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1 Computational methods

Structural modeling. The initial HydG structure for the simulations was obtained from

the published crystal structure, PDB ID 4WCX.1 Herein, only Chain A of the protein dimer

was employed in the study as it included the dangler iron. When preparing the simulation

input structure, five missing residues in the N-terminal region were omitted and seven miss-

ing residues (345-351) were manually added in the middle of the chain. Because the SAM

cofactor was missing from Chain A, we modeled its structure by substituting the SAM struc-

ture from Chain C for the corresponding methionine residue in chain A by superposition.

The crystal structure included a free alanine (ALA) and sulfur atom (H2S) bonded to the

auxiliary cluster, which we interpreted to be identical to the cysteine ligand to the dangler

Fe from experimental evidence.2 In order to add the missing tyrosine substrate, the crystal
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structure of the tryptophan lyase NosL (pdb ID: 4R34)3 was used as a template to place

the tyrosine substrate into HydG by superposition with the tryptophan substrate in NosL;

the interactions between tyrosine and HydG were then optimized using a docking calcula-

tion.4 The protonation of all residues was decided based on comparing the experimental pH

value (7.0) with standard side chain pKa values, and His265 was protonated as HID (Nδ

is protonated) as Nε is coordinated to the dangler iron. Given the tyrosine substrate, two

protonation states were considered in this study, shown in Scheme S1.

Details of the MM molecular dynamics simulations. Before starting any QM/MM

simulations, the structure was relaxed by running classical molecular dynamics (MD) using

molecular mechanics (MM) force fields in the AMBER software package.5 The AMBER-

FB15 protein force field6 and TIP3P-FB water model7 were used for the protein and water

molecules in the system, the GAFF small molecule force field8 was used to model the SAM

cofactor, and the Fe-S clusters used a force field model published previously for MD sim-

ulations of [FeFe] hydrogenases.9 These force fields are mutually compatible based on past

studies that used the Fe-S cluster force field together with AMBER-family force fields,10,11

and the high accuracy of AMBER-FB15 and TIP3P-FB when used together.6

The MM MD simulations used a simulation time step of 1 fs. Harmonic energy restraints

were added to selected interatomic distances in order to ensure the force field does not change

the coordination environment around the transition metal centers. The force constant was

set to 50 kcal/mol/Å2 and the restrained distances include the distances between the dangler

iron and the atoms coordinated to it (two oxygen atoms from two water molecules, the O,

N, and S atoms from the cysteine ligand, and the Nε in His265). The cutoff values for short-

range electrostatics and van der Waals interactions were set to 12 Å, and the particle-mesh

Ewald method was used for long range summation of electrostatic interactions.12 Covalent

bond lengths involving hydrogen were constrained using the SHAKE algorithm.13 A Langevin

thermostat algorithm with a collision frequency of 1.0 ps−1 was employed for temperature

control. In the simulation procedure, energy minimization was carried out first, followed
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by gradual heating from 0 K to 300 K using a 200 ps MD simulation at constant volume

(NVT), and this was followed by a 200 ps equilibration simulation at constant temperature

and pressure (NPT) where a Berendsen barostat was added. Next, a 50 ns MD simulation

was carried out under NVT conditions, and the final structure was used as the starting point

of hybrid QM/MM simulations.

Hybrid QM/MM simulations at the canonical cluster. The QM/MM simulations

were carried out using the Q-Chem and AMBER software packages.5,14,15 Due to the com-

plexity of the HydG catalytic reaction, different QM regions were chosen based on which

reaction step was studied. Figure S1, left panel shows the selection of QM regions for two

reactions occurring at the rSAM Fe-S cluster; in these reaction steps, the broken symmetry

approximation was used to model the high spin states and antiferromagnetic coupling of the

Fe atoms. Standard electrostatic embedding was applied for the electrostatic interactions

between the QM and MM regions, and a pseudo-bond and pseudo-atom approach16 was used

to treat the covalent bonds between the QM and MM regions.

The QM region was treated using density functional theory (DFT) using the unrestricted

B3LYP density functional approximation, which we deemed appropriate for the canonical

cluster as the reaction steps here involved mostly organic species. A hybrid basis set was

used comprising the LANL2DZ basis set and pseudopotential for Fe atoms and the 6-31G*

basis set for all other atoms. The choice of the relatively small basis was necessary in order

to enable the QM/MM umbrella sampling described later, which involved running >10,000

serial individual calculations. To validate the accuracy of using this basis, we carried out

potential energy scans using the larger def-TZVP basis; a comparison of energy profiles shows

that the choice of basis set affects the barrier height by 0-2 kcal/mol (Figure S2).

The QM/MM free energy profiles were generated using an umbrella sampling approach

where 15 ps of MD simulations were carried out at multiple windows along the reaction

coordinate. The cutoff values for the non-bonded interactions were set to 12 Å, and the time

step was set to 1 fs. In order to compute QM/MM free energy profiles, an umbrella sampling
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approach was adopted. Multiple independent simulations were carried out corresponding

to values of the chosen reaction coordinate; in this study most of the spacing between

simulations was set to 0.2 Å. Individual umbrella sampling runs were modified in order

to maximize the thermodynamic overlap between windows while keeping computational cost

affordable; 20 windows were used for tyrosine radical generation, 45 windows for the 2-D

umbrella sampling of tyrosine decomposition, 20 windows for DHG radical formation, and

12 windows for DHG decomposition.

The initial structures of each umbrella sampling window were determined using a series

of constrained energy minimizations. A harmonic potential was added to each simulation

to ensure the simulation trajectory remains close to the reaction coordinate. The umbrella

sampling QM/MM MD simulations were carried out with an added harmonic potential to

ensure the simulation trajectory remains close to the reaction coordinate. The force constants

of the harmonic potentials were chosen according to the slope of the energy profile from the

constrained minimizations and ranged from 5 to 80 kcal/mol/Å2. QM/MM MD simulations

were carried out for 15 ps for each window, and then the weighted histogram analysis method

(WHAM) procedure17,18 was used for data in the last 10 ps to determine the free energy

profile from the biased trajectories. This procedure produces relative free energies with a

statistical error on the order of 1 kcal/mol.

Cluster model calculations at the auxiliary cluster. The reactions at the auxiliary

cluster required a greater number of atoms, electrons, and basis functions to be treated

simultaneously at the QM level. Because this increased the computational cost significantly,

we could not carry out QM/MM umbrella sampling calculations for these reaction steps,

and instead used a cluster model that included the atoms shown in blue in Figure S1, right

panel. In this model, the dangler Fe is coordinated to the tridentate cysteine ligand, 5-

methylimidazole (as a model for the His265 side chain), and two water molecules. The

cysteine S atom bridges the dangler Fe and the Fe4S4 auxiliary cluster, and coordination of

cysteine residues to the other three Fe atoms are modeled as MeS (methanethiol) groups.
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To initiate the catalytic cycle, the initial equivalent of COOH• and CN− ligands are placed

in close proximity to the dangler iron. Figure S3 indicates that the dangler Fe is adjacent

to a large cavity in the TIM barrel normally occupied by water molecules, indicating there

is sufficient space for the movement and reorientation of ligands.

The QM calculations at the auxiliary cluster were carried out using the TeraChem pack-

age,19,20 which includes graphics processing unit (GPU)-accelerated implementations of den-

sity functional theory (DFT) and implicit solvent models. During geometry optimizations,

the B3LYP functional and mixed LANL2DZ ECP/6-31G* basis set was adopted, same as

the QM/MM calculations. A few optimizations focusing on spin crossover employed the

B3LYP* functional21 instead, which reduced the percentage of Hartree-Fock exchange from

20% to 15% and improved accuracy for spin crossover enthalpies of iron-containing com-

plexes.22 After optimizing the geometries, single point energies were computed along the

minimum energy pathway to further improve accuracy; these employed a hybrid functional

that combines 5% HF / 95% B88 exchange and P86 correlation, here called BP86x5,23 and a

larger triple-ζ basis set called ma-def2-TZVP(-f) LTZ+.24 This basis combines def2-TZVP25

with l ≥ 3 basis functions removed for non-Fe atoms, augmented by a minimal set of diffuse

functions,26 and the LANL2TZ+ ECP/basis set for Fe atoms.27 Empirical dispersion correc-

tions of the D3(BJ) form were used, adopting the model parameters developed for BP86.28

A switching Gaussian polarizable continuum model29–31 was used with standard Bondi radii

and a dielectric constant of 78.4 (equivalent to water), because we observed the auxiliary

cluster in our MM MD simulations to be solvated by 15-20 water molecules.

Equilibrium geometries and transition states were optimized using the geomeTRIC soft-

ware package,32 which uses a translation-rotation internal coordinate system to efficiently

optimize the geometries of multi-molecular systems. After optimization of the transition

states, an approximate minimum energy path was obtained by minimizing the energy start-

ing from the TS structure along the imaginary mode with step sizes restricted to < 0.01Å.

The energy corrections for the TS were obtained the IRCMax approach33 by tracing over
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this path with single-point calculations at the BP86x5/ma-def2-TZVP-f LTZ+ level of the-

ory and choosing the highest energy on the path. The Gibbs free energies of these reaction

steps were estimated using vibrational analysis carried out at the reaction endpoints and the

transition state and applying the rigid rotor/harmonic oscillator approximation. Although

these free energy corrections model the translational entropy using an ideal gas, which is

highly approximate and for which numerous corrections have been proposed,34–36 we did not

find the role of translational entropy to be significant in any reaction steps studied here.

In order to compute standard redox potentials corresponding to electron transfer (ET)

and proton-coupled electron transfer (PCET) steps, the free energy change of the reaction

was computed in solution. The free energy of the proton at pH 0.0 in aqueous solution

was taken to be −11.803 eV, following previous studies,37,38 and adjusted to −11.390 eV by

adding 59 meV per pH unit according to the Nernst equation. The redox potential was then

computed as:

E◦ =
∆G(reduced - oxidized)

nF
− 4.43 V (1)

where n is the number of electrons transferred (1 in this study), F is the Faraday constant

(1 eV V−1), and 4.43 V is the absolute potential of the standard hydrogen electrode.39

In reactions where a chemical reducing agent (dithionite) was used, the overpotential was

computed as η = −(E◦ − 0.66V ) and the resulting value is converted back to a free energy

difference in kcal/mol, allowing for the inclusion of electrochemical steps on a reaction free

energy diagram.40

EPR properties, in particular the g-tensor and hyperfine tensor (A) eigenvalues, were

computed for the structures 5a, 10 and 11 using the ORCA software package.41 These

calculations used the BP86x5 functional (same as the energies) with the zeroth-order regular

relativistic approximation (ZORA) Hamiltonian,42 and a mixed basis set consisting of EPR-

III43 for first-row elements and “ZORA-def2-TZVP” for Fe and S, a recontracted version of

def2-TZVP44 for ZORA calculations. The RIJCOSX method consisting of density fitting for

Coulomb and chain-of-spheres approximation for exchange integrals was employed to speed
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up the calculations.45 The g-tensor was computed using a coupled-perturbed SCF approach46

and the hyperfine values were computed from spin-orbit couplings.47 The 3D structure of

5a was used as-is, whereas the 10 and 11 were modified by removing the spectator CH3SH

and HCN ligands (respectively) and re-optimizing the structure at the BP86x5/def2-SV(P)

level of theory.

Figure S1: QM regions used for various elementary steps at the rSAM and auxiliary clusters.
Left: Atoms shown in brown or red comprise the QM/MM region for the SAM decomposition
step, and atoms shown in blue or red comprise the QM/MM region for other reaction steps
in the canonical cluster. Right: Atoms in blue comprise the auxiliary cluster model.
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Figure S2: The basis set dependence of the three reactions studied using QM/MM, corre-
sponding to Figures 2-4 in the main text, is investigated by driving the reaction coordinate.
The larger def-TZVP basis set (blue curve) predicts barrier heights that are 2 kcal/mol lower
for both the Cα-Cβ cleavage (top left) and DHG decomposition reactions (bottom left) com-
pared to the 6-31G* basis used in QM/MM umbrella sampling studies. By contrast, the two
basis sets give nearly identical energy profiles in DHG radical formation (top right). Schemes
of the reactions are shown at bottom right.
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Figure S3: The position of the auxiliary cluster and dangler Fe at the end of the HydG TIM
barrel. The green surface indicates the interior space of the barrel indicating sufficient space
for ligand substitutions to be carried out. The solvent-accessible surface is drawn with a
probe radius of 1.4Å.
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Figure S4: Energy profile of 5-Ado radical generation, generated by driving the reaction
coordinate, defined as RC1 = d(C. . .S) – d(Fe. . .S). Here the activation energy is ≈ 26.3
kcal/mol, which is comparable to the experimental data (23 kcal/mol).
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Figure S5: Possible alternative pathways in tyrosine radical formation and the DHG radical
formation, (the main mechanism is Figure 2 and 4 in the main text respectively). As for
the tyrosine radical formation, the experimental data supports the mechanism that the
hydrogen abstraction occurred in the amine hydrogen. Here our calculations also support
this mechanism since the other possible H resource, which is the Cα, cannot transfer its
hydrogen with an energy barrier that as low as the amino group. Regarding the DHG
radical formation, the abstraction of the H from amino group gives a more stable product
than that of the H connected to the sp3 hybridization carbon.
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Scheme 1: Possible protonation states of the tyrosine substrate.

TYY

α orbitals β orbitals
TYH
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(=O)
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Figure S6: Comparison of alternative tyrosine decomposition mechanisms (the main mech-
anism is Figure 3 in the main text). Two possible protonation states of tyrosine, denoted
TYH and TYY, are shown on the top and bottom respectively. To facilitate a direct com-
parison, we assume the radical NH2• + transfers a proton to the Glu side chain prior to
to C—C cleavage, which could also be observed in our QM/MM simulations. The energy
profiles of the two C—C cleavage mechanisms for each protonation state are shown on the
left; blue curves represent the Cα—Cβ cleavage and red curves represent the Cα—C(=O)
cleavage. The frontier orbitals of these two tyrosine models are shown on the right. In the
TYH model, the LUMO of the β electron is shared between the NH• and the Cα—Cβ σ
bond, indicating that the H-atom abstraction may have the effect of weakening the Cα—Cβ
bond order. This correlates with the lowered barrier of Cα—Cβ cleavage in TYH and is not
observed in TYY, where the barrier to Cα—Cβ cleavage is significantly higher.
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Table S1: The key properties of the various calculated states in the catalytic cycle at the
auxiliary cluster. The state labels correspond to Fig. 5 and Fig. 6 in the main text. The
charge and spin multiplicity given is for the whole calculated system, including any added
COOH• and CN− ligands. The state labeled 10 is actually two calculations consisting of a
synthon fragment and Fe4S4—CN fragment labeled 10.S and 10.C respectively.

State
Label

Charge
Spin
Mult.

Fe4S4

State
Dangler Fe State N(COOH•) N(CN−)

1 −3 5 + Fe(II)(Cys)(5-MIm)(H2O)2 1 1
2 −3 1 + Fe(II)(Cys)(5-MIm)(CN)(H2O) 1 1
3 −3 1 2+ Fe(II)(Cys)(5-MIm)(CN)(COOH) 1 1
4 −2 1 2+ Fe(II)(CysH+)(5-MIm)(CN)(COOH) 1 1
5 −2 1 2+ Fe(II)(Cys)(5-MIm)(CN)(CO) 1 1
4a −3 2 + Fe(II)(CysH+)(5-MIm)(CN)(COOH) 1 1
5a −3 2 + Fe(II)(Cys)(5-MIm)(CN)(CO) 1 1
6 −3 1 + Fe(III)(Cys)(5-MIm)(CN)(COCOOH) 2 1
7 −2 1 2+ Fe(II)(CysH+)(5-MIm)(CN)(COCOOH) 2 1
8 −2 1 2+ Fe(II)(Cys)(5-MIm)(CN)(CO) 2 1
7a −3 2 + Fe(II)(CysH+)(5-MIm)(CN)(COCOOH) 2 1
8a −3 2 + Fe(II)(Cys)(5-MIm)(CN)(CO) 2 1
9 −3 2 + Fe(II)(Cys)(CN)(CO)2 2 1
10 −4 2 + Fe(II)(Cys)(CN)(CO)2 2 2
10.S −1 1 N/A Fe(II)(Cys)(CN)(CO)2 2 1
10.C −3 2 + N/A 0 1
11 −3 2 + N/A 0 1
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Figure S7: Several possible pathways of the reduction of COOH radical to CO in the canon-
ical rSAM Fe4S4 cluster pocket. All of the activation energies are in excess of 30 kcal/mol,
which indicates that COOH does not decompose in the cluster pocket. Instead we propose
that COOH• diffuses to the auxiliary cluster where reduction to CO occurs at the dangler
iron.
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Figure S8: Structures of the Fe(cys)(5-MIm) complex used in the multireference DMRG
studies.

Table S2: The energy differences between different iron cluster structures calculated by
density matrix renormalization group (DMRG).

Fe(H2O)2 Fe(CO)(H2O) Fe(CN)(H2O) Fe(CO)(CN)

Active Space (20, 18) (20, 18) (20, 18) (22, 20)
E(HS)-E(LS) -68.2 28.3 25.1 50.2

Multireference DMRG calculation methods. All four structures were optimized

under B3LYP//6-31G*/LANL2DZ(Fe) in Q-Chem, and the DMRG single point energies

were calculated using the TZV basis set in PySCF. The active spaces in the calculations were

selected from localized molecular orbitals by including the five orbitals with 3d character on

the Fe atom and the orbitals with p character on the coordinating ligands (2p for O, C, N

and 3p for S) that had an overlap integral of > 0.3 with any of the d orbitals; the orbital

selections were then confirmed by visual inspection of isosurface plots. The total number of

orbitals and electrons in the DMRG calculations is provided in the table above as (active

electrons, active orbitals). The bond dimension of the DMRG calculations is set to 1000,

and the number of sweeps is set to the default value of 4. Energies are in units of kcal/mol.
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Figure S9: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM) along
the minimum energy path of the reaction 1-LS + CN− → 2 + H2O where a CN− ligand
displaces an aquo ligand. A spectator COOH• species is present in the system.

Figure S10: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 2-LS + COOH• → 3 + H2O where COOH•

displaces the second aquo ligand. Following this, 3 is protonated to form 4.
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Figure S11: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 4 → 5 + H2O where the COOH ligand
accepts a proton from the cysteine oxygen, then is decomposed to CO and H2O.

Figure S12: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 5a + COOH• → 6 where the added COOH•

forms a C—C bond with the first CO ligand to form a COCOOH ligand to the dangler Fe.
Following this, 6 is protonated to form 7.
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Figure S13: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 7 → 8 + CO + H2O where the COCOOH
ligand accepts a proton from the cysteine oxygen, then is decomposed to a free CO + CO
ligand + H2O.

Figure S14: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 8 + CO → 9 + 5-MIm where the second
CO displaces the 5-methylimidazole ligand.
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Figure S15: 3D renderings and plot of electronic energies (B3LYP/6-31G* LANL2DZ/PCM)
along the minimum energy path of the reaction 10 + CH3SH→ 11 + HCN where a CH3SH
model of the cysteine side chain displaces the CN ligand to the auxiliary cluster, releasing
HCN and turning over the catalytic cycle.
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