Controlling microbial co-culture populations based on substrate pulsing can lead to stability through differential fitness advantages.

J.Andres Martinez¹, Matheo Delvenne^{1,Y}, Lucas Henrion^{1,Y}, Fabian Moreno^{1,Y}, Samuel Telek¹, Christian Dusny², Frank Delvigne^{1,*}

1 TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liége, Gembloux, Belgium.

2 Microbial Single Cell Analysis, Department of Solar Materials, Helmholtz-Centre for Environmental Research- UFZ Leipzig, Permoserstr. 15 04318 Leipzig, Germany.

* f.delvigne@uliege.be

Supplementary File 5: Nomenclature

Supplementary File 5: Nomenciature	
S	Substrate
GLU	Glucose
ACE	Acetate
ETH	Ethanol
Ψ	Virtual enzyme
Х	Biomass
Ψ_{σ}	Virtual enzyme related to the S consumption
r_{σ}	Consumption rate of S
A to N	Metabolites
a to n	Subindex referring to the Metabolites A to N
αto η	Subindex referring to the Metabolites A to N as substrates
М	Extracellular metabolite pool
Y	Yields
\mathcal{E}^{c}	Constitutive enzyme expression rate
\mathcal{E}^{i}	Inducible enzyme expression rate
δ	Enzymatic degradation rate
μ	Growth rate
K	Monod-type affinity constant

- Consumption rate constant of S q_{σ}
- $\Psi_{\sigma_{rel}}$ Relative enzyme concentration

- H_{σ} Monod-type hill function for uptake rate of S
- Φ Global metabolic state
- υ Cybernetic variables regulating expression
- ν Cybernetic variables regulating activity
- *P* Physiological behaviour on the cultivation conditions
- *D* Dilution rate
- *w* Frequency of pulsing
- *s* Time fraction for feed pulse