every 20 ps). The harmonic restraints on both real and virtual atoms were on at all λ -states.

Figure S14. Time evolution of the glycosyl and base-flipping torsion angles of *anti* and *syn* 8-oxoguanine (8OG) at all λ -states during the "release" stage of the transformation (data collected every 20 ps). The harmonic restraints on the virtual atoms were switched off from state 0 to state 5, while those on the real atoms were on at all λ -states.

References

- (1) Pastor, R. W.; Brooks, B. R.; Szabo, A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. *Mol. Phys.* **1988**, *65*, 1409–1419.
- (2) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. *J. Chem. Phys.* **1984**, *81*, 3684–3690.
- (3) Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. *J. Appl. Phys.* **1981**, *52*, 7182–7190.
- (4) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. *J. Chem. Phys.* **1995**, *103*, 8577–8593.
- (5) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS: A Linear Constraint Solver for Molecular Simulations. *J. Comput. Chem.* **1997**, *18*, 1463–1472.
- (6) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02. Gaussian, Inc.: Wallingford CT 2016.
- (7) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. *J. Phys. Chem.* **1993**, *97*, 10269–10280.
- (8) Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A. Application of the Multimolecule and

Multiconformational RESP Methodology to Biopolymers: Charge Derivation for DNA, RNA, and Proteins. *J. Comput. Chem.* **1995**, *16*, 1357–1377.

- (9) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. *J. Mol. Graph. Model.* **2006**, *25*, 247–260.
- (10) Klimovich, P. V; Shirts, M. R.; Mobley, D. L. Guidelines for the Analysis of Free Energy Calculations. *J. Comput. Aided. Mol. Des.* **2015**, *29*, 397–411.