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Supplementary File 1: Extended Model description

Monod-type ODE model construction

As described in the main manuscript, a simplified cybernetic mathematical framework for a single strain comprising different
metabolite consumption and production states was constructed first for each organism. Each single-strain cybernetic model
was used as a kernel section of a co-culture population computational framework. A Monod base model was used for the
individual strain rate equations. For this construction, let us first establish a common biochemical reaction for any substrate
S that can be consumed by the biomass X at a given metabolic state as:
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The latter biochemical reaction model allows to construct a stoichiometric vector φ for S consumption such that the rate of
change for any component in the media Mi (including X and S,i = X,S,A, ..., N) can be defined by the product of reaction
rate rσ and φ vector as follows:
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With this in mind, the model can then be extended to a stoichiometric Matrix where we can define each column as a different
φ for each known growth rate derived from the consumption of other substrates, which in turn can be associated with a
specific metabolic state(e.g., the consumption of A, ..., N). This extension then contains the known behavioral capabilities of
the cell within the model Φ = [φs, φa, ..., φn].
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Each φ vector also contains the information for its effect on all components in the system. If a particular metabolite is not
produced or consumed in a specific metabolic state, its yield (Y ) is set to 0. For our particular purpose, we will put that for a
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metabolic state for a single primary substrate (j...j + n) consumption, the consumption rate qj....j+n is given by a simplified
Monod-type equation such as:

qj =
qmaxj Mj

Kj +Mj
(5)

We can then rewrite Eq. 4 in a general form as follows:
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X (6)

This general form can then be reduced for each metabolite as some yields are 0 for a particular Substrate j. In this work,
we used this equation to construct the mathematical model to describe the growth, consumption, and production behavior
of E.coli and S.cerevisiae strains. In this simplified model, the biomass X can interact by consuming and producing three
different external metabolites, Glucose (GLC, G), Acetate (ACE, A), and Ethanol (ETH, E). These metabolites were chosen
as they are the most relevant for the metabolism of both strains when cultured in minimal media with GLC as the only
carbon source. The Φ matrix-related equations constructed were then set to be the following:
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Where qγo qγf are the glucose consumption rates for the oxidative and fermentative pathways, respectively, and qα and qε are
the consumption rates for acetate and ethanol. In this work, the rates were also set to be affected by a general metabolism
inhibition proportioned by the external accumulation of the substrates as follows:

qj =
qmaxj Mj

Kj +Mj
H− (8)

where:

H− = Πn
i
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(9)

Finally, with the addition of a first-order death rate, the equations used in the present work can be expressed as follows:

dG

dt
=

[
−

qmaxγo G

Kγo +G
−

qmaxγf G

Kγf +G

]
XH− (10)

dA

dt
=

[
Y γfa
g

qγfmaxG

Kγf +G
− qαmaxA

Kα +A

]
XH− (11)

dE

dt
=

[
Y γfe
g

qγfmaxG

Kγf +G
− qεmaxE

Kε + E

]
XH− (12)

dX

dt
=

[
Y γox
g

qγomaxG

Kγo +G
+ Y γfx

g

qγfmaxG

Kγf +G
+ Y αx

a

qαmaxA

Kα +A
+ Y εx

e

qεmaxE

Kε + E

]
XH− −KdX) (13)

E.coli and S.cerevisiae models were constructed in this work, approximated from their observed behavior in axenic cultures
as presented in the main manuscript.

General description for the Cybernetic framework

The cybernetic modeling approach was used to extend the characterization of the behavior of the single cultures of S.cerevisiae
and E. coli during the batch cultures and continuous culturing processes as it can render the allocation of cell resources on
several metabolic options. The cybernetic variables represent the expression of the metabolic machinery related to a particular
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substrate metabolism, a so-called “representative enzyme.” This representative enzyme encompasses all the essential enzymes,
co-factors, and other resources necessary for the metabolic reactions regarding a particular substrate consumption and fate [1].
The cybernetic approach has been previously used to address the diauxic behavior in Kleibsiela oxytoca [2], and more recently
to derive full dynamic models into the metabolic fluxes across several microorganisms [3–5] and even mammalian cells [3,6]. A
full description of the cybernetic approach can be found in Ramkrishna et al. reports [1, 2, 4–6]. In this work, it was first
assumed that each phenotype could be simplified as the consumption of one or more substrates (Ms) catalyzed by a critical
enzyme (Ψs) for the production of biomass X and other products (Mp) [2]. Ψs represents the set of all enzymes governing the
kinetics of this specific phenotype. Ψs synthesis is induced by the presence of the specific substrate or metabolite Ms. This
simplified model can be written as:

X +Ms
Ψs−−→ (1 + Yx/s)X + Yp/sMp + ... (14)

X +Ms
Ms−−→ X ′ + Ψs (15)

Where X ′ represents the biomass excluding the critical enzyme Ψs. These two reactions can be described by known kinetic
equations such as the Michaelis-Menten model for enzymatic catalysis. In this work, these kinetic equations are derived from
the previously shown mass balance model:

dms

dt
=
qsψsMsX

Ks +Ms
H− (16)

dψs
dt

= εcs +
εisMsX

K ′s +Ms
H− − δsψs − µψs (17)

Where εcs and εis are the production rate constants for the enzyme for its constitutive and inducible expression, respectively.
While δs is the decay constant of the enzyme. These parameters have been previously approximated for various microorganisms
and cell lines including E.coli and S.cerevisiae [1, 2, 5, 7](see Fig.1). ψs is the specific concentration of the enzyme Ψs such
that ψsX is the total concentration of this enzyme. εcs + εis gives the maximum synthesis rate for this enzyme. The cybernetic
approach solves the difficulty of calculating ψi by assuming that the maximum quantity of enzyme defines the maximum rate.
Therefore:

qmaxs = qsψ
max
s (18)

ψmaxs =
εcs + εis

umax + δs
(19)

the enzyme concentration value can be substituted by a relative enzyme value respective to the maximum enzyme concentration
as:

qgψg = qmaxg

[
ψg
ψmaxg

]
(20)

Finally, the cybernetic modeling introduces the regulation of the inhibition/activation of enzyme expression and repres-

sion/induction of enzyme activity by the introduction of the variables υ and ν, which regulate enzyme synthesis
dψg
dt and

activity
dmg
dt along with the model.

dΨg

dt
= υg

dψg
dt

(0 < υg < 1 ;

e∑
j=g

υj = 1) (21)

dMg

dt
= νg

dmg

dt
(0 ≤ νg ≤ 1) (22)

The cybernetic variables υ and ν are calculated by matching law equations constructed for specific metabolic objectives.
In the case of this work, the growth rate was selected as the metabolic objective, which in turn represents a fitness index.
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Cybernetic variables can then be understood as the comparison between the fitness advantage return for each reaction driven
by each Ψι...ω, which can be used to regulate its participation in the cellular metabolism at any time. The equations used for
these cybernetic variables are the following:

υι =
µι∑ω
j=ι µj

(23)

νι =
µι

max(µι...ω)
(24)

where µg represents the growth rate supported by each reaction driven by each Ψι...ω in this case by the consumption of
glucose Ψg, acetate Ψa and ethanol Ψe. This way, the dynamic distribution of its participants can be calculated to describe
the metabolic and physiological behavior Φ given a metabolic reaction network [1,2,4,8]. The approach allows to approximate
the current phenotype by describing the metabolite content (Mι...ω), enzymatic content (Ψι...ω) and its functional relationship
given by the regulation (υι...ω and νι...ω).

Model Parametrization and Approximation values

Table 1. Cybernetic model parametrization for the enzymatic rate equation for both strains

Parameter Value Reference
εccoli 0.01 [1, 5]
εicoli 1 [1, 5]
δcoli 0.05 [1, 5]
εcsacc 0.1 [2, 7]
εisacc 0.2 [2, 7]
δcoli 1 [2, 7]

Table 2. Parameters approximated from data for each organism model.

Parameter E. coli S. cerevisiae
µoxmax 0.234 0.221
µfermmax 0.437 0.299
µamax 0.077 0.017
µemax —– 0.080
qoxmax -1.745 -3.175
qfermmax -2.640 -1.648
qamax -0.630 -0.058
qemax —– -0.276
Kox
s 1.000 1.486

Kferm
s 0.112 0.082
Ka
s 0.108 0.007

Ke
s —– 0.055

Kd 0.0053 0.014
Y oxx/s 0.134 0.070

Y fermx/s 0.165 0.182

Y ferma/s 0.062 0.075

Y ferme/s 0.000 0.387

Yx/a 0.123 0.285
Yx/e —– 0.287

*All inhibition constants were found to be not relevant for present model calculations and were given values of 9999.
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Table 3. Weighted SSE and Willmott’s index, and their normalized agreement values as a qualifying
measure of the model prediction error for model approximation to various initial GLC concentration
experiments.

Strain SSE WLM nSSE nWLM
E. coli 1.0527 1.6120 0.1755 0.2687

S. cerevisiae 2.3472 0.9689 0.3912 0.1615
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