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METHODS 

23andMe Genotyping and imputation 

Samples were genotyped on one of five genotyping platforms. The V1 and V2 platforms were variants 

of the Illumina HumanHap550 + BeadChip, including about 25,000 custom SNPs selected by 23andMe, 

with a total of about 560,000 SNPs. The V3 platform was based on the Illumina OmniExpress + 

BeadChip, with custom content to improve the overlap with our V2 array, with a total of ~950,000 

SNPs. The V4 platform is a fully custom array, including a lower redundancy subset of V2 and V3 SNPs 

with additional coverage of lower-frequency coding variation, and ~570,000 SNPs. The v5 platform, in 

current use, is an Illumina Infinium Global Screening Array (~640,000 SNPs) supplemented with 

~50,000 SNPs of custom content. Samples that failed to reach 98.5% call rate were excluded from the 

study. 

Individuals were only included if they had > 97% European ancestry, as determined through an analysis 

of local ancestry (see 1 for further details on the methodology used). Briefly, this analysis first partitions 

phased genomic data into short windows of ~100 SNPs. Within each window, a support vector 

machine is used to classify individual haplotypes into one of 31 reference populations. The support 

vector machine classifications are then fed into a Hidden Markov Model (HMM) that accounts for 

switch errors and incorrect assignments and gives probabilities for each reference population in each 

window. Finally, simulated admixed individuals are used to recalibrate the HMM probabilities so that 

the reported assignments are consistent with the simulated admixture proportions. The reference 

population data are derived from public data sets (the Human Genome Diversity Project, HapMap and 

1000 Genomes) and from 23andMe research participants who have reported having four 

grandparents from the same country. 

A maximal set of unrelated individuals was chosen for each analysis using a segmental identity-by-

descent (IBD) estimation algorithm 2. Individuals were defined as related if they shared more than 700 

cM IBD, including regions where the two individuals share either one or both genomic segments 

identical-by-descent. This level of relatedness (roughly 20% of the genome) corresponds 
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approximately to the minimal expected sharing between first cousins in an outbred population. For 

the purposes of GWAS, if a case was found to be related to a control, the case was preferentially kept 

in the sample. 

Participant genotype data were imputed against a single unified imputation reference panel, 

combining the May 2015 release of the 1000 Genomes Phase 3 haplotypes and the UK10K imputation 

reference panel. Data for each genotyping platform were phased and imputed separately. Variants 

that were only genotyped on the ‘V1’ platform were flagged due to small sample size, and variants on 

chrM or chrY, because many of these are not currently called reliably. Using trio data, variants that 

failed a test for parent–offspring transmission were also flagged; specifically, the child’s allele count 

was regressed against the mean parental allele count and variants with fitted β < 0.6 and p < 10-20 for 

a test of β<1 were flagged. Variants with a Hardy–Weinberg p < 10-20 in Europeans, or a call rate of < 

90%, were also flagged. Genotyped variants were also tested for batch effects and variants with p < 

10-50 by analysis of variance of genotypes against a factor dividing genotyping date into 20 roughly 

equal-sized buckets were flagged. For imputed GWAS results, variants with average r2 < 0.5 or 

minimum r2 < 0.3 in any imputation batch were flagged, as well as SNPs that had strong evidence of 

an imputation batch effect, using an analysis of variance of the imputed dosages against a factor 

representing imputation batch; results with p < 10-50 were flagged. Each variant flagged by QC on 

genotyped or imputation data were excluded from the GWAS analysis. 

 

Chinese Reading Study sample 

Participants 

3,127 Grade 3 to Grade 6 primary students aged nine to 14 years were recruited from three cities and 

four districts in China (Xi’an-YT, Xi’an-CB, Qingyang, and Baotou). In total, 2,476 participants were 

eligible for subsequent genotyping and association analysis. Ethical approval was obtained for each 

cohort at the local level and written informed consent was obtained from all the participants’ parents. 
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Phenotypic measures 

Reading accuracy: A Chinese character recognition test was employed to measure each child’s reading 

accuracy 3-5. The test consisted of 150 single Chinese characters selected from China’s Elementary 

School Textbooks (1996). The average frequency of the characters was 182 per million (ranging from 

0 to 2,282), and the reliability of this test was 0.95 3. Each child was individually tested and was 

required to read aloud each character at a time.  

Reading fluency: A word list reading task 3 was used to measure each child’s reading fluency. In this 

task, children were asked to name a list of 180 two-character words as rapidly and accurately as 

possible. All these words were from primary school textbooks and have been learned before Grade 3, 

such as “我们 (we)” and “太阳 (sun)”. The mean frequency of these words was 212.77 per million 6. 

Since words included in this task were all simple, this task was administrated to test children’s reading 

fluency. The total time for naming the whole word list was recorded as the measurement of reading 

fluency.  

Genotype quality control, imputation, and analysis 

DNA was extracted from saliva samples, and individuals were genotyped using the Illumina Asian 

screening array (650K) by Beijing Compass Biotechnology. Quality control was performed using 

standard quality control metrics. Eight samples were excluded as they had sex discrepancies between 

the records and the genetically inferred data 7,8. Next, we removed 53 samples who had unexpected 

duplicates or probable relatives (PI-HAT > 0.20). Then, SNPs were filtered out if they showed a variant 

call rate < 0.95, a minor allele frequency (MAF) < 0.01, a missing genotype data (mind) < 0.90, or a 

Hardy-Weinberg Equilibrium (HWE) p < 10-5 within each dataset. 

For imputation, autosomal variants were aligned to the 1000G genomes phase 1v3 reference panel. 

Imputation was performed using the Michigan imputation Server 4.0 in 5Mb chunks with 500kb 

buffers, filtering out variants that were monomorphic in the Genome Asia Pilot (GAsP). Chunks with 

51% genotyped variants or concordance rate < 0.92 were fused with neighbouring chunks and re-

imputed. Finally, imputed variants were filtered out for r2 < 0.60, MAF < 0.02, mind < 0.1, HWE p < 10-
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5 using Plink (v1.90). After quality control procedures had been performed, 2,415 children with 

4,261,603 SNPs were included in the final analysis. Association analyses were performed using PLINK, 

fitting an additive model to the linear regression model with adjustment for sex, age, and the first two 

principal components 8. 

 

Biological annotations 

Genome-wide significant variants and the closest gene(s) were annotated using external reference 

data through FUMA v1.3.6a 9 (unless otherwise specified) and evaluated for functional or regulatory 

impact. Specifically, we considered the following annotations of SNPs reaching genome-wide 

significance (p < 5 x 10-8) (Supplementary Table 10): 

 Gene context:  

o Distance: The distance of the variant to the nearest gene in kb. Variants within the 

gene body or 1 kb up- or downstream of the transcription start site (TSS) or 

transcription end site (TES) have a value of zero. 

o Function: Whether a variant is intergenic or the functional region in which the variant 

is located within a gene or RNA locus (e.g., 5’ UTR). 

 Combined Annotation Dependent Depletion (CADD) score: A score of the deleteriousness of 

variants computed from 63 integrated annotations 10. The higher the score, the more 

deleterious a variant is: 12.37 is the threshold indicated by the study of potentially actionable 

exonic pathogenic single-nucleotide variants in European- and African ancestry patients 11. 

 RegulomeDB category (RDB): A variant classification system in which variants are grouped 

according to evidence of having a functional consequence from Category 6 (minimal evidence) 

to Category 1a (likely to affect binding and linked to expression of a gene target) 12. 

 Chromatin state: The minimum and the most common 15-core chromatin state across 127 

tissue/cell types predicted by ChromHMM 13 from 15 (quiescent/low) to 1 (active TSS). 
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 GWAS Catalog: SNP-trait associations reported in the NHGRI-EBI Catalog of human GWAS 14, 

including for each variant: the trait(s), the effect allele(s), the PubMed ID(s), the study title(s) 

and the study sample size(s) (Supplementary Table 2). 

 

And the following annotations of genes which were significant in genome-wide gene-based tests 

(Supplementary Table 12): 

 Probability of Loss-of-function Intolerance (pLI) score: A score of intolerance to functional 

mutation from the ExAC database 15 ranging from zero to one. The closer the score is to one, 

the more intolerant the gene is to loss-of-function mutations. The threshold suggested by Lek, 

et al. 15 for likely disease-causing variants is ≥ 0.9.  

 Non-coding Residual Variation Intolerance Score (ncRVIS): A score of intolerance to mutation 

to non-coding variants 16. Where ncRVIS is zero, the gene has the average number of non-

coding variants given its total mutational burden; when ncRVIS is greater than zero, the gene 

has less non-coding variation than expected; when ncRVIS is less than zero, it has more. The 

ncRVIS percentile reflects the rank of the gene amongst all genes. The more negative the 

ncRVIS, or the lower the percentile, the more intolerant to non-coding variation the gene is.  

 Residual Variation Intolerance Score (ncRVIS) percentile: As for ncRVIS score but the 

percentile of the average RVIS score for the whole gene sequence. 

 Non-coding Genomic Evolutionary Rate Profiling (ncGERP) score: Identifies constraint in non-

coding regions by quantifying deficits in substitutions 16. It is calculated by taking the average 

GERP++ score (see Davydov, et al. 17) across the non-coding sequence. The higher the ncGERP 

score, the fewer substitutions are present than what would be expected as a result of a neutral 

rate of evolution, and thus the more conserved are the non-coding regions of the gene. The 

ncGERP percentile reflects the rank of the gene amongst all genes. 
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 Protein-coding Genomic Evolutionary Rate Profiling (pcGERP) percentile: As for ncGERP 

score but the percentile of the average GERP score for protein-coding sequence 16. 

 Non-coding Combined Annotation Dependent Depletion (CADD) score: As for CADD score 

but the average variant score across the non-coding sequence of the gene 16. 

 Non-coding Genome-Wide Annotation of Variants (ncGWAVA) score: Predicts the combined 

functionality of non-coding variants across non-coding sequence 16. It is the average GWAVA 

score (see Ritchie, et al. 18) of variants in the non-coding sequence, ranging from zero to one. 

The closer ncGWAVA is to one, the more likely the variants in non-coding regions of the gene 

are functional. 

 Expression in the brain: Average log2 expression in transcripts per million (TPM) per tissue 

type per gene from the GTEx v8 dataset 19 for 12 brain tissues: Amygdala, Anterior Cingulate 

Cortex, Caudate Basal Ganglia, Cerebellar Hemisphere, Cerebellum, Cortex, Frontal Cortex, 

Hippocampus, Hypothalamus, Nucleus Accumbens Basal Ganglia, Putamen Basal Ganglia, and 

Substantia Nigra (Supplementary Table 15). 

 

Partitioned heritability 

Evolutionary analysis 

Enrichment of heritability was estimated for the following evolutionary annotations (as described in 

Tilot, et al. 20): 

 Human Gained Enhancers and Promoters: These regulatory regions were identified based on 

differential H3K27ac and H3K4me2 patterns in the adult and foetal brain tissues of humans, 

macaques and mice [19, 20], and shown to be present to a significantly lesser degree in 

macaques and mice. Thus, these regulatory elements were gained in the last 30 million years 

of human evolution and may be involved in the emergence of human-specific traits 21,22. 
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 Ancient selective sweep regions: These consist of unusually long genomic regions that 

reached fixation in human populations possibly due to adaptive advantages in the last 250-

650 thousand years 23. 

 Neanderthal-introgressed SNPs: The genomic variants introduced into the human genome by 

the admixture of Homo sapiens and Neanderthal populations around 50-60,000 years ago 24. 

 Neanderthal Depleted Regions: Large regions in the human genome that are depleted for 

Neanderthal ancestry, possibly due to the deleterious effect of the archaic sequences in hybrid 

individuals 25. 
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FIGURES 

 

  

Supplementary Figure 1.i. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr9p22.3 esv3619796 structural variant nearby rs3122702 
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Supplementary Figure 1.ii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3q22.3 rs13082684 

  



28 
 

 

Supplementary Figure 1.iii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr20q13.13 rs11393101  
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Supplementary Figure 1.iv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr17q12 rs34349354 
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Supplementary Figure 1.v. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr9q34.11 rs9696811 
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Supplementary Figure 1.vi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr20q11.21 rs4911257 
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Supplementary Figure 1.vii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr11q23.1 rs138127836  
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Supplementary Figure 1.viii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr17q12 rs12453682 
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Supplementary Figure 1.ix. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr2q33.1 rs72916919 
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Supplementary Figure 1.x. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr11p14.1 rs676217 
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Supplementary Figure 1.xi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr1p32.1 rs12737449 

  



37 
 

 

Supplementary Figure 1.xii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr4q31.3 rs4696277 
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Supplementary Figure 1.xiii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr12q24.12 rs7310615 
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Supplementary Figure 1.xiv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr10q24.2 rs10786387 
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Supplementary Figure 1.xv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr5q34 rs41012 
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Supplementary Figure 1.xvi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr7q22.3 rs3839821 
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Supplementary Figure 1.xvii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3p12.1 rs10511073 
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Supplementary Figure 1.xviii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr1q21.3 rs4845687 
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Supplementary Figure 1.xix. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3p24.3 rs373178590 
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Supplementary Figure 1.xx. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3p13 rs13097431 
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Supplementary Figure 1.xxi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr2p22.1 rs906549 
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Supplementary Figure 1.xxii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr1p13.3 rs2091329 
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Supplementary Figure 1.xxiii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr2q22.3 rs497418 
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Supplementary Figure 1.xxiv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3p21.31 rs2624839 
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Supplementary Figure 1.xxv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chrXq27.3 rs5904158 
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Supplementary Figure 1.xxvi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr10q24.33 rs34732054 
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Supplementary Figure 1.xxvii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr3q26.33 rs7625418 
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Supplementary Figure 1.xxviii. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr2q33.1 rs6435017 
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Supplementary Figure 1.xxix. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr17q23.3 rs72841395 
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Supplementary Figure 1.xxx. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr13q12.13 rs375018025 
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Supplementary Figure 1.xxxi. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr14q32.2 rs35131341 
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Supplementary Figure 1.xxxii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr5q35.1 rs59261790 
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Supplementary Figure 1.xxxiii. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr9p22.3 rs3122702 
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Supplementary Figure 1.xxxiv. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr2q12.1 rs367982014 
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Supplementary Figure 1.xxxv. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr12q24.31 rs4767921 
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Supplementary Figure 1.xxxvi. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr5q33.3 rs867009  
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Supplementary Figure 1.xxxvii. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr19q13.2 rs60963584  
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Supplementary Figure 1.xxxviii. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr7q11.22 rs77059784 
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Supplementary Figure 1.xxxix. Regional association plot which includes information on the 

credible variant set and known genes in the region for the significant association between dyslexia 

and chr2p23.2 rs1969131  
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Supplementary Figure 1.xl. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr7p14.1 rs62453457  
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Supplementary Figure 1.xli. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr6p22.3 rs2876430  
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Supplementary Figure 1.xlii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr1q41 rs35570426  
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Supplementary Figure 1.xliii. Regional association plot which includes information on the credible 

variant set and known genes in the region for the significant association between dyslexia and 

chr7q11.22 rs3735260 
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