R1441C and G2019S LRRK2 knockin mice have distinct striatal molecular, physiological, and behavioral alterations

Harry S. Xenias¹, Chuyu Chen^{2*}, Shuo Kang², Suraj Cherian¹, Xiaolei Situ², Bharanidharan Shanmugasundaram², Guoxiang Liu³, Giuseppe Scesa², C. Savio Chan^{1#}, Loukia Parisiadou^{2#}

¹ Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

² Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

³ Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

equal contribution

[#]corresponding authors

Correspondence should be addressed to C. Savio Chan at saviochan@gmail.com or Loukia Parisiadou at loukia.parisiadou@northwestern.edu

Supplementary Figure. 1. iSPNs in RC LRRK2 mice have decreased excitability.

Same as Figure 1 with individual data points shown.

Supplementary Figure 2. Maximal firing across sweeps.

RC versus WT maximal firing values across recording sweeps per cell restricted to the injection range of 0–800 pA. b. GS versus WT maximal firing values across recording sweeps per cell are restricted to the injection range of 0–800 pA. Only for iSPNs in RC mice were there differences, where only the maximum firing was decreased (spikes_{WT} = 23.0 ± 4.5 , n = 16 cells; spikes_{RC} = $18.5.0 \pm 3.5$, n = 16 cells; *p* = 0.0114, Mann–Whitney *U* test). *denotes *p* < 0.05. See Supplementary Table 3 for complete sample sizes and statistical results. *denotes *p* < 0.05.

Supplementary Figure 3. General membrane electrophysiological properties. a. General membrane properties for the rheobase, capacitance, input resistances, and resting membrane potential in RC and WT mice. The membrane capacitance in RC mice was increased for iSPNs($Cm_{WT} = 68.83 \pm 13.89$, n = 27 cells; $Cm_{RC} = 87.38 \pm 13.34$, n = 27 cells; p = 0.0388, Mann–Whitney *U* test). b. General GS versus WT passive membrane properties. The rheobase in RC mice was increased for both dSPNs (rheobase_{WT} = 250 ± 25 , n = 13 cells; rheobase_{RC} = 325 ± 50 , n = 29 cells; p = 0.0078, Mann–Whitney *U* test) and iSPNs (rheobase_{WT} = 162.5 ± 87 , n = 20 cells; rheobase_{RC} = 225 ± 50 , n = 28 cells; p = 0.0046, Mann–Whitney *U* test). * denotes p < 0.05. See Supplementary Table 4 for complete sample sizes and statistical results.

Supplementary figure 4. Action potential characteristics. a.RC versus WT spike threshold, interspike interval (ISI), full width at half maximum (FWHM), and rate of change of voltage after action potential depolarization. The ISI of iSPNs in RC mice were increased (ISI_{WT} = 8.0 ± 1.0 ms, n = 17 cells; ISI_{RC} = 9.4 ± 1.2 , n = 19 cells; p = 0.0020, Mann–Whitney *U* test). b. GS versus WT spike threshold, interspike interval (ISI), full width at half maximum, and rate of change of voltage after action potential depolarization (dV/dt). The ISI of iSPNs in GS mice were decreased (ISI_{GS} = 8.95 ± 1.85 ms, n = 20 cells; ISI_{GS} = 7.15 ± 1.05 , n = 28 cells; p = 0.0401, Mann–Whitney *U* test). The FWHM of iSPNs in GS mice were increased (FWHM_{GS} = 1.54 ± 0.14 , n = 16 cells; FWHM_{GS} = 1.72 ± 0.11 , n = 19 cells; p = 0.0039, Mann–Whitney *U* test). * denotes p < 0.05. See Supplementary Table 5 for complete sample sizes and statistical results.

Supplementary Figure 5. Paired-pulse ratio and 95%–5% EPSC decay time analysis of corticostriatal input. a. Representative brightfield photomicrograph of a voltage-clamp recording of a WT dSPN in a parasagittal slice. GPe, external globus pallidus. b. Magnified fluorescent photomicrograph of the recorded dSPN in panel a. Pipette loading of Alexa Fluor 647 for live cell visualization was performed with confocal imaging. The identity of SPNs were confirmed by somatic morphology and high density of dendritic spines, characteristic of SPNs. Inset: magnified view of the boxed region showing a dendritic segment that is heavily decorated with spines. c. *Top*: Scatter plot of average first excitatory postsynaptic currents (EPSC) amplitudes per cell versus stimulation intensities showing majority of responses lie between 200–500 pA. *Bottom*: Mean voltage-clamp recordings of the dSPN shown in b. Paired-pulse stimulation of the cortex at

20 Hz elicited a pair of EPSCs. *Below mean trace*: Magnified view of the second EPSC amplitude and decay. The red portion depicts the 95%–5% decay time. **d**. Population data of paired-pulse ratios (PPR) of SPNs from WT and RC mice. No differences were found in dSPNs (PPR_{WT} = 1.31 \pm 0.10, n = 14 cells; PPR_{RC} = 1.33 \pm 0.15, n = 17 cells; *p* = 0.18, Mann–Whitney *U* test). Similarly, there were no changes in iSPNs (PPR_{WT} = 1.28 \pm 0.14, n = 13 cells; PPR_{RC} = 1.54 \pm 0.25, n = 18 cells; *p* = 0.11, Mann–Whitney *U* test). **e**. Population data of the 95%–5% EPSC decay times of SPNs from age-matched WT and RC mice. An increase in the 95%–5% decay times in the iSPNs of RC mice compared to WT was found (Decay_{WT} = 61.1 \pm 38.7 ms, n = 13 cells; Decay_{RC} = 139.5 \pm 81.1 ms, n = 18 cells; *p* = 0.036; Mann–Whitney *U* test). For dSPNs, no differences were found (Decay_{WT} = 88.7 \pm 40.3 ms, n = 14 cells; Decay_{RC} = 182.9 \pm 136.0 ms, n = 17 cells; *p* = 0.13, Mann–Whitney *U* test). * denotes *p* < 0.05. See Supplementary Table 6 for complete sample sizes and statistical results.

Supplementary figure 6. Effect of D1 or D2 antagonism on dopamine-dependent motor learning. Rotarod performance of WT, RC, and GS mice that were administered antagonists for either D1 (SCH23390) (**a–b**) or D2 receptors (eticlopride) (**c–d**), 30 min prior to training for the first five days. Solid traces are saline control plotted in Figure 3b for reference. **b** and **d**. Averaged latency of saline control (open bars) and drug-treated mice (filled bars). Early and late refer to sessions 6–8 and 16–18, respectively, of the no drug recovery phase (D1R antagonist treated

groups: $n_{WT} = 11$, $n_{RC} = 11$, and $n_{GS} = 9$ mice; D2R antagonist treated groups: $n_{WT} = 9$, $n_{RC} = 14$, and $n_{GS} = 10$ mice; *** p < 0.001 vs genotype-matched saline control). **e-f**. The motor learning deficit induced by dopamine antagonism was not observed in RC mice pre-treated with the LRRK2 inhibitor MLi-2 (5mg/Kg), which was administered daily, 60 min prior to training throughout the rotarod task (sessions 1-18). MLi-2 treated mice were coadministered with either saline (open circles) or antagonist cocktail (closed circles). Dash and solid lines, respectively, represent the saline control or dopamine receptor antagonist treated groups. Inset shows a decrease in S935 LRRK2 phosphorylation, reflecting LRRK2 kinase activity in WT mice after 60 min MLi-2 administration. **f**. Average latency in blocks of 3 sessions during the drug-free phase from **e**. RC with D1+D2 antagonists: n = 11 mice; MLi-2 with D1+D2 antagonists: n = 11 mice; ** p < 0.01).

Supplementary Figure 7. Dopamine signaling component levels across LRRK2 mutations. a. Workflow schematic for striatal extract subcellular fractionation method. P2 (crude synaptosomal) fraction was used in the following WB experiments. WB shows the relative enrichment of PSD95 in the P2 fractions b. Representative WB analysis of WT, RC, and GS P2 fractions probed for LRRK2, D1R, D2R, DAT, p-T34-DARPP32 and DARPP32, PSD95, and actin, as shown. **c–g**. Quantification of PSD95 normalized to β -actin shows no differences in PSD95 expression across genotypes. LRRK2, D1R, D2R, DAT, and p-T34-DARPP32 normalized to PSD95. Summary graphs reflect the mean and error bars reflect SEM, * *p* < 0.05, unpaired t-test (n = 5–10).

Supplementary Figure 8. Pathway and network analysis of the differentially expressed proteins in the RC and GS rotarod trained mice.

KEGG pathway (**a**, **c**) and network (**b**, **d**) analysis of top enriched pathways in RC and GS versus WT pairwise comparisons. KEGG annotated pathways with strength (log10 observed/expected) \geq 1 were considered the top altered annotated pathways in the pairwise comparisons.

Supplementary Figure 9. **Unprocessed scans of Western blots. a-g.** The Figure panel where the corresponding Western blots are found is indicated on the top of each gel. The dashed box indicates the area of the scan presented in the relevant Figures.

	Median ± MAD (nM)	n (measures)	n (mice by sex)	p ⁺
WT	1058 ± 118	10	7(m); 3(f)	_
RC	539 ± 143	9	4(m); 5(f)	0.006†
GS	555 ± 218	13	5(m); 8(f)	0.001+

Supplementary Table 1. Summary of electrically-evoked dopamine release

⁺Mann-Whitney U test compared to wild type values.

SupplementaryTable 2. Half-maximum and maximal F-I difference summary

R1441C half-maxim	um firing	values								
					dSPN (I = 475 pA)			iSPN(I = 325 pA)		
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	P [†]	
Half-max	WT	10	16	12 ± 4	20	0.2067	14 ± 5	17	0.037	
ning (spikes)	RC	14	19	14 ± 3	30		6 ± 6	18		

The cited currents are for where the half-maximal firing response occurred in WT mice and used to compare the corresponding firing response in mutant mice. *Mann-Whitney U test; boldface indicates significance, p < 0.05.

R1441C maximal difference of iSPN firing values

					iSPN (I = 625 PA)	
		n	n	Median ±	n	p†
		(mice)	(slices)	MAD	(neurons)	
firing at max diff (spikes)	WT	10	16	22.0 ± 4.5	17	0.0011
()	RC	14	19	15.0 ± 5.0	23	

The cited current is for where the maximal difference in firing of iSPNs occurred between WT and RC mice. [†]Mann-Whitney U test; boldface indicates significance, p < 0.05.

G2019S half-maximum firing values

				dSPN (I = 375 pA)			iSPN (I = 325 pA)			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p [†]	-	Median ± MAD	n (neurons)	p†
Half-max firing	WT	8	12	22 ± 4	13	0.1229		20 ± 4	20	0.6590
(spikes)	GS	12	23	23 ± 2	29			23 ± 3	28	

The cited currents are for where the half-maximal firing response occurred in WT mice and used to compare the corresponding firing response in mutant mice. *Mann-Whitney U test

Supplementary Table 3. Summary of maximal firing across sweeps

R1441C maximal fir	ring summ	ary									
					dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	Þ,		
maximal	WT	10	16	18.5 ± 2	10	0.2200	23 ± 4.5	16	0.0114		
ming (spikes)	RC	14	19	22 ± 2	22		18.5 ± 3.5	16			

[†]Mann-Whitney U test; boldface indicates significance, p < 0.05.

R1441C current values for maximal firing summary

					dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p ⁺	Med M	an ± \D	n (neurons)	p [†]	
current for	WT	10	16	587.5 ± 87.5	10	0.8022	525 :	: 125	16	0.4607	
firing (pA)	RC	14	19	525 ± 125	19		500 :	: 100	16		

[†]Mann-Whitney U test.

G2019S maximal firing summary

					dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	p†		
maximal	WT	8	16	21 ± 3	10	0.6606	19 ± 3	17	0.0835		
ning (spikes)	RC	12	18	22 ± 2	18		22 ± 3	24			

[†]Mann-Whitney U test.

G2019S current values for maximal firing summary

				dSPN				iSPN		
	T	n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Media MAD	n±n) (neurons)	p†	
7current for maximal	WΤ	8	16	660 ± 50	10	0.9898	550 ±	75 17	7 0.9633	
firing (pA)	RC	12	19	637.5 ± 75	18		525 ±	75 24	4	

⁺Mann-Whitney U test.

Supplementary Table 4. General membrane electrophysiological properties

					dSPN		iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	p†	
Rheobase (pA)	WΤ	10	16	300 ± 50	21	0.0850	225 ± 75	20	0.434	
	RC	14	19	300 ± 50	31		275 ± 125	23		
Cm (pF)	WT	10	16	78.33 ± 15.59	25	0.2333	68.83 ± 13.89	27	0.038	
	RC	14	19	81.27 ± 14.41	38		87.38 ± 13.34	27		
Rin (MΩ)	WT	10	16	56.13 ± 18.26	17	0.2333	67.75 ± 21.05	17	0.140	
	RC	14	19	69.47 ± 17.03	21		85.03 ±18.54	14		
Vm (MΩ)	WT	10	16	-90.52 ± 1.58	17	0.2333	-89.61 ± 2.35	16	0.490	
	RC	14	19	-90.85 ± 2.96	21		-89.74 ± 1.51	15		

[†]Mann-Whitney U test; boldface indicates significance, p < 0.05. Cm, membrane capacitance; Rin, input resistance; Vm, membrane potential.

					dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	p†		
Rheobase (pA)	WT	8	12	250.00 ± 25.00	13	0.0078	162.50 ± 87.50	20	0.0046		
	GS	12	23	325.00 ± 50.00	29		225.00 ± 50.00	28			
Cm (pF)	WT	8	12	88.12 ± 10.81	15	0.2855	74.65 ± 12.26	19	0.5085		
	GS	12	23	95.37 ± 12.03	27		82.66 ± 15.25	30			
Rin (MΩ)	WT	8	12	50.01 ± 4.39	13	0.4203	52.19 ± 10.87	20	0.5499		
	GS	12	23	40.66 ± 11.14	19		52.84 ± 12.07	19			
Vm (MΩ)	WT	8	12	-87.59 ± 3.42	12	0.5496	-86.21 ± 3.94	19	0.0849		
	GS	12	23	-87.73 ± 3.21	29		-89.62 ± 3.36	28			

G2019S general membrane electrophysiological properties

[†]Mann-Whitney U test; boldface indicates significance, p < 0.05. Cm, membrane capacitance; Rin, input resistance; Vm, membrane potential.

Supplementary Table 5. Action potential characteristics

R1441C action pot	ential char	racteristics									
					dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	Þ,	Median ± MAD	n (neurons)	p ⁺		
Threshold (mV)	WT	10	16	-47.78 ±5.08	17	0.7804	-46.36 ± 2.63	22	0.4348		
	RC	14	19	-46.10 ± 3.00	20		-49.69 ± 2.89	19			
ISI (ms)	WT	10	16	10.20 ± 2.00	17	0.7189	8.00 ± 1.00	17	0.0388		
	RC	14	19	10.20 ± 1.40	24		9.40 ± 1.20	19			
FWHM (ms)	WT	10	16	1.53 ± 0.19	17	0.3602	1.54 ± 0.144	16	0.1409		
	RC	14	19	1.63 ± 0.12	25		1.72 ± 0.11	19			
dV/dt (mV/ms)	WT	10	16	50.90 ± 5.06	17	0.2167	48.73 ± 3.68	16	0.4904		
	RC	14	19	45.50 ± 3.33	25		49.78 ± 2.98	19			

[†]Mann-Whitney U test; boldface indicates significance, *p* < 0.05. ISI, interspike interval; FWHM, full width at half maximum.

G2019S action potential characteristics

				dSPN			iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	p†	
Threshold (mV)	WT	8	12	-44.23 ±2.95	13	0.8126	-43.94 ±4.07	20	0.1004	
	GS	9	14	-44.21 ± 3.57	19		-46.42 ±13.59	22		
ISI (ms)	WT	8	12	8.90 ± 1.60	13	0.7017	8.95 ± 1.85	20	0.0401	
	GS	9	14	7.70 ± 0.90	29		7.15 ± 1.25	28		
FWHM (ms)	WT	8	12	1.61 ± 0.12	13	0.1016	1.60 ± 0.16	20	0.0039	
	GS	9	14	1.40 ± 0.14	29		1.41 ±0.07	28		
dV/dt (mV/ms)	WT	8	12	43.89 ± 4.54	13	0.1270	44.45 ± 5.12	17	0.1383	
	GS	9	14	49.80 ± 6.03	29		51.38 ± 7.13	28		

⁺Mann-Whitney U test; boldface indicates significance, *p* < 0.05. ISI, interspike interval; FWHM, full width at half maximum.

Supplementary Table 6. Summary of RC iSPN paired-pulse ratio and 95%-5% EPSC decay time

1441C paired-pulse ration											
					dSPN		iSPN				
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†	Median ± MAD	n (neurons)	Þ,		
paired-pulse	WT	8	9	1.31 ± 0.10	14	0.18	1.28 ± 0.14	13	0.11		
Tatio	RC	12	15	1.33 ± 0.15	17		1.54 ± 0.25	18			

[†]Mann-Whitney U test.

R1441C 95%-5% decay time

					dSPN		iSPN			
		n (mice)	n (slices)	Median ± MAD	n (neurons)	p†		Median ± MAD	n (neurons)	p ⁺
95%-5% decay time	WT	8	9	88.7 ± 40.3	14	0.13		61.1 ± 38.7	13	0.036
(ms)	RC	12	15	182.9 ± 136	17			139.5 ± 81	18	

[†]Mann-Whitney U test; boldface indicates significance, p < 0.05.

Supplementary Table 7. Motor learning Summary

arly sessions 6–8											
	WT			_	F	RC			GS		
	n (mice)	p†		-	n (mice)	p ⁺		n (mice	e)	p [†]	
Saline	10				10			9			
Saline vs. D1 + D2 antagonism	10, 13		< 0.0001		10, 11	< 0.0001		9, 11		0.0007	
Saline vs. D1 antagonism	10, 11		0.9913		10, 11	0.9593		9, 9		0.7990	
Saline vs. D2 antagonism	10, 9		0.0549		10, 14	0.0190		9, 10		0.0128	
				D1	+ D2						
	Sal	ne		antagonism		D1 antagonism			D2 ant	agonism	
	n	p [†]		n	p [†]	n	n	p†	n	p [†]	
	(mice)			(mice)		(mice)	(mice)		(mice)		
WT vs. RC	10, 10	1.0000		13, 11	0.9908	11, 11		1.0000	9,14	1.0000	
WT vs. GS	10, 9	1.0000		13, 11	1.0000	11,9		0.9781	9,10	0.9981	
RC vs. GS	10, 9	1.0000		11, 11	0.9908	11, 9		0.9936	14,10	1.0000	
ate sessions 16-18											
	WT		_	RC		GS					
	n (mice)	p†			n (mice)	p ⁺		n (mic	e)	p†	
Saline vs. D1 + D2 antagonism	13		0.9999		11	0.0001		11		0.9842	
Saline vs. D1 antagonism	11		0.5480		11	1.0000		9		0.9998	
Saline vs. D2 antagonism	9		1.0000		14	0.1492		10		0.9904	
				D1	+ D2						
	Saline		antag	antagonism D1 antagonism		D2 antagonism		agonism			
	n	p†	-	n	p [†]	n	p†		n	p [†]	
	(mice)			(mice)		(mice)			(mice)		
WT vs. RC	10,10	0.989		13, 11	0.0429	Ì1.11	1.0000		9,14	1.0000	
WT vs. GS	10,9	1.0000		13, 11	0.0952	11,9	0.3641		9,10	1.0000	
RC vs. GS	10.9	1.0000		11, 11	0.4980	11.9	0.2661		14, 10	1.0000	