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Methods 

Datasets 

For CXR data, we utilised MIMIC-CXR (MXR)(1), CheXpert (CXP)(2), and Emory-CXR (EMX) 
obtained from Emory Hospital. For limb x-ray imaging, we used the digital hand atlas (DHA) dataset(3). 
For CT imaging, the model was trained on a subset of the National Lung Screening Trial (NLST)(4) 
dataset and externally validated on the Stanford subset of the RSNA-STR Pulmonary Embolism CT 
(RSPECT) dataset (5) for which we were able to separately obtain the race labels, and a CT chest dataset 
from Emory Hospital (EM-CT). A screening mammogram dataset (EM-Mammo) and a cervical spine x-
ray dataset (EM-CS) were acquired from Emory University Hospital.  Each dataset included images, 
disease class labels, and race/ethnicity labels including Black/African American and White. Asian labels 
were available in some datasets (MXR, CXP, EMX and DHA) and were utilised when available and the 
population prevalence was above 1%. Hispanic/Latino labels were only available in some datasets and 
were coded heterogeneously, so patients with these labels were excluded from analysis.  
 
Ethical approval was obtained for the Emory datasets from the Emory Institutional Review Board (Chest 
x-ray - IRB00091978 ; Mammograms - STUDY00000673 ; Cervical hardware - IRB00111139 ; CT chest 
STUDY00000506). Use of the NLST dataset was approved under project NLST-782. The data in MXR 
has been previously de-identified, and approved by the institutional review boards of Massachusetts 
Institute of Technology (No. 0403000206) and Beth Israel Deaconess Medical Center (2001-P-
001699/14) for research. The CXP and RSPECT (Stanford subset) datasets were de-identified per 
Stanford institutional guidelines and deemed non-human subjects research data and therefore institutional 
IRB was waived per policy. Research use of the data set was in compliance with the Stanford data use 
agreement. 
 
General model training details 

Model Architectures: 
The details of model settings are listed in the Supplemental Table S1 while datasets splits are summarized 
in Table 1 in the main manuscript. The CNN model architectures were selected based on dataset size and 
task complexity. CXR race classification models were trained using Resnet34 (6), Densenet121 (7) and  
EfficientNetB0 (8) architectures with pre-trained weights from ImageNet. We trained a Resnet50 (6) 
baseline model on the digital hand atlas, Resnet34 (6) model on cervical spine radiographs, and 
EfficientNetB2 (8) model on the mammogram images.  A Densenet121 (7) model was trained on the 
NLST chest CT images and externally validated on the RSPECT and EM-CT datasets.   
 
Model Parameters: 
Images were resized to sizes between 224 and 320.  A random seed of 2021 and bootstrap of 1000 was 
used for all experiments. Hyperparameters including random horizontal flip, random 15 degree rotation, 
and random zoom of ±10% were applied during training. Adam optimization algorithm was chosen with a 
categorical cross-entropy loss function and a starting learning rate of 1e-3 that decreased by a factor of ten 
after two consecutive epochs without improvement in overall validation loss. We used a batch size of 256. 
Importantly, these experiments were performed using the standard model implementations included in the 

https://paperpile.com/c/g5hR3c/MXqek
https://paperpile.com/c/g5hR3c/bCWVF
https://paperpile.com/c/g5hR3c/92pDr
https://paperpile.com/c/g5hR3c/jfC8b
https://paperpile.com/c/g5hR3c/T9A5y
https://paperpile.com/c/g5hR3c/nwIHH
https://paperpile.com/c/g5hR3c/8qzIP
https://paperpile.com/c/g5hR3c/Ie0qs
https://paperpile.com/c/g5hR3c/nwIHH
https://paperpile.com/c/g5hR3c/nwIHH
https://paperpile.com/c/g5hR3c/Ie0qs
https://paperpile.com/c/g5hR3c/8qzIP
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public Keras package distributed with the Tensorflow library(9), one of the most popular python libraries 
for CNN model development.  
 
Definition of ROC-AUC as the evaluation metric:  
In our analysis and result reporting, we use the ROC-AUC metric(10). A ROC curve (Receiver Operating 
Characteristics) is a graph showing the performance of a classification model at all classification 
thresholds. The curve is plotted using two parameters - True Positive Rate as the x-axis and False Positive 
Rate as the y-axis. AUC stands for - Area Under the ROC Curve and measures the two-dimensional area 
underneath the ROC curve. 
 
Justification for use of confidence intervals and not performing calibration assessment: 
Calibration assessment was not performed because the objective is not to generate a probabilistic estimate 
from the model but to present the performance of the model for race discrimination. According to 
TRIPOD (Transparent Reporting of a multivariable prediction model for Individual Prognosis Or 
Diagnosis) guidelines(11,12), calibration assessment is needed for prediction modeling studies for 
healthcare. Instead, we calculated the Confidence intervals (CI) around the ROC-AUC to estimate the 
upper and lower limit of the classifier performance. It is a standard way of quantifying the uncertainty of 
an estimate generated by a machine learning model and provides the error rate. Given the tighter CI, we 
can conclude the models are generating highly precise labels with low error margin(13).  
 
Code availability: 
All code for the various experiments is available with an open-source license at 
https://github.com/Emory-HITI/AI-Vengers. 

Chest CT image preprocessing  

The chest CT images were preprocessed by standardizing the rescale intercept value to 1024 and 
normalizing the pixel values of the images by dividing by 3000. In addition, we also dropped images that 
had abnormal pixel values for air. This was determined by selecting an empty patch on the image and 
calculating the minimum pixel value within that patch. If the value was outside of the interval [-30, 30] 
then the image was dropped.  
 
Specific model training details 

A: RACE DETECTION IN RADIOLOGY IMAGING 
 
A1. Primary race detection  
We trained and evaluated three models on the three CXR datasets (Table 1 - main manuscript) to predict 
if the patient’s self-reported race was Black, White or Asian. Model training details are summarized in the 
Supplemental Table S1. Given no difference in performance of various architectures on race prediction, 
we selected the Resnet34(6) model for external validation between the CXR datasets. Detection 
performance was characterised with ROC-AUC with a one-vs-rest approach for each racial group.  

https://paperpile.com/c/g5hR3c/dSSj0
https://paperpile.com/c/g5hR3c/Cn1Kr
https://paperpile.com/c/g5hR3c/nlmJ9+OjqVc
https://paperpile.com/c/g5hR3c/LxDcC
https://github.com/Emory-HITI/AI-Vengers
https://github.com/Emory-HITI/AI-Vengers
https://paperpile.com/c/g5hR3c/nwIHH
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A2. Race detection in non-CXR imaging 
Due to limited availability of the Asian class in non CXR datasets, we performed a binary classification to 
identify racial identity in Black patients versus White patients on the digital hand atlas, cervical spine 
radiographs, NLST chest CT and mammogram images (Table S1). The chest CT model was externally 
validated on the RSPECT and EM-CT datasets. Detection performance was characterised with ROC-
AUC with a one-vs-rest approach for each racial group. For multislice studies, predictions were made at 
the slice level, with aggregated performance at the study level.   

B: EXPERIMENTS ON ANATOMICAL AND PHENOTYPE CONFOUNDERS 

B1. Race detection using body habitus 
We assessed the relationship between body habitus (obtained from the recorded body mass index - BMI) 
and race for Black and White patients in several datasets, and with several different methods. First, we 
tested the correlation between BMI and race in the CXP dataset by training a logistic regression 
model(14) to predict race from BMI. Secondly, we performed stratified training and testing on the MXR 
dataset classified into four standard BMI groups (Table S2). Thirdly, we performed subset analysis of a 
trained race detection model on the EMX dataset, reporting the performance of the model at 
differentiating Asian, Black and White patients in four BMI groups (Table S4).  

B2. Tissue density analysis on mammograms 
We assessed the relationship between breast density and race for Black and White patients in the EM-
Mammo dataset (Table S5).  We trained two distinct multi-class logistic regression models (15) (one-vs-
rest) to predict patient race based on the breast density and age. 
 
B3. Race detection using disease labels 
 
To evaluate the possibility that features related to disease distribution were responsible for the ability of 
models to detect race from CXRs, we trained models to predict race from the disease label data (i.e., 
without the images) on the MXR and CXP datasets using all available labels (14 labels, including the “no 
finding” and “support devices” labels). The disease labels for the MXR (1) and CXP (2) datasets have 
been published previously. We split each dataset into a 70% training, 30% test set. We trained an 
XGBoost(16) classifier, a L1-regularized logistic regression, and a random forest classifier to predict the 
patient’s race. We tuned hyperparameters (maximum depth for the tree-based models, and the 
regularization strength of logistic regression) using 5-fold cross validation on the training set. We present 
stratified results to show model performance on the test for the “no finding” class for the MXR and CXP 
datasets.  

B4. Race detection using bone density 

We removed bone density information within MXR and CXP images by clipping bright pixels to 60% 
intensity. Sample images are shown in Figure S1. Densenet-121 models were trained on the brightness-
clipped images.  

https://paperpile.com/c/g5hR3c/dcbQy
https://paperpile.com/c/g5hR3c/2D9h6
https://paperpile.com/c/g5hR3c/MXqek
https://paperpile.com/c/g5hR3c/bCWVF
https://paperpile.com/c/g5hR3c/9dJv9
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We conducted a second experiment where we used the overall pixel intensity of CXRs on the MIMIC-
CXR dataset as input for a simple classifier with single input and no hidden layers, and a softmax 
classifier to detect race Black and White patients. The following tissue pixel intensity thresholds were 
used  

● Normal (0 - 255) 
● Air (30 - 255) 
● Fat (80 - 255) 
● Soft Tissue (110 - 255) 
● Bone (180 - 255) 

These are known/established pixel intensities for various body tissues, and are established for the 
windowing levels for CT scans (17). 

B5. Race detection using age and sex 
We investigated whether there is a cumulative effect of societal bias that impacts patients' general health, 
which is then used by the models as a proxy for race. We specifically examined whether there is a dose-
response effect of race detection as people age, i.e., if features related to an underlying systemic health 
inequity are a proxy for race, then this should be more obvious in older patients. We split patients in 
MXR into five age groups as summarized in Table S10 in the and trained a Densenet121 model as 
described in Table S1. 
 
We performed a second similar experiment by splitting the MXR datasets into male and female 
summarized in Table S12 and trained a Densenet121 model as described in Table S1. 
 

B6. Race detection using combination of age, sex, disease and body habitus 
 
We selected a subset of data from the Emory dataset that contained all variables of age, sex, disease labels 
(all 14 CXR labels) and BMI (Total dataset size of 123,003 images). The data were split into 70 % for 
training and 30 % test dataset. Due to the low numbers of the Asian patients in this sub cohort, we trained 
a binary classifier of Black and White patients.  All the variables were one hot encoded and logistic 
regression model, random forest and XGBoost models trained.  

C: EXPERIMENTS TO EVALUATE THE MECHANISM OF RACE DETECTION 

C1. Frequency-domain imaging features 

Given the lack of reported racial anatomical differences in the radiology literature and the known 
capability of deep learning models to utilise subtle textural cues that humans cannot perceive (18,19), we 
investigated the relative contributions of large-scale structural features and fine textural features by 
performing training and testing on datasets altered by filtering the frequency spectrum of the images.  
 
Following the procedure outlined by previous work(18,20,21), we first transform each image into the 
frequency domain using a 2D Fourier transform. We then apply low-pass filtering (LPF) where we set all 

https://paperpile.com/c/g5hR3c/FAKjA
https://paperpile.com/c/g5hR3c/3LBLe+Dy87M
https://paperpile.com/c/g5hR3c/3LBLe+0n1Un+JaMj2
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frequency components outside a centered circle with diameter d to zero, and high-pass filtering (HPF), 
where all frequency components within a centered circle with diameter d are set to zero. We also test 
bandpass filtering (BF) and notch filtering (NF) and report these results in Figures S2 and S3 and Tables 
S7 and S8. All experiments were performed multiple times while varying the radius of the frequency 
spectrum filters. 
 
After filtering, we applied the inverse Fourier transform on the filtered spectra to obtain an altered version 
of the original image and subsequently trained models on these perturbed datasets to observe the effect on 
the model’s ability to predict race. These experiments were performed on the MXR dataset. 

C2. Impact of image resolution and quality 

To test whether race information was encoded in higher resolution images, we resized the MXR images 
into various resolutions and trained a Resnet34 model. To examine whether the image perturbations made 
an impact on race detection, we made the testing images in the MXR dataset noisy and blurred by adding 
gaussian noise (mean=0, variance=0.1) and applying a gaussian filter to them, respectively (Figure S4).  

C3. Anatomical localisation 

We investigated whether race information could be localized to a particular anatomical region or tissue by 
producing saliency maps for random cases for each task using the grad-cam methodology (22). 
Thereafter, five radiologists performed qualitative evaluation of these artefacts. We used the standard 
keras grad-cam implementation to generate saliency maps on the CXR datasets (Figure S9), digital hand 
atlas dataset (Figure S11), CT chest ((Figure S11), Emory Cervical spine radiographs (Figure S11) and 
mammogram datasets (Figure S11). For the CXR datasets, saliency maps were randomly generated from 
the test set for each race when correctly and incorrectly classified (Figure S9). The mammogram grad-
cams were generated for each race and breast density classification (Figure S10).  
 
We further evaluated the significance of the regions of interest as indicated by the saliency maps by 
masking out the region of interest in each MXR CXR heatmap as shown in Figure S5. We masked pixels 
with blue channels larger than 0.1 in the heatmap and then produced a minimum rectangle area to cover 
all masked pixels. The masked CXRs were used to test the model trained on original MXR images. 
We also tested the performance of Densenet121 using CXR images consisting of lung and non-lung 
segmentations using an automatic segmentation algorithm (TernausNet) (23) on the MXR dataset, with 
manual checks on each image to exclude poorly segmented images (Figure S6). The numbers of 
segmented CXRs used for testing are 148, 382, and 200 for White, Black, and Asian patients respectively. 
This segmentation dataset will be released through the PhysioNet (https://physionet.org/) data repository. 
Details of model training can be found in Table S1.  
 
We analyzed slice by slice results of the CT chest model demonstrating the distribution of errors by slice-
location, to reveal whether any particular anatomical region (i.e., slices from the neck, upper chest, upper 
abdomen etc.) appear to be more useful for race detection. 

https://paperpile.com/c/g5hR3c/K3TNV
https://paperpile.com/c/g5hR3c/giRmH
https://physionet.org/
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C4. Patch-based training 

We investigated whether race information can be isolated to specific patches within the chest x-ray 
images, for example, to exclude the possibility that hospital process features such as radiographic markers 
were responsible for the recognition of racial identity. On the MXR dataset, we split each image into nine 
3x3 square cells of equal size (Figure S7). We experimented with training a race prediction model using 
two different approaches: (1) We select one of the nine patches, and completely remove all information 
from the patch by setting all pixels within the patch to zero and (2) We select one of the nine patches, 
scale it back to the size of the original image, and use only this patch for modeling. We show an example 
of patched images in Figure S7. We trained several networks for both approaches while varying the 
selected patch. 

C5. Image acquisition differences 

We extracted all CXR from a single hospital acquired on the Carestream portable CXR equipment, where 
we extracted 55,000 images. We trained a Densenet model on this dataset for race prediction (Model A). 
Thereafter, we tested the model on a test dataset composed of multiple hospitals and a mixture of CXRs 
obtained from the Carestream and GE imaging equipment. 

We repeated a similar experiment on the mammogram dataset where we trained an EfficientNetB2 model 
on datasets obtained from single hospital locations and imaging equipment. Figure S13 shows the 
distribution of 2D mammogram imaging across various hospital locations by race, and Figure S14 shows 
distribution of a single image view by manufacturer. 

Using the publicly available CheXphoto dataset(24), we selected approximately 6,000 CXR images that 
were individually displayed on a screen and then captured with a cell phone camera. These selected 
images were matched with their CheXpert metadata (Figure S15). A race classification model was then 
trained on these images. In addition, the same selected images from the original CheXpert dataset were 
also trained for race detection in order to compare performance differences.

https://paperpile.com/c/g5hR3c/CkqoX
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Figure S1: Samples images in MXR with bone density information removed by clipping pixels at 60% brightness. 

Original 
 

 

Clipped 
 

 

Original 
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Figure S2: Transformed MXR images after bandpass filtering using various values of d1 and d2  
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Figure S3: Transformed MXR images after notch filtering using various values of d1 and d2 

 

 
 

 
Figure S4: Examples of noisy (left) and blurred (right) images.  
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Figure S5: On the left image, there is a grad-cam saliency map showing the areas of highest probability for the race 
prediction model. On the right image, the pixels where the blue channels are > 0.1 are occluded with a rectangular 
mask. 
 

 
 

Figure S6: An example of lung segmentation from MXR. The original, non-lung segmented, and lung segmented 
images were used as the test data separately. 

Original  

 

Non-lung segmentation 

 

Lung segmentation 
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Figure S7: Sample images used for patch-based training. a) the original, unaltered image. b) the image after 
removing the patch located at quadrant (2, 1). c) training with only the patch located at quadrant (2, 1). 
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Figure S8: The performance of models trained and tested on various image resolutions from 1 pixel to 320x320 
images for Asians, Blacks and Whites. High AUC values are maintained across various image resolutions. Zoomed 
plots of AUC predictions at lower image resolutions and corresponding appearance of CXR images.  
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 Figure S9: Saliency maps for primary race detection for CXR images. The saliency maps were assessed qualitatively 
by all group members, across all tasks, including by members with radiology expertise. No consistent anatomical 
localisation was appreciated, and no anatomic structures appeared to be particularly salient to the decision making 
process. 
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finding” class label 
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White 

  

   

 



14 

 

 

 

 

 



15 

Figure S10: Generated saliency maps for Black and White patients across various breast density classes. Visual assessment by the team including four 
radiologists of a random sample of saliency maps did not produce any identifiable pattern that could explain race prediction.  
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Figure S11: Saliency maps for primary race detection for non-CXR images. The saliency maps were assessed 
qualitatively by all group members, across all tasks, including by members with radiology expertise. No consistent 
anatomical localisation was appreciated, and no anatomic structures appeared to be particularly salient to the 
decision making process. 
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prediction - CT Chest  
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Figure S12 showing a sample CXR with the overall average pixel threshold intensities on the MIMIC-CXR dataset  
(Normal (0 - 255), Air (30 - 255), Fat (80 - 255), Soft Tissue (110 - 255) and Bone (180 - 255) 

 

 

 

 

 

 

 

 

 

Figure S13 showing distribution of mammogram  2D Views by race across multiple hospital locations.  
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Figure S14 showing distribution of mammogram  2D Views by race across multiple equipment manufacturers 

 

Figure S15 showing a sample CXR from the CheXpert dataset that has been digitally acquired with a smartphone 
camera. 
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Figure S16 showing AUC curves for binary race prediction using combination of age, sex, disease and body habitus 
using logistic regression, random forest and XGBoost 

GLM: Confidence interval for the score: [0.640 - 0.669] 

  
 
 
Random Forest: Confidence interval for the score: [0.647 - 0.676] 
 

 
 
 
 
XGBoost:Confidence interval for the score: [0.663 - 0.689] 
 

 

 

 

Table S1: Summary of model training details. 
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A) Race detection in imaging 

 MODELS Pretrain Input 
size 

Optim. Loss fn LR Batch 
size 

Epochs D/
Out 

A1 CXR models 
● ResNet34 

 
● Densenet121 

 
● EfficientNetB0 

 
IN 
 
IN 
 
IN 

 
320x320 
 
224x224 
 
224x224 

 
Adam 
 
Adam 
 
Adam 

 
CCE 
 
CCE 
 
CCE 

 
1e-3 
 
1e-3 
 
1e-3 

 
256 
 
128 
 
256 

 
12-16 
 
10 
 
20 

 
No 
 
0.5 
 
0.4 

A2 CT chest IN 512x512 SGD 
w/ 
mom. 

BCE 1e-4 
1e-5 

16 ~...  

Limb x-ray (IV) - DHA 
● ResNet50 

 
IN 

 
320x320 

 
Adam 

 
CCE 

 
1e-5 

 
8 

 
100 

 
No 

Mammography 
● EfficientNetB2 

 
IN 

 
256x256 

 
Adam 

 
BCE 

 
1e-3 

 
32 

 
10 (ES) 

 
No 

Cervical spine x-ray 
● ResNet34 

 
IN 

 
320x320 

 
Adam 

 
CCE 

 
1e-3 

 
64 

12-16 
(ES) 

 
No 

 

B) Experiments on clinical confounders 

 MODELS Parameters 

B1 BMI 
● LR 
● BMI stratified training 

and testing on MXR 
● BMI subset analysis on 

EMX 

 
NA 
CXR Densenet121 as above  
 
NA 

B2 Breast density 
● LR 

Breast density + Age 
● LR 

 
NA 
 
NA 

B3 Disease distribution 
● LR 

 
 

● RF 
 
 

● XGBoost 
 

 
Image-based race detection for 
the “no finding” class 

Disease distribution 
● LR: L1 regularization, searching C ∈ [10-5, 101], all 

other hyperparameters at default values from the scikit-learn 
library 

● RF: 100 estimators, searching max depth ∈ {1, 

2, …, 6}, all other hyperparameters at default 

values from the scikit-learn library 
 

● XGBoost: 100 estimators, searching max depth ∈ 

{1, 2, …, 6}, all other hyperparameters at 

default values from the xgboost library 

We trained and tested the Densenet121 model using the 35,307 and 18,362 
images with “no finding” labels in the MXR dataset, respectively 
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B4 Bone density CXR Densenet121 as above  

B5 Impact of Age 
 
Impact of patient sex 

CXR Densenet121 as above 
 
CXR Densenet121 as above 

B6 Combination of age, sex, 
disease, and body habitus 

Logistic regression model, random forest classifier, XGBoost model 
as above (B3) 

 

C) Experiments to evaluate the mechanism of race detection 

 Experiments MODELS 

C1 Frequency domain imaging 
features 

CXR Densenet121 as above 

C2 Image resolution and quality ● Image resolution - CXR Resnet34 as above 
○ We resized the MIMIC-CXR (MXR) images into 

320x320, 240x240, 160x160, 80x80, 60x60, 40x40, 
32x32, 24x24, 16x16, 8x8, 4x4, 2x2, and 1 pixel 
resolution. 

○ split the training, validation and testing groups by patient 
ID by 80%, 10%, 10% respectively. 

● Noisy and image perturbations - CXR Densenet121 as above 

C3 Anatomical localisation 
 

● Lung segmentation 
experiments 

○ Seg model 
○ Classification 

model 
 

● Saliency maps 
 

● Occlusion experiments 
 

● Slice-wise results 

 
 
The numbers of segmented CXRs used for testing are 148, 382, and 200 
for White, Black, and Asian patients respectively 
TernausNet.  
As above... 
 
 
Grad cam (keras) 
 
CXR Densenet121 as above 
 
N/A 

C4 Patch-based training CXR Densenet121 as above 

C5 Image acquisition differences EM-Mammo EfficientNetB2 as above 
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Table S2: Data distribution across four BMI groups (Underweight: <18.5, Normal: 18.5 to < 25, Overweight: 25 to < 
30 and Obese > 30) in the MXR dataset showing the train/test split for experiment B1. 
 

 Obese 
(BMI > 30) 

Overweight  
( BMI 25 to < 30) 

Normal  
(BMI 18.5 to < 25) 

Underweight 
 (BMI <18.5) 

 Train Test Train Test Train Test Train Test 

White 5262 2895 5591 2498 5392 2655 636 251 

 25.8% 28.8% 27.5% 24.9% 26.5% 26.5% 3.1% 2.5% 

Black 974 562 815 302 746 381 134 128 

 4.8% 5.6% 4% 3% 3.7% 3.8% 0.7% 1.3% 

Asian 57 33 444 168 256 156 50 8 

 0.3% 0.3% 2.2% 1.7% 1.3% 1.6% 0.2% 0.08% 

Note: Chi-square test implies that the two factors (BMI and Race) are not independent (p < 0.05).  
 
Table S3: AUC values and confidence intervals of race detection in four BMI groups after stratified training and 
testing of a Densenet121 model on the MXR dataset using data splits in Table S2.  

 

 Obese  
( BMI > 30) 

Overweight  
( BMI 25 to < 30) 

Normal  
( BMI 18.5 to < 25) 

Underweight (BMI 
<18.5) 

White 0.923 (0.909-0.936) 0.931 (0.918-0.944)  0.903 (0.884-0.922)  0.956 (0.935-0.977) 

Black 0.930 (0.917-0.942) 0.964 (0.954-0.974) 0.885 (0.858-0.912)  0.966 (0.948-0.984) 

Asian 0.914 (0.859-0.968) 0.918 (0.893-0.942) 0.940 (0.923-0.957) 0.976 (0.943-1.00) 

 
 
Table S4: Results of subset analysis of a trained race detection model on the Emory CXR (EMX) dataset and subset 
analysis of race AUCs across four different BMI categories.  
 

 Obese  
( BMI > 30) 

Overweight  
( BMI 25 to < 30) 

Normal  
( BMI 18.5 to < 25) 

Underweight 
(BMI <18.5) 

White 0.99 0.98 0.97 0.97 

Black 0.99 0.99 0.98 0.98 

Asian 0.94 0.96 0.93 0.92 
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Table S5: Data distribution across four breast density groups in the EM-Mammo dataset showing the train/test split 
for experiment B2. The dataset was split into training (16,296 patients), validation (5,432 patients), and testing 
(5,432 patients). Four groups of breast density were available in the dataset - (1 - fatty, 2 - scattered fibroglandular 
density, 3 - heterogeneously dense and 4 - extremely dense breasts). Most patients have scattered and heterogeneous 
breast density. There was no difference across the racial subgroups. 
 

 1 (Fatty) 2 (Scattered)   3 (Heterogeneous) 4 (Dense) 

 Train Test Train Test Train Test Train Test 

White 2,594 
(3%) 

888 
(1.0%) 

13,007 
(15.1%) 

4,345 
(5.0%) 

14,758 
(17.1%) 

4,798 
(5.5%) 

1,800 
(2.1%) 

615 
(0.7%) 

Black 4,341 
(5%) 

1,405 
(1.6%) 

15,000 
(17.3%) 

5,003 
(5.7%) 

11,936 
(13.8%) 

4,061 
(4.7%) 

1,298 
(1.5%) 

463 
(0.5%) 

Note: Chi-square test implies that the two factors (Density and Race) are not independent (p < 0.05).  
 
Table S6: Slice and study AUC values of race prediction across four breast density classes, and the overall dataset 
not split by breast density. There is no difference between the AUC values at various densities, and also between 
slice versus study AUC values.  
 

Tissue Density  ROC AUC (Slice) ROC AUC (Study) 

1 (Fatty) 0.79 (0.765 - 0.806) 0.81 (0.776 - 0.842) 

2 (Scattered)   0.78 (0.773 - 0.793) 0.82 (0.801 - 0.834) 

3 (Heterogeneous) 0.77 (0.754 - 0.775) 0.80 (0.781 - 0.815) 

4 (Dense) 0.72 (0.688 - 0.755) 0.74 (0.681 - 0.791) 

Overall 0.78 (0.773 - 0.786) 0.81 (0.794 - 0.818) 

 
 
Table S7: Race detection performance (as AUROC for white patients) using bandpass filtering on MXR for various 
values of d1 and d2. We observe that race information is present on all examples of transformed images even when 
barely perceptible to the human as a CXR. 
 
d1  | 
d2 25 50 75 100 125 150 

10 0.86 0.90 0.91 0.91 0.91 0.91 

25  0.86 0.89 0.90 0.90 0.91 

50   0.87 0.89 0.89 0.89 

75    0.85 0.86 0.87 

100     0.84 0.84 
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125      0.75 
 
 
Table S8: Race detection performance (as AUROC for white patients) using notch filtering on MXR for various 
values of d1 and d2. We observe that race information is present on all examples of transformed images even when 
barely perceptible to the human as a CXR. 
 
d1  | 
d2 25 50 75 100 125 150 

10 0.90 0.89 0.87 0.85 0.82 0.82 

25  0.90 0.90 0.89 0.89 0.89 

50   0.91 0.91 0.91 0.90 

75    0.91 0.91 0.91 

100     0.91 0.91 

125      0.91 
 
 
Table S9: Comparative predictions using multiple architectures for primary race prediction on the MXR, EMX and 
CXP datasets. High AUCs are observed for Whites, Blacks and Asians across the three model architectures - 
Resnet34, Densenet121 and EfficientNetB0. 
 

 
Experiments 

AUC of Race Classification 

Asian Black White 

MXR Densenet121 0.944  
(0.938-0.950) 

0.940  
(0.937-0.942) 

0.933  
(0.930-0.936) 

CXP Resnet34 0.981 
(0.979 - 0.983) 

0.980 
(0.977 - 0.983) 

0.980 
(0.978 - 0.981) 

EMX Densenet121 0.911 
(0.907-0.916) 

0.965 
(0.962-0.968) 

0.948 
(0.944-0.952) 

EMX EfficientNet-B0 0.95 
(0.938 - 0.957) 

0.99 
(0.986 - 0.99) 

0.98 
(0.979 - 0.984) 

EMX Resnet34  0.969 
(0.961 - 0.976) 

0.992 
(0.991 - 0.994) 

0.988 
(0.986 - 0.989) 
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Table S10: Data distribution across five age groups in the MXR dataset including the train/test split for experiment 
B5.  
 

Age (yrs) 0-20 20-40 40-60 60-80 80+ 

 Train Test Train Test Train Test Train Test Train Test 

White 269 173 7,085 4,082 25,312 12,887 39,938 20,439 17,229 8,181 

 0.2% 0.3% 6.1% 7% 21.7% 22% 34.3% 34.9% 14.8% 14% 

Black 100 43 3,122 1,796 8,170 3,926 8,513 3,794 2,151 1,073 

 0.09% 0.07% 2.7% 3.1% 7% 6.7% 7.3% 6.5% 1.8% 1.8% 

Asian 20 20 491 279 1,176 657 1,986 947 843 318 

 0.02% 0.03% 0.4% 0.5% 1% 1.1% 1.7% 1.6% 0.7% 0.5% 

Note: Chi-square test implies that the two factors (Age and Race) are not independent (p < 0.05).  
 
Table S11: AUC values and confidence intervals of race detection in each age group after training a Densenet121 
model on the MXR dataset. The low prediction value on the 0-20 age group for the Asian class is likely due to the 
small dataset size which is <1%. 

 

 0-20 20-40 40-60 60-80 80+ 

White 0.913 (0.866-
0.961) 

0.900 (0.890-
0.909) 

0.931 (0.926-
0.936) 

0.945 (0.941-
0.948) 

0.918 (0.908-
0.928) 

Black 0.946 (0.904-
0.987) 

0.907 (0.897-
0.917) 

0.942 (0.931-
0.952) 

0.950 (0.946-
0.954) 

0.928 (0.918-
0.938) 

Asian 0.843 (0.746-
0.941) 

0.915 (0.890-
0.940) 

0.945 (0.941-
0.948) 

0.959 (0.952-
0.966) 

0.931 (0.911-
0.950) 
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Table S12: Data distribution for male and female groups in the MIMIC-CXR (MXR) dataset including the train/test 
split for experiment B5.  
 

 Male Female 

 Train Test Train Test 

White 50,765 25,378 39,068 20,384 

 43.6% 43.3% 33.6% 34.8% 

Black 9,244 4,177 12,832 6,455 

 7.9% 7.1% 11% 11% 

Asian 2,580 1,149 1,936 1,072 

 2.2% 2% 1.7% 1.8% 

Note: Chi-square test implies that the two factors (Sex and Race) are not independent (p < 0.05).  
 
 
 Table S13: AUC values and confidence intervals of race detection for males and females after training a 
Densenet121 model on the MIMIC-CXR (MXR) dataset described in Table S12 .  
 
 

 
 

Asian Black White 

MXR Densenet121-Original 0.944 (0.938-0.950) 0.940 (0.937-0.942) 0.933 (0.930-0.936) 

MXR Densenet121-Male 0.941 (0.933-0.949) 0.921 (0.916-0.926) 0.914 (0.909-0.919) 

MXR Densenet121-Female 0.951 (0.942-0.959) 0.953 (0.950-0.956) 0.948 (0.945-0.959) 

 
Table S14: AUC values and confidence intervals of race detection at various image resolutions from 1 pixel 
resolution to 320x320.  

 

 
Race 

Resolution 

1 2 4 8 16 24 32 40 60 80 160 240 320 

Asian 0.634 
[0.622 - 
0.645] 

0.573 
[0.56 - 
0.586] 

0.678 
[0.668 - 
0.689] 

0.707 
[0.696 - 
0.719] 

0.744 
[0.734 - 
0.754] 

0.76 
[0.751 - 
0.77] 

0.815 
[0.806 - 
0.823] 

0.811 
[0.802 - 
0.819] 

0.888 
[0.881 - 
0.895] 

0.919 
[0.913 - 
0.925] 

0.962 
[0.958 - 
0.966] 

0.972 
[0.969 - 
0.975] 

0.986 
[0.984 - 
0.988] 

Black 0.541 
[0.536 - 
0.548] 

0.55 
[0.544 - 
0.556] 

0.627 
[0.621 - 
0.633] 

0.686 
[0.681 - 
0.692] 

0.735 
[0.729 - 
0.74] 

0.765 
[0.76 - 
0.77] 

0.827 
[0.823 - 
0.832] 
 

0.838 
[0.834 - 
0.842] 

0.900 
[0.897 - 
0.903] 

0.928 
[0.925 - 
0.931] 

0.965 
[0.963 - 
0.967] 

0.970 
[0.968 - 
0.972] 
 

0.982 
[0.981 - 
0.983] 

White 0.533 
[0.527 - 
0.538] 

0.557 
[0.552 - 
0.563] 

0.623 
[0.618 - 
0.628] 

0.681 
[0.675 - 
0.686] 

0.726 
[0.721 - 
0.731] 

0.757 
[0.752 - 
0.762] 

0.819 
[0.815 - 
0.823] 

0.828 
[0.824 - 
0.832] 

0.894 
[0.891 - 
0.897] 

0.921 
[0.918 - 
0.924] 
 

0.962 
[0.96 - 
0.964] 
 

0.967 
[0.965 - 
0.969] 

0.986 
[0.984 - 
0.988] 
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Table S15: AUCs and confidence intervals for race detection using noisy and blurred CXR images on the MXR 
dataset. The AUCs of the noisy and blurred values show a drop in performance, although the AUCs are > 0.50 
(random chance) implying that some race information is still present in these images. 
 

 
 

Asian Black White 

MXR Densenet121-Original 0.944 (0.938-
0.950) 

0.940 (0.937-
0.942) 

0.933 (0.930-
0.936) 

MXR Densenet121-Noisy 0.637 (0.625-
0.650) 

0.722 (0.716-
0.728) 

0.697 (0.691-
0.702) 

MXR Densenet121-Blurred 0.594 (0.581-
0.607) 

0.638 (0.631-
0.644) 

0.615 (0.609-
0.621) 

 
 

 
Table S16: AUCs and confidence intervals for race detection after masking the regions of interest indicated by the 
saliency maps. The AUCs decreased when the regions in the CXRs with the highest attention by the model were 
blocked out, but still maintained more than random chance of race detection. 
 

 
 

Asian Black White 

MXR Densenet121-Original 0.944 (0.938-
0.950) 

0.940 (0.937-
0.942) 

0.933 (0.930-
0.936) 

MXR Densenet121-Masked 0.670 (0.665-
0.676) 

0.674 (0.668-
0.680) 

0.834 (0.823-
0.841) 

 
Table S17: Comparative AUC values and confidence intervals for the entire non segmented CXR, non lung and lung 
segmentations. Lung segmentations have the least AUC values while the original images have the highest AUCs. 
Race information is likely a combination of information from all portions of the image.  
 

 
 

Asian Black White 

MXR Densenet121-Original 0.944 (0.938-
0.950) 

0.940 (0.937-
0.942) 

0.933 (0.930-
0.936) 

MXR Densenet121-Non lung 0.922 (0.896-
0.947) 

0.915 (0.892-
0.939) 

0.896 (0.868-
0.924) 

MXR Densenet121-Lung 0.734 (0.690-
0.777) 

0.724 (0.683-
0.765) 

0.731 (0.682-
0.780) 

 
 
  



30 

Table S18: AUROC performance of classifiers trained on 14 binary disease labels to predict race in MXR and CXP. 
Classifiers used are XGBoost (XGB), L1-regularized logistic regression (LR) and random forest (RF). 
 

 MXR CXP 

 XGB LR RF XGB LR RF 

White 57.1% 56.9% 56.9% 52.1% 51.9% 51.9% 

Black 60.8% 60.6% 60.5% 56.9% 56.6% 56.8% 

Asian 56.1% 54.8% 56.8% 54.3% 54.2% 54.2% 
 
 
Table S19: Performance of deep learning models on race prediction for MXR (AUROC for White vs. others) when a 
particular patch is removed from training by setting pixel intensities to zero. Quadrants shown correspond to the 
geometric location of the patch (e.g. quadrant (1,1) corresponds to the top left portion of the image). 
 

Quadrant 1 2 3 

1 0.91 0.90 0.91 

2 0.91 0.91 0.91 

3 0.91 0.91 0.91 

 
Table S20: Performance of deep learning models on race prediction for MXR (AUROC for White vs. others) when 
only one of the nine patches is used for modeling. 
 

Quadrant 1 2 3 

1 0.87 0.88 0.87 

2 0.81 0.82 0.81 

3 0.75 0.60 0.75 

 
Table S21: Performance of deep learning models on race prediction on the EM-Mammo (AUROC for Black versus 
White) across single locations and single equipment type. 
 

 AUC-ROC 

Original Mammo Model  0.81 

Location 1 0.87 

Location 2 0.92 

Location 3 0.91 

GE medical equipment 0.90 
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Hologic equipment 0.91 

Table S22: Performance of deep learning models on race prediction on the Emory CXR across single equipment 
type and multiple equipment and locations.  
 

Experiments Asian Black White 

Original EMX Densenet 121 model 0.91 
(0.907-0.916) 

0.97 
(0.962-0.968) 

0.95 
(0.944-0.952) 

Single hospital, 
single equipment model (Model A) 

0.914 
(0.880 - 0.941) 

0.981 
(0.977 - 0.986) 

0.976  
(0.971 - 0.981) 
 

Testing of Model A on images from multiple 
equipment and multiple hospitals   

0.869  
(0.852 - 0.886) 
 

0.972 
(0.969 - 0.974) 

0.962 
(0.958 - 0.965) 
 

 
 
Table S23: Performance of deep learning models on race prediction on the CheXphoto versus CheXpert Dataset  
 

Experiments Asian Black White 

CheXpert dataset 0.90 
(0.858 - 0.933) 

0.94 
(0.911 - 0.956) 

0.89 
(0.865 - 0.917) 

CheXphoto dataset 0.894 
(0.857 - 0.928) 

0.787 
(0.734 - 0.836) 

0.857 
(0.825 - 0.890) 
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