SUPPORTING INFORMATION

Copper-Catalyzed Three-Component Aminofluorination of Alkenes and 1,3-Dienes: Direct Entry to Diverse β-Fluoro Alkylamines

Guangshou Feng,[§] Colton K. Ku,[§] Jiaqi Zhao, and Qiu Wang*

Department of Chemistry, Duke University, Durham NC 27708 Email: <u>qiu.wang@duke.edu</u>

Table of Contents

1.	General Methods
2.	Optimization Screens of Alkene Aminofluorination Reaction Conditions
3.	Preparation of Starting Materials
4.	Scope of alkenes and compound characterization data
5.	Scope of amines and compound characterization data
6.	Amino fluorination of 1,3-dienes and compound characterization data
7.	Synthetic applications
8.	Mechanism studies
9.	References
10.	Copies of the NMR spectra
11.	X-ray crystallography information

1. General Methods

General Procedures

Round-bottom flasks and stir bars were dried either with a propane torch or in an oven at 140 °C overnight and cooled/stored in a desiccator filled with Drierite. Optimization and substrate screens were performed in 10-mL FEP Tubes without prior drying, and a Teflon-coated micro stir bar. All other reactions were performed in round-bottom flasks with rubber septa and Teflon-coated stir bars. Plastic syringes were used for the transfer of pure solvents, while glass pipets were used for transfer of crude reaction mixtures. Analytical thin-layer chromatography (TLC) was performed using aluminum plates coated with a 0.25 mm layer of 230–400 mesh silica gel with fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light and treatment with mainly vanillin or phosphomolybdic acid (PMA) stain. Organic solutions were concentrated under reduced pressure using a rotary evaporator and flash chromatography performed using 60 Å silica gel and HPLC-grade solvents.

Materials

Commercial reagents and anhydrous solvents were used as received. Specific anhydrous solvents (CH_2Cl_2 , Toluene, Dioxane, and THF) were obtained from the Innovative Technologies solvent purification system. Commercially available substrates were purchased in >95% purity and used without further purification.

Instrumentation

Nuclear magnetic resonance spectra were recorded on either a Varian 400 MHz spectrometer or Bruker 500 MHz spectrometer at room temperature. Chemical shifts for ¹H NMR are reported in parts per million (ppm, δ) and referenced to residual protium in CDCl₃ (δ 7.26). NMR values are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broad), coupling constant (Hz), and integration. Infrared spectroscopic data are reported in wavenumbers (cm⁻¹) with selected peaks shown. High-resolution mass spectra were obtained using a liquid chromatography-electrospray ionization and time-of-flight mass spectrometer. The X-ray single crystal data and refinement was obtained from UNC Chapel Hill department of chemistry X-ray Core Laboratory.

2. Optimization Screens for Alkene Aminofluorination Reaction Conditions

General procedure 1(GP1) for optimization screening

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylamine and copper catalyst. Solvent (1.0 mL), 4-methylstyrene, and fluorinating reagent were sequentially added via syringe. The mixture was then stirred and heated at the indicated temperature until the consumption of *O*-benzoylhydroxylamine, verified by TLC analysis. The resulting reaction mixture was cooled to room temperature and quenched by the addition of Et_3N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al_2O_3 (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was either purified by silica column chromatography or added to CDCl₃ (0.5 mL) with CH₂Br₂ (0.1 mmol) as a quantitative internal standard for NMR analysis.

 Table S1. Screening of fluoride sources.^a

Me (2	equiv) (1 equiting 1 a 2 a	,		X = F X = OBz
Entry	Fluoride source	Fluoride (equiv)	3a $(\%)^b$	3a' $(\%)^b$
1	Py(HF) _x	2.0	0	0
2	AgF	2.0	0	0
3	CsF	2.0	0	11
4	TBAF	2.0	0	0
5	Et ₃ N·3HF	2.0	40	6
6	Et ₃ N·3HF	10.0	50 (50) ^c	trace

^{*a*}Reaction conditions: **1a** (2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), fluoride source (2 or 10 equiv), $Cu(OAc)_2$ (10 mol %), DCE (1.0 mL), 80 °C, 2 h. ^{*b*}Yields determined by ¹H NMR spectroscopy with CH₂Br₂ as a quantitative internal standard. ^{*c*}Isolated yield.

Table S2. Screening of copper catalysts.^a

Me + (2 equiv) 1a	[Cu] cat. Et ₃ N·3HF (10.0 equiv) DCE (1 mL) (1 equiv) 2a [Cu] cat. DCE (1 mL) 80 °C, 2 h Me	Ja Sa
Entry	[Cu] cat.	3a $(\%)^b$
1	[Cu(OTf)] ₂ PhMe	50
2	Cu(OAc)	50
3	CuCl ₂	40
4	CuCl	44
5	Cu(eh) ₂	60
6	Cu(MeCN) ₄ PF ₆	52
7	IPrCuCl	62 (68%) ^c
8	CuF ₂	54
9	CuBr	52
10	CuI	12
11	CuCN	30
12	CuTC	52
13	Cu(PhCO ₂) ₂	52
14	$Cu(NO_2)_2 \bullet 3H_2O$	40
15	CuSCN	52
16	CuSO ₄	54
17	CuSO ₄ •5H ₂ O	50
18	CuO	$68(67)^c$

19	CuO ₂	58
20	Cu(OTf) ₂	54
21	CuBr ₂	42
22	Cu(MeCN)BF ₄	54
23	Cu(OAc) ₂	$48 (47)^{c}$
24	Cu(OAc) ₂	$50(50)^{c}$
25	Cu(TFA) ₂	59
26	Cu(OPiv) ₂	65
27	Cu(acac) ₂	76 (76) ^c
28	Cu(HFacac) ₂	81 (83) ^c
29	Cu(HFacac) ₂ (2.5 mol %)	82 (83) ^c

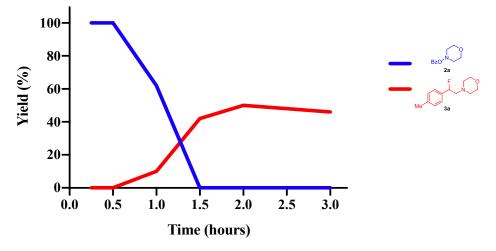

^{*a*} Reaction conditions: **1a** (2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), fluoride source (10 equiv), copper cat. (2.5–10 mol %), DCE (1.0 mL), 80 °C, 2 h. ^{*b*}Yields determined by ¹H NMR spectroscopy with CH_2Br_2 as a quantitative internal standard. ^{*c*}Isolated yields.

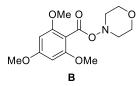
 Table S3. Screening of solvents.^a

Me + (2 equiv) 1a	BzO ^V N (1 equiv) 2a Cu(HFacac) ₂ (2.5 f Et ₃ N·3HF (10.0 er solvent (1 mL 80 °C, 2 h	quiv)
Entry	Solvent	3a $(\%)^b$
1	DME	30
2	1,4-Dioxane	46
3	THF	24
4	Toluene	20
5	DCE	83
6	MeCN	40

^{*a*}Reaction conditions: **1a** (2.0 equiv), **2a** (0.2 mmol, 1.0 equiv), Et₃N•3HF (10 equiv), solvent (1.0 mL), 80 °C, 2 h. ^{*b*}Yields determined by ¹H NMR spectroscopy with CH_2Br_2 as a quantitative internal standard.

Reaction progress and completion time testing

To determine reaction progress and completion time of the above transformation, seven reactions with 4methylstyrene **1a** (0.2 mmol scale) and *O*-benzyl hydroxymorpholine **2a** were subject to **GP1**, and quenched at 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h, respectively. Crude NMR yields using CH_2Br_2 as a quantitative internal standard were used to generate the above graph, which indicates complete consumption of the hydroxylamine occurs within 1.5 h and the formation of the product finishes within 2.0 h.

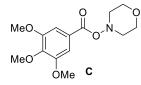

3. Preparation of Starting Materials

3.1. Preparation of hydroxylamine derivatives and compound characterizations.

Morpholin-4-ol (S-1). To a 250-mL round-bottom flask was added NaOMe (1.59 g, 28 mmol, 1.4 equiv) and MeOH (70 mL). In a separate 100-mL round-bottom flask was added *O*-benzoyl-*N*-hydroxylmorpholine **2a** (4.14 g, 20 mmol, 1.0 equiv) and Et₂O (60 mL). The dissolved hydroxylamine ester was then added via syringe to the solution of NaOMe. The mixture was allowed to stir for 1 h, and then directly dried *in vacuo*. The crude mixture was purified by flash column chromatography (30% ethyl acetate–hexanes to 40% ethyl acetate–hexanes) to afford morpholin-4-ol (**S-1**) as colorless oil (1.33 g, 69%). Spectroscopic data match the commercially available *N*-hydroxylamine (CAS 5765-63-9).

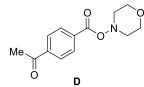
¹**H** NMR (400 MHz, CDCl₃) δ 6.56 (br, 1H), 3.91 (d, *J* = 12.0 Hz, 2H), 3.76–3.47 (m, 2H), 3.14 (d, *J* = 11.0 Hz, 2H), 2.72 (td, *J* = 11.0, 3.2 Hz, 2H).

Morpholino 2,4,6-trimethoxybenzoate (B). To a 100-mL round-bottom flask was added 2,4,6-trimethoxybenzoic acid (0.849 g, 4.0 mmol, 1.0 equiv), CH_2Cl_2 (10 mL), oxalyl chloride (406 μ L,


4.8 mmol, 1.2 equiv), and dimethylformamide (0.2 mL). Upon the discontinuation of gas evolution, the mixture was directly concentrated under reduced pressure. The mixture was next diluted with CH₂Cl₂ (10 mL), and morpholin-4-ol (433 mg, 4.2 mmol, 1.05 equiv) was added over 5 min, followed by the addition of triethylamine (585 μ L, 4.2 mmol, 1.05 equiv). Upon consumption of acid starting material (monitored by TLC), the reaction was quenched through the addition of saturated aqueous NH₄Cl (10 mL) and H₂O (20 mL). The organic layers were separated, and washed with saturated aqueous NH₄Cl (10 mL × 3), saturated aqueous NH₄Cl (10 mL × 3), H₂O (10 mL × 3), and brine (10 mL × 2). The organic layer was dried over Na₂SO₄, and filtered. The filtrate was concentrated *in vacuo*. Purification by flash column chromatography (20% ethyl acetate–hexanes to 60% ethyl acetate–hexanes) gave **B** as a white solid (493 mg, 42%). Spectroscopic data matched the reported literature.¹

 $\mathbf{R}_{f} = 0.33$ (10% MeOH, 40% ethyl acetate, 50% hexanes).

¹**H NMR** (500 MHz, CDCl₃) δ 6.08 (s, 2H), 3.98–3.75 (m, 13H), 3.44 (d, *J* = 9.3 Hz, 2H), 3.04–2.90 (m, 2H).


¹³C NMR (125 MHz, CDCl₃) δ 164.5, 162.9, 158.9, 104.3, 90.6, 65.8, 56.8, 55.9, 55.4. FTIR (thin film): cm⁻¹2965, 2845, 1748, 1607, 1590, 1458, 1243, 1228, 1129, 1039.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{20}NO_6^+$ 298.1285; found: 298.1287.

Morpholino 3,4,5-trimethoxybenzoate (C). To a 100-mL round-bottom flask was added 3,4,5-trimethoxybenzoic acid (1.02 g, 4.8 mmol, 1.2 equiv), CH_2Cl_2 (15 mL), and 1,1'-carbonyldiimidazole (778 mg, 4.8 mmol, 1.2 equiv). The mixture was allowed to stir overnight, until the formation of CO_2 gas halted. Morpholin-4-ol (413 mg, 4.0 mmol, 1.0 equiv) was next added in CH_2Cl_2 (5 mL). The mixture was allowed to stir until the consumption of hydroxylamine (monitored by TLC). The solvent was removed *in vacuo*. The crude mixture was diluted with ethyl acetate (10 mL) and H_2O (10 mL). The organic layer was separated, washed with H_2O (10 mL × 2), saturated aqueous NH_4Cl (10 mL × 3), brine (10 mL × 2), dried over Na_2SO_4 , and filtered. The filtrate was concentrated *in vacuo* to afford the crude product. Purification by flash column chromatography (40% ethyl acetate–hexanes to 50% ethyl acetate–hexanes) gave C as a white solid (716 mg, 60%). Spectroscopic data matched the reported literature.²

¹**H NMR** (400 MHz, CDCl3): δ 7.25 (s, 2H), 4.02–3.78 (m, 13H), 3.52–3.39 (m, 2H), 3.11–2.96 (m, 2H).

Morpholino 4-acetylbenzoate (D). To a 100-mL round-bottom flask was added 4-acetylbenzoic acid (0.657 g, 4.0 mmol, 1.0 equiv), CH_2Cl_2 (10 mL), oxalyl chloride (406 µL, 4.8 mmol, 1.2 equiv), and dimethylformamide (0.2 mL). Upon the discontinuation of gas evolution, the mixture was directly concentrated under reduced pressure. The mixture was next diluted with CH_2Cl_2 (10 mL), and morpholin-4-ol (433 mg, 4.2 mmol, 1.05 equiv) was added over 5 min, followed by the addition of triethylamine (585 µL, 4.2 mmol, 1.05 equiv). Upon consumption of acid starting material (monitored by TLC), the reaction was quenched by the addition of saturated aqueous NH_4Cl (10 mL) and H_2O (20 mL). The separated organic layer was washed with saturated aqueous NH_4Cl (10 mL ×3), saturated aqueous

filtrate was concentrated *in vacuo*. Purification by flash column chromatography (10% ethyl acetate–hexanes) gave **D** as a white solid (545 mg, 55%). $\mathbf{R}_f = 0.18$ (30% ethyl acetate–hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 2H), 8.01 (d, J = 8.4 Hz, 2H), 4.08–3.72 (m, 4H), 3.57–3.34 (m, 2H), 3.14–2.90 (m, 2H), 2.65 (s, 3H).

¹³C NMR (125 MHz, CDCl₃): δ 197.3, 163.7, 140.4, 132.9, 129.7, 128.2, 65.8, 57.0, 26.8.

FTIR (thin film): cm⁻¹ 2967, 2900, 2858, 1737, 1685, 1404, 1240, 1100, 1083, 857, 763.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{16}NO_4^+$ 250.1074; found: 250.1077.

General procedure 2 (GP2) for the preparation of hydroxylamine starting materials E, F and G.

To a 15-mL round-bottom flask was added morpholin-4-ol (433 mg, 4.2 mmol, 1.05 equiv), dimethylaminopyridine (9.0 mg, 0.075 mmol, 0.019 equiv), freshly distilled CH_2Cl_2 (2 mL), and triethylamine (0.59 mL, 4.2 mmol, 1.05 equiv). To the reaction flask at 0 °C was added the solution of acyl chloride (4.0 mmol, 1.0 equiv) in CH_2Cl_2 (2 mL). The mixture was allowed to stir at room temperature for 30 min, until the consumption of acyl chloride (monitored by TLC). The reaction mixture was then washed with aqueous solution of HCl (1 M, 5 mL x 2). The separated organic layer was dried over Na₂SO₄, filtered, and the filtrate was concentrated in *vacuo*. Purification by column chromatography (5% MeOH, 30% ethyl acetate, 65% hexanes unless otherwise noted) generated the desired product.

Morpholino acetate (E) Preparation *via* **GP2** gave **E** as a light-yellow oil (375 mg, 65%). **R**_f = 0.34 (50% Ethyl acetate–hexanes). ¹**H NMR** (CDCl₃, 500 MHz): δ 3.85 (d, J = 10.9 Hz, 2H), 3.77–3.65 (br. m, 2H), 3.23 (d, J = 9.6 Hz, 2H), 2.87–2.76 (br. m, 2H), 1.99 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 168.8, 65.6, 56.7, 19.5. **FTIR** (thin film): cm⁻¹ 1756, 1210, 1102, 1003, 891, 857. **HRMS** (ESI) m/z: [M+ Na]⁺ Calcd for C₆H₁₁NO₃Na⁺ 168.0631; found: 168.0628.

Morpholino 2,2,2-trichloroacetate (F). Preparation *via* GP2 and purification by column chromatography (20% ethyl acetate-hexenes) gave F as a yellow solid (726 mg, 73%).

 $\mathbf{R}_f = 0.34$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 3.97 (d, J = 11.9 Hz, 2H), 3.82–3.72 (br. m, 2H), 3.43 (d, J = 9.9 Hz, 2H), 3.11–3.01 (br. m, 2H).

¹³C NMR (CDCl₃, 125 MHz): δ 160.0, 88.9, 65.6, 56.8.

FTIR (thin film): cm⁻¹1777, 1460, 1267, 1194, 1098, 962, 865, 812, 674.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_6H_9^{35}Cl_3NO_3^+$ 247.9643; found: 247.9643.

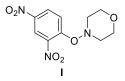
MeO O N

Methyl morpholino carbonate (G). Preparation *via* **GP2** gave **G** as a light-yellow oil (496 mg, 77%). $\mathbf{R}_f = 0.48 (50\% \text{ ethyl acetate-hexanes}).$ ¹**H NMR** (CDCl₃, 500 MHz): δ 3.91 (d, J = 11.3 Hz, 2H), 3.80 (s, 3H), 3.77–3.70 (br. m, 2H), 3.34 (d, J = 9.7 Hz, 2H), 3.00–2.85 (br. m, 2H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 154.8, 65.6, 56.8, 54.9.

FTIR (thin film): cm⁻¹ 1767, 1440, 1268, 1229, 1100, 1052, 860.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₆H₁₂NO₄⁺ 162.0761; found: 162.0761.

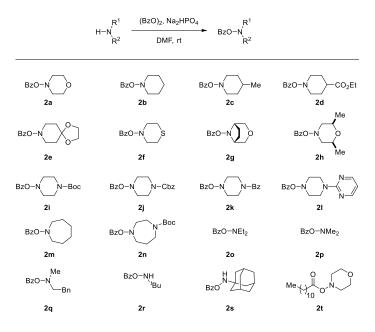
Morpholino diphenylphosphinate (H). H was synthesized following a previously reported method with modification.³ To a 10-mL round-bottom flask added morpholin-4-ol (412 mg, 4.0 mmol, 1.0 equiv), triethylamine (1.39 mL, 10 mmol, 2.5 equiv) and CH_2Cl_2 (0.5 mL). To the reaction flask at 0 °C, was added diphenylphosphinyl chloride (1.92 mL, 4.8 mmol, 1.2 equiv). The reaction mixture was allowed to stir at room temperature, until the consumption of morpholin-4-ol. Solvents were then removed under reduced pressure. To the residue, was added diethyl ether (10 mL) and decanted for four times. The combined extracts were filtered through a silica/celite pad and concentrated in *vacuo* to give **H** as a white solid (308 mg, 1.01 mmol, 25%).

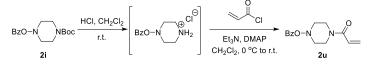

 $\mathbf{R}_{f} = 0.13$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.84 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.55–7.50 (m, 2H), 7.47–7.41 (m, 4H), 3.82 (d, J = 11.8 Hz, 2H), 3.58–3.50 (br. m, 2H), 3.25 (d, J = 10.3 Hz, 2H), 3.04–2.96 (br. m, 2H).

¹³**C NMR** (CDCl₃, 125 MHz): δ 132.2 (d, $J_{C-P} = 2.7$ Hz), 131.9 (d, $J_{C-P} = 9.9$ Hz), 130.7 (d, $J_{C-P} = 135.3$ Hz), 128.31 (d, $J_{C-P} = 12.9$ Hz), 65.8, 58.7 (d, $J_{C-P} = 2.7$ Hz).

³¹**P NMR** (CDCl₃, 202 MHz): δ 33.63–33.36 (m).


FTIR (thin film): cm⁻¹ 1438, 1227, 1128, 1020, 866, 787, 726, 693, 546, 530. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{19}NO_3P^+$ 304.1097; found: 304.1092.


4-(2,4-Dinitrophenoxy)morpholine (I). Prepared following a previously reported method.⁴ Spectroscopic data were in agreement.

¹**H** NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.41 (d, J = 9.3 Hz, 1H), 7.90 (d, J = 9.3 Hz, 1H), 4.06 (d, J = 11.4 Hz, 2H), 3.75 (t, J = 11.4 Hz, 2H), 3.33 (d, J = 10.3 Hz, 2H), 3.16 (t, J = 10.3 Hz, 2H).

O-Benzoylhydroxylamines below were synthesized according to the literature procedure.⁵

4-Acryloylpiperazin-1-yl benzoate (2u)

To a 25-mL round-bottom flask was added *tert*-butyl 4-(benzoyloxy)piperazine-1-carboxylate **2i** (306 mg, 1.0 mmol, 1.0 equiv), CH_2Cl_2 (4.0 mL), the solution of HCl in dioxane (4M, 2 mL, 8.0 mmol, 8.0 equiv). The reaction mixture was allowed to stir at room temperature for 8 h, and then concentrated under reduced pressure. The crude solid was used for the next step without further purification.

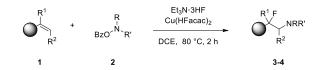
To a solution of the crude residue in CH_2Cl_2 (4 mL) at 0 °C, was added trimethylamine (202 mg, 2.0 mmol, 2.0 equiv), DMAP (2.4 mg, 0.02 mmol, 0.02 equiv), and acryloyl chloride (91 mg, 1.0 mmol, 1.0 equiv). Then mixture was allowed to warm to room temperature and stir overnight. The mixture was diluted with CH_2Cl_2 (20 mL). The organic layer was washed with water (10 mL × 2) and the brine (10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash column chromatography (30% ethyl acetate–hexanes to 50% ethyl acetate–hexanes) gave **2u** as a colorless oil (225 mg, 87% over two steps).

 $\mathbf{R}_f = 0.10$ (50% ethyl acetate-hexanes).

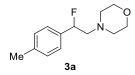
¹**H NMR** (CDCl₃, 500 MHz): δ 7.97 (t, J = 19.7 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 6.58 (dd, J = 16.8, 10.6 Hz, 1H), 6.33 (dd, J = 16.8, 1.8 Hz, 1H), 5.74 (dd, J = 10.6, 1.8 Hz, 1H), 4.67–4.38 (m, 1H), 4.22–3.82 (m, 1H), 3.70–3.57 (m, 1H), 3.57–3.44 (m, 2H), 3.42–3.25 (m, 1H), 3.09–2.58 (m, 2H).

¹³**C NMR** (CDCl₃, 125 MHz): δ 165.4, 164.5, 133.4, 129.5, 128.9, 128.6, 128.5, 127.0, 56.1, 55.7, 43.9, 40.3.

FTIR (thin film): cm⁻¹ 1736, 1647, 1613, 1438, 1246, 1085, 1019, 709.


HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{14}H_{16}N_2O_3Na^+$ 283.1053; found: 283.1047.

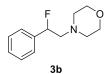
3.2. Preparation of olefin substrates and compound characterization.


Olefins (1a-1q and 1u-1z) were purchased from commercial sources and used directly without further purification. 1r-1s,⁶ and $1t^7$ are known alkenes.

4. Scope of alkenes and compound characterization data

General procedure 3 (GP3) for alkene aminofluorination reactions

To a 10-mL FEP tube with Teflon-coated micro stir bar was added O-benzoylhydroxylamine 2 (0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol%). DCE (1.0 mL), alkene 1 (0.4 mmol, 2.0 equiv), and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of O-benzoylhydroxylamine (verified by TLC, 20% ethyl acetate-hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al_2O_3 (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography.


4-(2-Fluoro-2-(p-tolyl)ethyl)morpholine (3a). Synthesized using GP3 from **1**a 0and benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a pale-yellow oil (37.3 mg, 83%).

 $\mathbf{R}_{f} = 0.14$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 5.62 (ddd, J = 48.9, 8.8, 2.4 Hz, 1H), 3.77–3.72 (m, 4H), 2.91 (ddd, J = 17.1, 14.2, 8.8 Hz, 1H), 2.68–2.53 (m, 5H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 135.7 (d, J_{CF} = 20.0 Hz), 129.1, 125.6, 92.6 (d, J_{CF} = 173.0 Hz), 66.9, 64.9 (d, J_{C-F} = 23.4 Hz), 54.1, 21.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.11.

FTIR (thin film): cm⁻¹ 2955, 2854, 2808, 1453, 1138, 1115, 1008, 869, 816, 536. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₃H₁₉FNO⁺ 224.1445; found: 224.1451.

4-(2-Fluoro-2-phenylethyl)morpholine (3b). Synthesized using GP3 from 1b and 0benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a pale oil (27.2 mg, 65%).

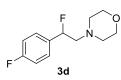
 $\mathbf{R}_{f} = 0.12$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.40–7.22 (m, 5H), 5.60 (ddd, J = 48.9, 8.8, 2.3 Hz, 1H), 3.69 (t, J = 4.7Hz, 4H), 2.98–2.72 (m, 1H), 2.67–2.58 (m, 1H), 2.58–2.41 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 138.7 (d, $J_{C-F} = 20.6$ Hz), 128.5, 128.5, 125.6 (d, $J_{C-F} = 6.9$ Hz), 92.6 (d, $J_{C-F} = 173.7$ Hz), 66.9, 64.9 (d, $J_{C-F} = 23.1$ Hz), 54.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -176.90.

FTIR (thin film): cm⁻¹ 2956, 2854, 2809, 1495, 1452, 1115, 1008, 914, 727, 698. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{17}FNO^+$ 210.1289; found: 210.1291.

4-(2-(4-(*tert***-Butyl)phenyl)-2-fluoroethyl)morpholine (3c).** Synthesized using **GP3** from **1c** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale-yellow oil (39.2 mg, 74%).


 $\mathbf{R}_{f} = 0.20 (30\% \text{ ethyl acetate-hexanes}).$

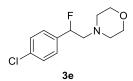
¹**H** NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 5.58 (ddd, J = 49.1, 9.0, 2.1 Hz, 1H), 3.69 (t, J = 4.7 Hz, 4H), 2.95–2.76 (m, 1H), 2.67–2.58 (m, 1H), 2.58–2.43 (m, 4H), 1.24 (s, 9H).

¹³C NMR (125 MHz, CDCl₃) δ 151.6, 135.6 (d, $J_{C-F} = 20.1$ Hz), 125.4, 125.3 (d, $J_{C-F} = 6.5$ Hz), 92.5 (d, $J_{C-F} = 172.8$ Hz), 66.9, 64.8 (d, $J_{C-F} = 23.1$ Hz), 54.0, 34.6, 31.3.

¹⁹**F** NMR (471 MHz, CDCl₃) δ -175.11.

FTIR (thin film): cm⁻¹ 2960, 2858, 2809, 1453, 1269, 1117, 1009, 870, 835, 71. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₆H₂₅FNO⁺ 266.1915; found: 266.1914.

4-(2-Fluoro-2-(4-fluorophenyl)ethyl)morpholine (3d). Synthesized using **GP3** from **1d** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale oil (29.1 mg, 63%).


 $\mathbf{R}_f = 0.10$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 8.0, 5.6 Hz, 2H), 7.08–7.03 (m, 2H), 5.62 (ddd, J = 48.5, 8.6, 2.8 Hz, 1H), 3.79–3.66 (m, 4H), 2.89 (ddd, J = 17.3, 14.2, 8.6 Hz, 1H), 2.67–2.54 (m, 5H).

¹³C NMR (125 MHz, CDCl₃) δ 162.7 (dd, $J_{C-F} = 247.0$, 2.1 Hz), 134.6 (dd, $J_{C-F} = 20.6$, 3.2 Hz), 127.4 (dd, $J_{C-F} = 8.1$, 6.9 Hz), 115.4 (d, $J_{C-F} = 21.6$ Hz), 92.1 (d, $J_{C-F} = 173.8$ Hz), 66.9, 64.8 (d, $J_{C-F} = 23.4$ Hz), 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.32, -175.06.

FTIR (thin film): cm⁻¹2957, 2855, 2810, 1605, 1511, 1454, 1222, 1115, 1009, 834, 539. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₂H₁₆F₂NO⁺ 228.1195; found: 228.1201.

4-(2-(4-Chlorophenyl)-2-fluoroethyl)morpholine (3e). Synthesized using **GP3** from **1e** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale oil (22.9 mg, 47%).

 $\mathbf{R}_{f} = 0.12$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 5.47 (ddd, J = 48.5, 8.5, 8.5

2.6 Hz, 1H), 3.56–3.61 (t, J = 4.5 Hz, 4H), 2.72 (ddd, J = 17.6, 14.2, 8.5 Hz, 1H), 2.61–2.31 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 137.2 (d, J_{CF} = 20.4 Hz), 134.3, 128.7, 126.9, 92.0 (d, J_{CF} = 174.4 Hz), 66.9, 64.7 (d, J_{CF} = 23.3 Hz), 54.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -177.29.

FTIR (thin film): cm⁻¹2956, 2854, 2809, 1493, 1453, 1115, 1091, 1010, 880, 824, 719, 537. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₂H₁₆ClFNO⁺ 244.0899; found: 244.0906.

4-(2-Fluoro-2-(4-methoxyphenyl)ethyl)morpholine (3f). Synthesized using **GP3** from **1f** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a yellow oil (38.0 mg, 79%).

 $\mathbf{R}_f = 0.10 \; (30\% \; \text{ethyl acetate-hexanes}).$

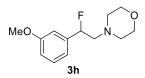
¹**H** NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 5.60 (ddd, J = 48.7, 8.8, 2.7 Hz, 1H), 3.81 (s, 3H), 3.72–3.76 (t, J = 4.5 Hz, 4H), 2.92 (ddd, J = 16.7, 14.1, 8.8 Hz, 1H), 2.73–2.46 (m, 5H).

¹³C NMR (125 MHz, CDCl₃) δ 159.8, 130.8 (d, J_{C-F} = 20.3 Hz), 127.1 (d, J_{C-F} = 6.2 Hz), 113.9, 92.4 (d, J = 172.3 Hz), 66.9, 64.7 (d, J_{C-F} = 24.0 Hz), 55.3, 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -172.14.

FTIR (thin film): cm⁻¹2956, 2853, 2810, 1613, 1515, 1248, 1116, 1033, 832.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNO_2^+$ 240.1394; found: 240.1400.


4-(2-Fluoro-2-(2-methoxyphenyl)ethyl)morpholine (3g). Synthesized using **GP3** from **1g** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a yellow oil (26.3 mg, 55%).

 $\mathbf{R}_{f} = 0.12$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.5 Hz, 1H), 7.34–7.27 (m, 1H), 7.02–6.97 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.04 (ddd, J = 49.1, 8.8, 1.8 Hz, 1H), 3.83 (s, 3H), 3.76 (t, J = 4.6 Hz, 4H), 2.80 (ddd, J = 19.3, 14.2, 8.8 Hz, 1H), 2.72–2.55 (m, 5H).

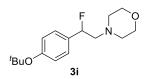
¹³C NMR (125 MHz, CDCl₃) δ 155.3 (d, $J_{C-F} = 5.6$ Hz), 129.2 (d, $J_{C-F} = 1.4$ Hz), 127.3, 125.9 (d, $J_{C-F} = 9.6$ Hz), 120.6, 110.2, 87.9 (d, $J_{C-F} = 171.9$ Hz), 67.0 (2C), 63.8 (d, $J_{C-F} = 22.5$ Hz), 55.3, 54.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -185.00.

FTIR (thin film): cm⁻¹ 2955, 2853, 1601, 1586, 1490, 1454, 1288, 1267, 1116, 1034, 869, 783, 698. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNO_2^+$ 240.1394; found: 240.1400.

4-(2-Fluoro-2-(3-methoxyphenyl)ethyl)morpholine (3h). Synthesized using GP3 from 1h and O-

benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale oil (28.6 mg, 60%).

 $\mathbf{R}_{f} = 0.10 (30\% \text{ ethyl acetate-hexanes}).$

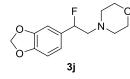

¹**H** NMR (500 MHz, CDCl₃) δ 7.31–7.26 (m, 1H), 6.92–6.84 (m, 3H), 5.63 (ddd, *J* = 49.0, 8.8, 2.5 Hz, 1H), 3.82 (s, 3H), 3.77–3.73 (m, 4H), 2.90 (ddd, *J* = 17.6, 14.3, 8.8 Hz, 1H), 2.72–2.53 (m, 5H).

¹³**C** NMR (125 MHz, CDCl₃) δ 159.7, 140.3 (d, $J_{C-F} = 20.0$ Hz), 129.6, 117.7, 113.9 (d, $J_{C-F} = 1.4$ Hz), 111.1 (d, $J_{C-F} = 7.5$ Hz), 92.5 (d, $J_{C-F} = 174.4$ Hz), 66.9, 64.9 (d, $J_{C-F} = 22.9$ Hz), 55.2, 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -177.08.

FTIR (thin film): cm⁻¹ 2956, 2853, 2807, 1603, 1493, 1241, 1116, 1031, 754.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNO_2^+$ 240.1394; found: 240.1401.


4-(2-(4-(*tert***-Butoxy)phenyl)-2-fluoroethyl)morpholine (3i).** Synthesized using **GP3** from **1i** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a yellow oil (40.0 mg, 71%).

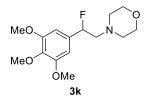
 $\mathbf{R}_{f} = 0.13$ (30% ethyl acetate-hexanes).

¹**H NMR** (500 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 5.61 (ddd, J = 48.8, 8.9, 2.5 Hz, 1H), 3.77–3.70 (m, 4H), 2.92 (ddd, J = 17.0, 14.2, 8.9 Hz, 1H), 2.70–2.53 (m, 5H), 1.35 (s, 9H). ¹³**C NMR** (125 MHz, CDCl₃) δ 155.7 (d, $J_{C-F} = 2.1$ Hz), 133.4 (d, $J_{C-F} = 20.2$ Hz), 126.4 (d, $J_{C-F} = 6.4$ Hz, 2C), 124.0, 92.5 (d, $J_{C-F} = 172.6$ Hz), 78.7, 67.0, 64.8 (d, $J_{C-F} = 23.5$ Hz), 54.1, 28.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -173.54.

FTIR (thin film): cm⁻¹2974, 2854, 2808, 1719, 1508, 1365, 1236, 1160, 1116, 895, 853, 549. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{25}FNO_2^+$ 282.1864; found: 282.1869.

4-(2-(Benzo[d][1,3]dioxol-5-yl)-2-fluoroethyl)morpholine (3j). Synthesized using **GP3** from **1j** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 50% ethyl acetate–hexanes), as a pale-yellow oil (35.8 mg, 71%).


 $\mathbf{R}_f = 0.14$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 6.78 (s, 1H), 6.73 (d, J = 0.7 Hz, 2H), 5.90 (s, 2H), 5.48 (ddd, J = 48.5, 8.7, 2.6 Hz, 1H), 3.72–3.56 (m, 4H), 2.89–2.72 (m, 1H), 2.61–2.58 (m, 1H), 2.58–2.42 (m, 4H).

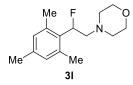
¹³**C** NMR (125 MHz, CDCl₃) δ 147.9, 132.6 (d, $J_{C-F} = 20.4$ Hz), 119.5 (d, $J_{C-F} = 7.3$ Hz), 108.2, 106.3 (d, $J_{C-F} = 6.5$ Hz), 101.2, 92.5 (d, $J_{C-F} = 173.7$ Hz), 66.9, 64.8 (d, $J_{C-F} = 24.0$ Hz), 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -171.98.

FTIR (thin film): cm⁻¹ 2894, 2855, 2812, 1717, 1490, 1444, 1247, 1115, 1036, 931, 870, 716. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{17}FNO_3^+$ 254.1187; found: 254.1189.

4-(2-Fluoro-2-(3,4,5-trimethoxyphenyl)ethyl)morpholine (3k). Synthesized using GP3 from 1k and Obenzoylhydroxylmorpholine 2a. IPrCuCl (5 mol %) was used instead of the Cu(HFacac)₂. Isolated by flash column chromatography (25% ethyl acetate-hexanes to 50% ethyl acetate-hexanes), as a paleyellow oil (27.0 mg, 45%).

 $\mathbf{R}_{f} = 0.20$ (50% ethyl acetate-hexanes).

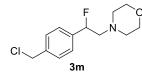

¹**H** NMR (500 MHz, CDCl₃) δ 6.56 (s, 2H), 5.59 (ddd, J = 48.7, 8.6, 2.2 Hz, 1H), 3.87 (s, 6H), 3.84 (s, 3H), 3.78–3.72 (m, 4H), 2.98–2.81 (m, 1H), 2.73–2.65 (m, 1H), 2.65–2.50 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 153.4, 138.0, 134.4 (d, J_{C-F} = 20.4 Hz), 102.6 (d, J_{C-F} = 7.2 Hz), 92.9 (d, $J_{C-F} = 174.5$ Hz), 66.9, 64.9 (d, $J_{C-F} = 23.2$ Hz), 60.9, 56.2, 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -174.42.

FTIR (thin film): cm⁻¹ 2939, 2841, 1591, 1454, 1236, 1117, 1007, 870, 705.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{23}FNO_4^+$ 300.1606; found: 300.1600.


4-(2-Fluoro-2-mesitylethyl)morpholine (3I). Synthesized using GP3 from 11 and 0benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 20% ethyl acetate-hexanes), as a pale oil (25.6 mg, 51%).

 $\mathbf{R}_{f} = 0.14$ (30% ethyl acetate-hexanes).

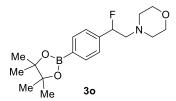
¹**H** NMR (500 MHz, CDCl₃) δ 6.83 (s, 2H), 6.03 (ddd, J = 48.4, 9.3, 2.7 Hz, 1H), 3.78–3.74 (m, 4H), 3.15 (td, J = 14.4, 9.3 Hz, 1H), 2.67-2.57 (m, 4H), 2.50 (ddd, J = 33.1, 14.4, 2.7 Hz, 1H), 2.38-2.34 (m, 6H), 2.26 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 137.7, 135.7 (d, J_{CF} = 3.6 Hz), 131.4 (d, J_{CF} = 17.8 Hz), 129.9, 90.7 (d, $J_{C-F} = 172.9$ Hz), 66.9, 62.2 (d, $J_{C-F} = 22.7$ Hz), 54.1, 20.8, 20.4, 20.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -181.57.

FTIR (thin film): cm⁻¹ 2959, 2854, 2809, 1678, 1612, 1452, 1142, 1116, 1050, 1007, 871, 852, 731, 572. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₅H₂₃FNO⁺ 252.1758; found: 252.1765.

4-(2-(4-(Chloromethyl)phenyl)-2-fluoroethyl)morpholine (3m). Synthesized using GP3 from 1m and O-benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl actate-hexanes), as a yellow oil (26.8 mg, 52%).

 $\mathbf{R}_f = 0.16$ (30% ethyl acetate-hexanes).

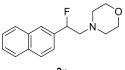

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.67 (ddd, J = 48.7, 8.7, 10.02.6 Hz, 1H), 4.58 (s, 2H), 3.76–3.74 (m, 4H), 2.89 (ddd, J = 17.4, 14.2, 8.7 Hz, 1H), 2.76–2.54 (m, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 138.9 (d, J_{C-F} = 20.1 Hz), 137.7, 128.7, 125.9 (d, J_{C-F} = 7.0 Hz), 92.2 (d, $J_{C-F} = 174.3$ Hz), 66.8, 64.8 (d, $J_{C-F} = 23.0$ Hz), 54.0, 45.7. ¹⁹F NMR (471 MHz, CDCl₃) δ -177.64. FTIR (thin film): cm⁻¹2984, 2843, 2801, 1493, 1350, 1123, 1056, 968, 867, 813, 727. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{18}$ ClFNO⁺ 258.1056; found: 258.1061.

4-(1-Fluoro-2-morpholinoethyl)phenyl acetate (3n). Synthesized using GP3 from 1n and Obenzovlhydroxylmorpholine 2a. Isolated by flash column chromatography (30% ethyl acetate-hexanes to 50% ethyl acetate-hexanes), as a pale oil (27.0 mg, 50%).

 $\mathbf{R}_f = 0.11$ (30% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 5.65 (ddd, J = 48.6, 8.7,2.3 Hz, 1H), 3.76–3.74 (m, 4H), 2.89 (ddd, J = 17.4, 14.2, 8.7 Hz, 1H), 2.72–2.53 (m, 5H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 169.4, 150.6, 136.3 (d, J_{C-F} = 20.4 Hz), 126.7, 121.7, 92.2 (d, J_{C-F} = 174.2 Hz), 66.9, 64.8 (d, J_{C-F} = 23.1 Hz), 54.1, 21.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -176.30.

FTIR (thin film): cm⁻¹ 2929, 2854, 1755, 1509, 1369, 1191, 1116, 1009, 911, 882, 869. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{19}FNO_3^+$ 268.1344; found: 268.1350.


4-(2-Fluoro-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl)morpholine (30).Synthesized using GP3 from 10 and O-benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a pale-yellow oil (40.2 mg, 60%).

 $\mathbf{R}_{f} = 0.20$ (33% ethyl acetate-hexanes).

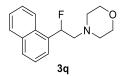
¹**H** NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 5.67 (ddd, J = 48.9, 8.6, 1002.2 Hz, 1H), 3.82–3.61 (m, 4H), 3.00–2.83 (m, 1H), 2.72–2.64 (m, 1H), 2.64–2.45 (m, 4H), 1.34 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 141.7 (d, J_{C-F} = 20.1 Hz), 134.9, 128.3 (d, J_{C-F} = 11.6 Hz), 124.7 (d, J_{C-F} = 7.1 Hz), 92.5 (d, $J_{C-F} = 174.5$ Hz), 83.9, 66.9, 64.8 (d, $J_{C-F} = 22.9$ Hz), 54.0, 24.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -178.83.

FTIR (thin film): cm⁻¹ 2976, 2854, 2808, 1614, 1357, 1142, 1009, 857, 658. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{28}[^{11}B]FNO_3^+$ 336.2141; found: 336.2140.

3p

4-(2-Fluoro-2-(naphthalen-2-yl)ethyl)morpholine (3p). Synthesized using GP3 from 1p and Obenzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a pale-yellow oil (32.2 mg, 62%).

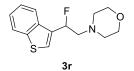

 $\mathbf{R}_{f} = 0.30$ (50% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 9.3, 5.1 Hz, 3H), 7.82 (s, 1H), 7.56–7.47 (m, 2H), 7.45 (d, J = 8.6 Hz, 1H), 5.83 (ddd, J = 48.8, 8.6, 2.4 Hz, 1H), 3.84–3.66 (m, 4H), 3.14–2.88 (m, 1H), 2.81–2.67 (m, 1H), 2.67–2.55 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 136.1 (d, J_{CF} = 19.6 Hz), 133.3, 133.1, 128.4, 128.1, 127.8, 126.5, 126.4, 124.8 (d, $J_{C-F} = 8.1$ Hz), 123.2 (d, $J_{C-F} = 5.7$ Hz), 92.8 (d, $J_{C-F} = 173.9$ Hz), 66.9, 64.9 (d, $J_{C-F} = 23.1$ Hz), 54.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -176.57.

FTIR (thin film): cm⁻¹ 2937, 2865, 2816, 1717, 1274, 1110, 1011, 872, 824, 741. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{19}FNO^+$ 260.1445; found: 260.1439.


4-(2-Fluoro-2-(naphthalen-1-yl)ethyl)morpholine (3q). Synthesized using GP3 from 1q and Obenzovlhydroxylmorpholine 2a. IPrCuCl (5 mol %) was used instead of the Cu(HFacac)₂. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 40% ethyl acetate-hexanes), as a pale oil (34.4 mg, 66%).

 $\mathbf{R}_{f} = 0.30$ (50% ethyl acetate-hexanes).

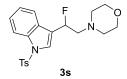
¹**H** NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.0, 1.6 Hz, 1H), 7.84 (d, J = 8.2Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.59–7.47 (m, 3H), 6.42 (ddd, J = 48.4, 8.7, 2.1 Hz, 1H), 3.82–3.78 (t, J = 4.5 Hz, 4H), 3.02 (ddd, J = 19.0, 14.6, 8.7 Hz, 1H), 2.86 (ddd, J = 36.0, 14.6, 2.1 Hz, 1H), 2.78–2.58 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 134.4 (d, J_{C-F} = 18.7 Hz), 133.6, 129.6 (d, J_{C-F} = 4.1 Hz), 129.0, 128.8 (d, $J_{CF} = 1.3$ Hz), 126.5, 125.8, 125.3, 123.2 (d, $J_{CF} = 11.2$ Hz), 122.6, 91.0 (d, $J_{CF} = 174.2$ Hz), 67.0, 64.6 (d, J = 22.7 Hz), 54.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -180.07.

FTIR (thin film): cm⁻¹ 3050, 2955, 2853, 2809, 1675, 1452, 1137, 1009, 798, 775. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{19}FNO^+$ 260.1445; found: 260.1449.

4-(2-(Benzo[b]thiophen-3-vl)-2-fluoroethyl)morpholine (3r). Synthesized using GP3 from 1r and Obenzoylhydroxylmorpholine 2a. IPrCuCl (5 mol %) was used instead of the Cu(HFacac)₂. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a paleyellow oil (23.9 mg, 45%).

 $\mathbf{R}_{f} = 0.25$ (50% ethyl acetate-hexanes).


¹**H** NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 7.4 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.50 (s, 1H), 7.45–7.33 (m, 2H), 6.04 (ddd, J = 48.1, 8.2, 1.7 Hz, 1H), 3.86–3.70 (m, 4H), 3.20–3.00 (m, 1H), 2.98–2.80 (m, 1H), 2.72–2.56 (m. 4H).

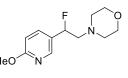
¹³C NMR (125 MHz, CDCl₃) δ 140.6, 136.7, 133.6 (d, J_{C-F} = 21.2 Hz), 124.7, 124.4, 123.9 (d, J_{C-F} = 8.5 Hz), 123.0, 121.9, 89.0 (d, $J_{C-F} = 172.3$ Hz), 66.9, 63.2 (d, $J_{C-F} = 22.9$ Hz), 54.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.77.

FTIR (thin film): cm⁻¹ 2923, 2854, 1597, 1447, 1371, 1175, 1118, 977, 748, 576.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇FNOS⁺ 266.1009; found: 266.1010.

4-(2-Fluoro-2-(1-tosyl-1*H***-indol-3-yl)ethyl)morpholine (3s).** Synthesized using **GP3** from **1s** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 40% ethyl acetate–hexanes), as a pale-yellow oil (26.2 mg, 33%).


 $\mathbf{R}_{f} = 0.20$ (50% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 8.3 Hz, 2H), 7.63 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.27–7.21 (m, 3H), 5.91 (dd, J = 48.4, 6.6 Hz, 1H), 5.91 (dd, J = 48.4, 6.6 Hz, 1H), 3.75 (t, J = 4.5 Hz, 5H), 3.09 (ddd, J = 17.9, 14.2, 8.2 Hz, 1H), 2.86 (dd, J = 30.2, 14.2 Hz, 1H), 2.74–2.49 (m, 4H), 2.35 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 145.3, 135.2, 135.1, 130.0, 128.4, 128.3, 126.9, 125.2, 123.7 (d, $J_{C-F} = 9.2$ Hz), 123.5, 120.1, 113.8, 87.2 (d, $J_{C-F} = 169.6$ Hz), 66.9, 62.8 (d, $J_{C-F} = 22.9$ Hz), 54.1, 21.6.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.43.

FTIR (thin film): cm⁻¹ 2924, 2853, 2811, 1673, 1138, 1428, 1115, 1008, 866, 760, 733. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{24}FN_2O_3S^+$ 403.1486; found: 403.1489.


4-(2-Fluoro-2-(6-methoxypyridin-3-yl)ethyl)morpholine (3t). Synthesized using **GP3** from **1t** and *O*-benzoylhydroxylmorpholine **2a**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale-yellow oil (31.7 mg, 66%).

 $\mathbf{R}_f = 0.14$ (30% ethyl acetate-hexanes).

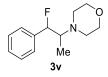
¹**H** NMR (500 MHz, CDCl₃) δ 8.14 (s, 1H), 7.59 (dd, J = 8.6, 2.1 Hz, 1H), 6.76 (d, J = 8.6 Hz, 1H), 5.61 (ddd, J = 48.0, 8.3, 3.0 Hz, 1H), 3.94 (s, 3H), 3.73 (t, J = 4.7 Hz, 4H), 2.93 (ddd, J = 17.1, 14.1, 8.3 Hz, 1H), 2.74–2.46 (m, 1H), 2.74–2.46 (m, 4H).

¹³C NMR (125 MHz, CDCl₃) δ 164.5 (d, $J_{C-F} = 1.4$ Hz), 144.9 (d, $J_{C-F} = 7.3$ Hz), 136.4 (d, $J_{C-F} = 5.0$ Hz), 127.0 (d, $J_{C-F} = 20.8$ Hz), 111.0, 90.6 (d, $J_{C-F} = 172.7$ Hz), 66.9, 64.1 (d, $J_{C-F} = 24.0$ Hz), 54.1, 53.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -174.28.

FTIR (thin film): cm⁻¹ 2948, 2853, 1609, 1495, 1392, 1286, 1116, 1022, 869, 832. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{18}FN_2O_2^+$ 241.1347; found: 241.1342.

4-(2-Fluoro-4-phenylbutyl)morpholine (3u). Synthesized using **GP3** from **1u** and *O*-benzoylhydroxylmorpholine **2a**. IPrCuCl (5 mol %) was used instead of the Cu(HFacac)₂. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 50% ethyl acetate–hexanes), as a pale oil (5.5 mg, 12%).

 $\mathbf{R}_f = 0.10$ (50% ethyl acetate-hexanes).


¹**H NMR** (500 MHz, CDCl₃) δ 7.32–7.27 (m, 2H), 7.23–7.18 (m, 3H), 4.81–4.52 (m, 1H), 3.75–3.58 (m, 4H), 2.88–2.78 (m, 1H), 2.75–2.68 (m, 1H), 2.68–2.58 (m, 1H), 2.55–2.41 (m, 5H), 2.07–1.95 (m, 1H), 1.95–1.78 (m, 1H).

¹³C NMR (125 MHZ, CDCl₃) δ 141.2, 128.5, 128.8, 126.1, 91.5 (d, $J_{C-F} = 170.0$ Hz), 66.9, 62.8 (d, $J_{C-F} = 20.5$ Hz), 54.3, 35.2 (d, $J_{C-F} = 20.8$ Hz), 31.2 (d, $J_{C-F} = 4.6$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -182.13.

FTIR (thin film): cm⁻¹ 2952, 2853, 1717, 1453, 1273, 1116, 1035, 867, 699.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{21}FNO^+$ 238.1602; found: 238.1600.

4-(1-Fluoro-1-phenylpropan-2-yl)morpholine (3v). Synthesized using **GP3** from (*E*)-1v and *O*-benzoylhydroxylmorpholine **2a**. ¹H-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 2.5:1. Isolated as a mixture of two diastereomers by flash column chromatography (10% ethyl acetate-hexanes to 30% ethyl acetate-hexanes), as a pale-yellow oil (32.2 mg, 60%).

Synthesized using **GP3** from (Z)-1v and O-benzoylhydroxylmorpholine 2a. ¹H-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 1.8:1. Isolated as a mixture of two diastereomers by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale-yellow oil (25.0 mg, 56%).

 $\mathbf{R}_{f} = 0.20$ (33% ethyl acetate-hexanes).

Major isomer (3v-I): ¹**H NMR** (500 MHz, CDCl₃) & 7.45–7.29 (m, 5H), 5.36 (dd, *J* = 47.9, 8.3 Hz, 1H), 3.72 (t, *J* = 4.0 Hz, 4H), 3.13–2.92 (m, 1H), 2.80–2.58 (m, 4H), 0.84 (d, *J* = 6.9 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 138.5 (d, J = 20.1 Hz), 128.5 (d, J = 2.0 Hz), 128.3, 126.7 (d, J = 6.4 Hz), 95.8 (d, J = 176.5 Hz), 67.6, 63.5 (d, J = 21.8 Hz), 49.6, 11.2 (d, J = 6.2 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.16.

FTIR (thin film): cm⁻¹ 2955, 2851, 1720, 1451, 1267, 1114, 999, 751, 699.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNO^+$ 224.1445; found: 224.1447.

The relative stereochemistry of major isomer **3v-I** has been determined by X-ray analysis. More information of the X-ray analysis is provided on S283.

Minor isomer (3v-II): ¹**H NMR** (500 MHz, CDCl₃) δ 7.39–7.34 (m, 2H), 7.30 (3, J = 6.6 Hz, 3H), 5.72 (dd, J = 48.1, 2.2 Hz, 1H), 3.71 (t, J = 4.5 Hz, 4H), 2.83 (dqd, J = 13.4, 6.8, 2.2 Hz, 1H), 2.73–2.57 (m, 4H), 1.04 (dd, J = 6.8, 1.1 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 139.5 (d, J = 20.7 Hz), 128.2, 127.7, 125.1 (d, J = 8.5 Hz), 94.7 (d, J = 178.7 Hz), 67.5, 64.9 (d, J = 22.0 Hz), 49.9, 7.6 (d, J = 6.7 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -193.68.

FTIR (thin film): cm⁻¹2924, 2853, 1669, 1450, 1254, 1199, 1117, 955, 984, 720, 699. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNO^+$ 224.1445; found: 224.1448.

М́е MeO

4-(1-Fluoro-1-(4-methoxyphenyl)propan-2-yl)morpholine (3w). Synthesized using **GP3** from **1w** and *O*-benzoylhydroxylmorpholine **2a**. ¹H-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 1.8:1. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 15% ethyl acetate–hexanes), as a pale-yellow oil (26.8 mg, 53%).

Minor isomer (3w-I): $\mathbf{R}_f = 0.40$ (33% ethyl acetate-hexanes).

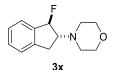
¹**H** NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 8.5 Hz, 2H), 5.30 (dd, J = 47.3, 8.1 Hz, 1H), 3.82 (s, 3H), 3.73 (t, J = 4.4 Hz, 3H), 3.09–2.98 (m, 1H), 2.78–2.64 (m, 4H), 0.82 (d, J = 6.9 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 159.8 (d, $J_{C-F} = 1.8$ Hz), 130.6 (d, $J_{C-F} = 20.7$ Hz), 128.1 (d, $J_{C-F} = 5.7$ Hz), 113.8, 95.4 (d, $J_{C-F} = 175.9$ Hz), 67.5, 63.5 (d, $J_{C-F} = 22.1$ Hz), 55.3, 49.6, 11.3 (d, $J_{C-F} = 5.8$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -170.96.

FTIR (thin film): cm⁻¹2933, 2851, 1613, 1514, 1249, 1115, 1033, 996, 831. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₄H₂₁FNO₂⁺254.1551; found: 254.1545.

Major isomer (3w-II): $\mathbf{R}_f = 0.35$ (33% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.5 Hz, 2H), 5.64 (d, J = 47.3 Hz, 1H), 3.81 (s, 3H), 3.70 (t, J = 4.5 Hz, 4H), 2.88–2.74 (m, 1H), 2.74–2.54 (m, 4H), 1.06 (d, J = 6.6 Hz, 3H).


¹³**C** NMR (125 MHZ, CDCl₃) δ 159.2, 126.6 (d, $J_{C-F} = 8.2$ Hz), 113.6, 94.8 (d, $J_{C-F} = 177.1$ Hz), 67.4, 64.8 (d, $J_{C-F} = 22.9$ Hz), 55.3, 49.9, 7.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -189.81.

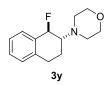
FTIR (thin film): cm⁻¹ 2924, 2852, 1613, 1514, 1453, 1247, 1115, 1033, 981, 828.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{21}FNO_2^+$ 254.1551; found: 254.1548.

The assignments of relative stereochemistry of two diastereomers 3w-I and 3w-II are based on the ¹H, ¹³C, and ¹⁹F-NMR analysis in comparison to 3v-I and 3v-II.

4-(1-Fluoro-2,3-dihydro-1*H***-inden-2-yl)morpholine (3x).** Synthesized using **GP3** from **1x** and *O*-benzoylhydroxylmorpholine **2a**. ¹H-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 10:1. Isolated as a mixture of two diastereomers by flash column chromatography (10% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a pale-yellow oil (26.5 mg, 60%).

 $\mathbf{R}_{f} = 0.20$ (33% ethyl acetate-hexanes).


¹**H** NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.1 Hz, 1H), 7.34–7.25 (m, 2H), 7.22 (d, J = 7.2 Hz, 1H), 6.00 (dd, J = 57.7, 5.5 Hz, 1H), 3.79 (t, J = 4.7 Hz, 4H), 3.35–3.09 (m, 2H), 2.90–2.76 (m, 1H), 2.72 (s, 2H), 2.65–2.56 (m, 2H).

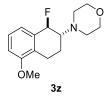
¹³C NMR (125 MHZ, CDCl₃) δ 139.5 (d, $J_{C-F} = 5.3$ Hz), 139.0 (d, $J_{C-F} = 20.5$ Hz), 129.4 (d, $J_{C-F} = 2.3$ Hz), 127.3 (d, $J_{C-F} = 1.8$ Hz), 124.8, 124.6, 99.0 (d, $J_{C-F} = 179.9$ Hz), 73.3 (d, $J_{C-F} = 17.4$ Hz), 66.9, 52.4, 34.2 (d, $J_{C-F} = 5.6$ Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -170.49 (major), -180.50 (minor).

FTIR (thin film): cm⁻¹ 2949, 2850, 1483, 1356, 1146, 1115, 1001, 896, 751, 664.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{17}FNO^+$ 222.1289; found: 222.1295.

4-(1-Fluoro-1,2,3,4-tetrahydronaphthalen-2-yl)morpholine (3y). Synthesized using **GP3** from **1y** and morpholino dodecanoate **2t**. Only one diastereomer (dr >20:1) was observed by ¹H-NMR analysis of the crude reaction mixture. Isolated by flash column chromatography (5% ethyl acetate–hexanes to 15% ethyl acetate–hexanes), as a pale-yellow oil (24.5 mg, 52%).


 $\mathbf{R}_{f} = 0.30$ (20% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 4.0 Hz, 1H), 7.25 (dd, J = 5.7, 3.5 Hz, 2H), 7.12 (d, J = 4.0 Hz, 1H), 5.71 (dd, J = 52.7, 7.9 Hz, 1H), 3.76 (t, J = 4.3 Hz, 4H), 3.04–2.92 (m, 1H), 2.90–2.84 (m, 2H), 2.83–2.71 (m, 4H), 2.12 (ddt, J = 12.2, 8.0, 4.2 Hz, 1H), 1.76 (ddd, J = 24.5, 12.2, 8.0 Hz, 1H).

¹³**C** NMR (125 MHZ, CDCl₃) δ 137.0 (d, J_{C-F} = 3.6 Hz), 134.4 (d, J_{C-F} = 17.7 Hz), 128.4, 128.4 (d, J_{C-F} = 5.7 Hz), 128.2, 126.5, 89.8 (d, J_{C-F} = 173.4 Hz), 67.3, 65.1 (d, J_{C-F} = 17.4 Hz), 50.1, 28.5, 23.4 (d, J_{C-F} = 6.7 Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -167.52.

FTIR (thin film): cm⁻¹ 2923, 2852, 1734, 1454, 1251, 1117, 1012, 746. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{19}FNO^+$ 236.1445; found: 236.1442.

4-(1-Fluoro-5-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl)morpholine (3z). Synthesized using **GP3** from **1z** and *O*-benzoylhydroxylmorpholine **2a**. Only one diastereomer (dr >20:1) was observed by ¹H-NMR analysis of the crude reaction mixture. Isolated by flash column chromatography (5% ethyl acetate–hexanes to 12% ethyl acetate–hexanes), as a pale-yellow oil (28.6 mg, 54%).

 $\mathbf{R}_{f} = 0.20$ (20% ethyl acetate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 5.68 (dd, J = 52.5, 8.0 Hz, 1H), 3.82 (s, 3H), 3.75 (t, J = 4.6 Hz, 4H), 2.97–2.83 (m, 2H), 2.81–2.68 (m, 4H), 2.64–2.51 (m, 1H), 2.18–2.05 (m, 1H), 1.77–1.63 (m, 1H).

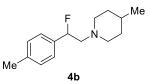
¹³**C** NMR (125 MHZ, CDCl₃) δ 156.5, 136.0 (d, $J_{C-F} = 18.3$ Hz), 127.0, 126.0 (d, $J_{C-F} = 3.7$ Hz), 120.0 (d, $J_{C-F} = 8.0$ Hz), 109.3, 89.7 (d, $J_{C-F} = 173.8$ Hz), 67.5, 64.3 (d, $J_{C-F} = 17.1$ Hz), 55.4, 50.1, 22.6 (d, $J_{C-F} = 1.4$ Hz), 22.5 (d, $J_{C-F} = 2.3$ Hz).

¹⁹**F NMR** (471 MHz, CDCl₃) δ -168.61.

FTIR (thin film): cm⁻¹2951, 2855, 1587, 1473, 1263, 1111, 1069, 941, 790, 746. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{21}FNO_2^+$ 266.1551; found: 266.1550.

5. Scope of amines and compound characterization data

1-(2-Fluoro-2-(*p***-tolyl)ethyl)piperidine (4a).** Synthesized using **GP3** from **1a** and *O*-benzoylhydroxylpiperidine **2b**. Isolated by flash column chromatography (5% ethyl acetate–hexanes to 10% ethyl acetate–hexanes), as a pale oil (21.0 mg, 47%).


 $\mathbf{R}_f = 0.30$ (20% ethyl acetate-hexanes).

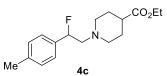
¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.64 (ddd, *J* = 49.0, 8.9, 2.0 Hz, 1H), 3.01–2.79 (m, 1H), 2.70–2.56 (m, 1H), 2.56–2.45 (m, 4H), 2.35 (s, 3H), 1.70–1.52 (m, 4H), 1.51–1.37 (m, 2H).

¹³C NMR (125 MHZ, CDCl₃) δ 138.1 (d, $J_{C-F} = 1.6$ Hz), 136.3 (d, $J_{C-F} = 20.2$ Hz), 129.1, 125.6 (d, $J_{C-F} = 6.6$ Hz), 92.6 (d, $J_{C-F} = 172.8$ Hz), 65.5 (d, $J_{C-F} = 23.4$ Hz), 55.0, 26.0, 24.2, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -174.77.

FTIR (thin film): cm⁻¹ 2932, 2853, 1516, 1452, 1300, 1121, 1017, 880, 814, 759. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{21}FN^+$ 222.1653; found: 222.1657.

1-(2-Fluoro-2-(*p***-tolyl)ethyl)-4-methylpiperidine (4b).** Synthesized using **GP3** from **1a** and *O*-benzoyl-4-methyl-hydroxylpiperidine **2c**. Isolated by flash column chromatography (5% ethyl acetate–hexanes to 10% ethyl acetate–hexanes), as a pale oil (15.3 mg, 32%).


 $\mathbf{R}_{f} = 0.20 \ (10\% \text{ ethyl acetate-hexanes}).$

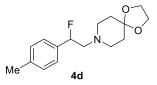
¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.63 (ddd, J = 49.0, 8.9, 2.2 Hz, 1H), 3.08–3.01 (m, 1H), 3.00–2.95 (m, 1H), 2.90 (ddd, J = 17.3, 14.3, 9.0 Hz, 1H), 2.59 (ddd, J = 35.3, 14.3, 2.4 Hz, 1H), 2.35 (s, 3H), 2.19–2.06 (m, 2H), 1.72–1.58 (m, 2H), 1.45–1.23 (m, 3H), 0.93 (d, J = 6.1 Hz, 3H).

¹³**C NMR** (125 MHZ, CDCl₃) δ 138.1 (d, $J_{C-F} = 1.4$ Hz), 136.3 (d, $J_{C-F} = 20.0$ Hz), 129.1, 125.6 (d, $J_{C-F} = 6.6$ Hz), 92.7 (d, $J_{C-F} = 172.8$ Hz), 65.1 (d, $J_{C-F} = 23.3$ Hz), 54.6, 54.3, 34.3, 30.6, 21.9, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -174.83.

FTIR (thin film): cm⁻¹ 2947, 2922, 2869, 1721, 1454, 1269, 1125, 1041, 978, 811. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{23}FN^+$ 236.1809; found: 236.1807.

Ethyl 1-(2-fluoro-2-(*p***-tolyl)ethyl)piperidine-4-carboxylate (4c).** Synthesized using **GP3** from **1a** and *O*-benzoyl-4-ethyloxycarbonylhydroxylpiperidine **2d**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale oil (35.2 mg, 60%).


 $\mathbf{R}_{f} = 0.27$ (50% ethyl aceteate-hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 5.61 (ddd, J = 48.8, 8.7, 2.5 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.03 (d, J = 11.4 Hz, 1H), 2.95 (d, J = 11.4 Hz, 1H), 2.90 (ddd, J = 17.2, 14.3, 8.7 Hz, 1H), 2.61 (ddd, J = 34.0, 14.3, 2.5 Hz, 1H), 2.35 (s, 3H), 2.29–2.17 (m, 3H), 1.95–1.88 (m, 2H), 1.87–1.75 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H).

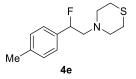
¹³C NMR (125 MHZ, CDCl₃) δ 175.1, 138.2 (d, $J_{C-F} = 1.9$ Hz), 136.0 (d, $J_{C-F} = 20.1$ Hz), 129.1, 125.5 (d, $J_{C-F} = 6.7$ Hz), 92.7 (d, $J_{C-F} = 172.9$ Hz), 64.7 (d, $J_{C-F} = 23.6$ Hz), 60.3, 53.4, 53.4, 40.9, 28.3, 21.2, 14.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -174.99.

FTIR (thin film): cm⁻¹ 2944, 2803, 1729, 1515, 1448, 1284, 1181, 1047, 816, 527.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{25}FNO_2^+$ 294.1864; found: 294.1869.

8-(2-Fluoro-2-(*p***-tolyl)ethyl)-1,4-dioxa-8-azaspiro[4.5]decane (4d).** Synthesized using **GP3** from **1a** and 1,4-dioxa-8-azaspiro[4.5]decan-8-yl benzoate **2e**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 33% ethyl acetate–hexanes), as a colorless oil (27.7 mg, 50%).

 $\mathbf{R}_f = 0.20$ (33% ethyl acetate-hexanes).

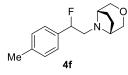

¹**H** NMR (CDCl₃, 500 MHz): δ 7.23 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.61 (ddd, J = 49.6, 8.9, 2.3 Hz, 1H), 3.96 (s, 4H), 2.95 (ddd, J = 17.2, 14.3, 8.9 Hz, 1H), 2.70 (br s, 4H), 2.66–2.57 (m, 1H), 2.35 (s, 3H), 1.84–1.75 (m, 4H).

¹³C NMR (CDCl₃, 125 MHZ): δ 138.2 (d, $J_{C-F} = 1.6$ Hz), 136.0 (d, $J_{C-F} = 19.9$ Hz), 129.1, 125.5 (d, $J_{C-F} = 6.5$ Hz,), 107.0, 92.7 (d, $J_{C-F} = 172.9$ Hz), 64.2, 64.2 (d, $J_{C-F} = 23.6$ Hz), 51.8, 34.8, 21.2.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -175.35

FTIR (thin film): cm⁻¹ 1143, 1094, 1039, 964, 946, 915, 818.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{23}FNO_2^+$ 280.1707; found: 280.1714.


4-(2-Fluoro-2-(*p***-tolyl)ethyl)thiomorpholine (4e).** Synthesized using **GP3** from **1a** and *O*-benzoylhydroxylthiomorpholine **2f**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 15% ethyl acetate–hexanes), as a pale oil (33.1 mg, 69%).

 $\mathbf{R}_{f} = 0.10 \ (10\% \text{ ethyl acetate-hexanes}).$

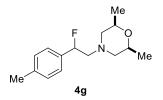
¹**H** NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 5.60 (ddd, J = 48.7, 8.5, 2.3 Hz, 1H), 3.02–2.89 (m, 1H), 2.89–2.83 (m, 4H), 2.75–2.69 (m, 4H), 2.69–2.58 (m, 1H), 2.36 (s, 3H). ¹³**C** NMR (125 MHZ, CDCl₃) δ 138.3 (d, J_{C-F} = 1.7 Hz), 135.8 (d, J_{C-F} = 20.1 Hz), 129.2, 125.6 (d, J_{C-F} = 6.5 Hz), 92.5 (d, J_{C-F} = 173.2 Hz), 65.2 (d, J_{C-F} = 23.8 Hz), 55.4, 28.0, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.19.

FTIR (thin film): cm⁻¹ 2920, 2808, 1719, 1516, 1454, 1273, 1131, 1040, 957, 815, 755. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{19}FNS^+$ 240.1217; found: 240.1220.

8-(2-Fluoro-2-phenylethyl)-3-oxa-8-azabicyclo[3.2.1]octane (4f). Synthesized using **GP3** from **1a** and 3-oxa-8-azabicyclo[3.2.1]octan-8-yl benzoate **2g**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a pale-yellow oil (26.0 mg, 52%). $\mathbf{R}_f = 0.10$ (30% ethyl acetate–hexanes).

¹**H** NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 5.57 (ddd, J = 48.4, 8.1, 3.1 Hz, 1H), 3.76 (dd, J = 14.4, 10.4 Hz, 2H), 3.49 (ddd, J = 12.6, 10.4, 1.9 Hz, 2H), 3.28–3.24 (m, 1H), 3.00–2.93 (m, 1H), 2.81 (ddd, J = 17.9, 14.1, 8.1 Hz, 1H), 2.51 (ddd, J = 31.7, 14.1, 3.1 Hz, 1H), 2.36 (s,

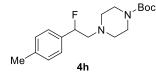

3H), 1.98–1.78 (m, 4H).

¹³C NMR (125 MHZ, CDCl₃) δ 138.2 (d, $J_{C-F} = 1.9$ Hz), 136.0 (d, $J_{C-F} = 20.1$ Hz), 129.0, 125.7 (d, $J_{C-F} = 6.7$ Hz), 94.8 (d, $J_{C-F} = 172.0$ Hz), 73.1, 73.1, 62.1, 61.8 (d, $J_{C-F} = 2.2$ Hz), 60.3 (d, $J_{C-F} = 23.7$ Hz), 25.1, 24.8, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -176.73.

FTIR (thin film): cm⁻¹ 2946, 2855, 1516, 1182, 1132, 1008, 981, 883, 816, 641, 543.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{21}FNO^+$ 250.1602; found: 250.1608.

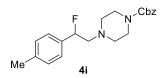

4-(2-Fluoro-2-(*p***-tolyl)ethyl)-2,6-dimethylmorpholine (4g).** Synthesized using **GP3** from **1a** and *O*-benzoyl-2,6-dimethyl-hydroxylmorpholine **2h**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 15% ethyl acetate–hexanes), as a pale oil (43.1 mg, 86%).

 $\mathbf{R}_{f} = 0.10 \ (10\% \text{ ethyl acetate-hexanes}).$

¹**H NMR** (500 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.63 (ddd, J = 49.0, 8.9, 2.1 Hz, 1H), 3.84–3.53 (m, 2H), 2.92 (d, J = 9.2 Hz, 1H), 2.91 – 2.84 (m, 1H), 2.81 (d, J = 10.6 Hz, 1H), 2.59 (ddd, J = 34.9, 14.2, 2.1 Hz, 1H), 2.36 (s, 3H), 1.92 (dt, J = 17.8, 10.6 Hz, 2H), 1.18 (d, J = 2.7 Hz, 3H), 1.16 (d, J = 2.7 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 138.3 (d, $J_{C-F} = 1.7$ Hz), 135.8 (d, $J_{C-F} = 19.9$ Hz), 129.2, 125.6 (d, $J_{C-F} = 6.7$ Hz), 92.6 (d, $J_{C-F} = 172.9$ Hz), 71.7, 71.6, 64.6 (d, $J_{C-F} = 23.1$ Hz), 60.1, 59.6, 21.2, 19.2, 19.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -175.17.

FTIR (thin film): cm⁻¹ 2972, 2864, 1516, 1454, 1323, 1142, 1083, 1027, 885, 812, 712. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{23}FNO^+$ 252.1758; found: 252.1753.


tert-Butyl 4-(2-fluoro-2-(*p*-tolyl)ethyl)piperazine-1-carboxylate (4h). Synthesized using GP3 from 1a and *O*-benzoyl-4-*tert*-butoxycarbonyl-hydroxylpiperazine 2i. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a pale oil (39.9 mg, 62%). $\mathbf{R}_f = 0.25$ (30% ethyl acetate–hexanes).

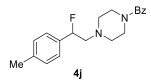
¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 5.59 (ddd, J = 48.8, 8.8, 2.3 Hz, 1H), 3.47–3.44 (m, 4H), 2.87 (ddd, J = 17.1, 14.3, 8.8 Hz, 1H), 2.62–2.43 (m, 5H), 2.27 (s, 3H), 1.39 (s, 9H).

¹³**C NMR** (125 MHZ, CDCl₃) δ 154.7, 138.3, 135.7 (d, $J_{C-F} = 20.0$ Hz), 129.1, 125.5 (d, $J_{C-F} = 6.59$ Hz), 92.63 (d, $J_{C-F} = 173.0$ Hz), 79.6, 64.5 (d, $J_{C-F} = 23.5$ Hz), 53.4, 28.6, 21.4.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.12

FTIR (thin film): cm⁻¹ 2975, 2928, 2860, 2811, 1693, 1455, 1419, 1365, 1243, 1170, 1125, 1004, 816. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{25}FNO_2^+$ 294.1864; found: 294.1869.

2-(4-(2-Fluoro-2-(*p***-tolyl)ethyl)piperazin-1-yl)-1-phenyl-2-ethan-1-one (4i).** Synthesized using **GP3** from **1a** and *O*-benzoyl-4-benzyloxycarbonyl-hydroxylpiperazine **2j**. Isolated by flash column chromatography (12% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a yellow oil (54.1 mg, 76%).


 $\mathbf{R}_f = 0.38$ (50% ethyl aceteate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.39–7.30 (m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.61 (ddd, J = 48.8, 8.8, 2.3 Hz, 1H), 5.14 (s, 2H), 3.75–3.45 (m, 4H), 2.93 (ddd, J = 17.0, 14.3, 8.8 Hz, 1H), 2.71–2.62 (m, 1H), 2.61–2.57 (m, 4H), 2.36 (s, 3H).

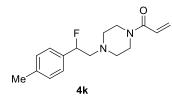
¹³C NMR (CDCl₃, 125 MHZ): δ 155.2, 138.4, 136.7, 135.6 (d, $J_{C-F} = 20.1$ Hz), 129.2, 128.4, 128.0, 127.9, 125.5 (d, $J_{C-F} = 6.7$ Hz), 92.6 (d, $J_{C-F} = 173.3$ Hz), 67.1, 64.4 (d, $J_{C-F} = 23.6$ Hz), 53.3, 43.8, 21.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -175.15.

FTIR (thin film): cm⁻¹ 1696, 1455, 1428, 1235, 1123, 1003, 762, 697.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{26}FN_2O_2^+$ 357.1973; found: 357.1977.

(4-(2-Fluoro-2-(*p*-tolyl)ethyl)piperazin-1-yl)(phenyl)methanone (4j). Synthesized using GP3 from 1a and *O*-benzoyl-4-benzoylhydroxylpiperazine 2k. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 50% ethyl acetate–hexanes), as a yellow oil. (45.1 mg, 69%).

 $\mathbf{R}_{f} = 0.40 \ (50\% \text{ ethyl aceteate-hexanes}).$

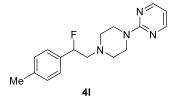

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (s, 5H), 7.22 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.62 (ddd, J = 48.8, 8.7, 2.3 Hz, 1H), 3.82 (br, 2H), 3.46 (br, 2H), 2.94 (ddd, J = 17.0, 14.3, 8.7 Hz, 1H), 2.79–2.46 (m, 5H), 2.35 (s, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 170.3, 138.4 (d, $J_{C-F} = 1.8$ Hz), 135.7, 135.5 (d, $J_{C-F} = 20.0$ Hz), 129.6, 129.2, 128.4, 127.0, 125.5 (d, $J_{C-F} = 6.6$ Hz), 92.6 (d, $J_{C-F} = 173.2$ Hz), 64.2 (d, $J_{C-F} = 23.6$ Hz), 53.8, 53.3, 47.6, 42.1, 21.1.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -175.16.

FTIR (thin film): cm⁻¹ 1648, 1414, 1406, 1215, 1114, 754, 598.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{20}H_{24}FN_2O^+$ 327.1867; found: 327.1872.



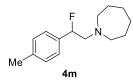
1-(4-(2-Fluoro-2-(*p*-tolyl)ethyl)piperazin-1-yl)prop-2-en-1-one (4k). Synthesized using GP3 from 1a and 4-acryloylpiperazin-1-yl benzoate 2u. Isolated by flash column chromatography (30% ethyl acetate–hexanes to 50% ethyl acetate–hexanes), as a pale oil (27.0 mg, 49%).

 $\mathbf{R}_{f} = 0.10 \ (50\% \text{ ethyl acetate-hexanes}).$

¹**H** NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 6.56 (dd, J = 16.8, 10.6

Hz, 1H), 6.28 (dd, J = 16.8, 1.5 Hz, 1H), 5.69 (dd, J = 10.6, 1.5 Hz, 1H), 5.59 (ddd, J = 49.0, 8.9, 2.1 Hz, 1H), 3.88–3.50 (m, 4H), 3.04–2.85 (m, 1H), 2.75–2.66 (m, 1H), 2.66–2.50 (m, 4H), 2.35 (s, 3H). ¹³C NMR (125 MHZ, CDCl₃) δ 165.3, 138.5 (d, $J_{C-F} = 1.2$ Hz), 135.5 (d, $J_{C-F} = 20.2$ Hz), 129.2, 127.9, 127.4, 125.6 (d, $J_{C-F} = 6.5$ Hz), 64.2 (d, $J_{C-F} = 23.7$ Hz), 53.8, 53.2, 45.8, 41.9, 21.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -175.16. FTIR (thin film): cm⁻¹ 2922, 2857, 1642, 1612, 1439, 1233, 1147, 1001, 818, 790, 717. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₂FN₂O⁺ 277.1711; found: 277.1711.

2-(4-(2-Fluoro-2-(*p***-tolyl)ethyl)piperazin-1-yl)pyrimidine (4l).** Synthesized using **GP3** from **1a** and 4-(pyrimidin-2-yl)piperazin-1-yl benzoate **2l**. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 33% ethyl acetate–hexanes), as a pale oil (28.2 mg, 47%).


 $\mathbf{R}_{f} = 0.10$ (30% ethyl acetate-hexanes).

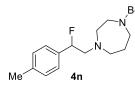
¹**H** NMR (500 MHz, CDCl₃) δ 8.31 (d, J = 4.7 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 7.19 (d, J = 7.8 Hz, 2H), 6.48 (t, J = 4.7 Hz, 1H), 5.67 (ddd, J = 48.6, 8.3, 1.2 Hz, 1H), 3.87 (t, J = 4.9 Hz, 4H), 3.03–2.88 (m, 1H), 2.74 – 2.58 (m, 1H), 2.74 – 2.58 (m, 4H), 2.36 (s, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 161.7, 161.5, 157.7, 138.4 (d, $J_{C-F} = 1.5$ Hz), 135.8 (d, $J_{C-F} = 19.8$ Hz), 129.2, 125.6 (d, $J_{C-F} = 6.5$ Hz), 109.9, 92.7 (d, $J_{C-F} = 173.0$ Hz), 64.7 (d, $J_{C-F} = 23.4$ Hz), 53.5, 43.7, 21.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -175.11.

FTIR (thin film): cm⁻¹ 2938, 2852, 1583, 1545, 1497, 1358, 1257, 982, 796.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{22}FN_4^+$ 301.1823; found: 301.1816.

1-(2-Fluoro-2-(p-tolyl)ethyl)azepane (4m). Synthesized using **GP3** from **1a** and *O*-benzoylhydroxylazepane **2m**. Isolated by flash column chromatography (hexanes–dichloromethane–ethyl acetate = 15:1:1, v/v/v), as a pale oil (15.1 mg, 32%).


 $\mathbf{R}_f = 0.10 \ (10\% \text{ ethyl acetate-hexanes}).$

¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 5.57 (ddd, J = 48.8, 8.4, 2.6 Hz, 1H), 3.11–3.01 (m, 1H), 2.88–2.74 (m, 1H), 2.88–2.74 (m, 4H), 2.35 (s, 3H), 1.71–1.54 (m, 8H). ¹³**C** NMR (125 MHZ, CDCl₃) δ 138.0 (d, $J_{C-F} = 1.5$ Hz), 136.4 (d, $J_{C-F} = 20.0$ Hz), 129.1, 125.6 (d, $J_{C-F} = 6.9$ Hz), 93.2 (d, $J_{C-F} = 172.8$ Hz), 63.7 (d, $J_{C-F} = 23.6$ Hz), 55.8, 28.0, 27.1, 21.2.

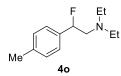
¹⁹**F NMR** (471 MHz, CDCl₃) δ -176.95.

FTIR (thin film): cm⁻¹ 2923, 2853, 1721, 1451, 1356, 1269, 1135, 1014, 814.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{23}FN^+$ 236.1809; found: 236.1808.

tert-Butyl 4-(2-fluoro-2-(*p*-tolyl)ethyl)-1,4-diazepane-1-carboxylatez (4n). Synthesized using GP3 from 1a and *tert*-butyl 4-(benzoyloxy)-1,4-diazepane-1-carboxylate 2n. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a colorless oil (26.9 mg, 40%).

 $\mathbf{R}_{f} = 0.27 \ (30\% \text{ ethyl acetate-hexanes}).$


¹**H** NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 5.54 (ddd, J = 48.6, 8.3, 2.2 Hz, 1H), 3.52–3.39 (m, 4H), 3.04 (ddd, J = 16.6, 14.5, 8.3 Hz, 1H), 2.86–2.72 (m, 5H), 2.35 (s, 3H), 1.86–1.76 (m, 2H), 1.45 (s, 9H).

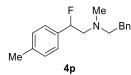
¹³C NMR (125 MHZ, CDCl₃) δ 155.6, 155.4, 138.2 (d, $J_{C-F} = 7.0$ Hz), 135.9 (d, $J_{C-F} = 19.9$ Hz), 129.1, 125.5 (d, $J_{C-F} = 6.6$ Hz), 93.2 (d, $J_{C-F} = 173.0$ Hz), 93.2 (d, $J_{C-F} = 173.4$ Hz), 79.2, 76.7, 63.2, 63.0, 56.3, 56.1, 55.2, 55.0, 46.9, 46.4, 46.0, 45.1, 28.5, 27.9, 27.7, 21.1. (Mixture of *cis*- and *trans*-amide rotamers).

¹⁹F NMR (471 MHz, CDCl₃) δ -176.75, -176.95. (The product gives two sets of ¹⁹FNMR signals, owing to the presence of N-Boc rotamers around the amide.).

FTIR (thin film): cm⁻¹ 2930, 1688, 1460, 1411, 1157, 903, 726.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{19}H_{30}FN_2O_2^+$ 337.2286; found: 337.2289.

N,*N*-diethyl-2-fluoro-2-(*p*-tolyl)ethan-1-amine (40). Synthesized using GP3 from 1a and *O*-benzoylhydroxyldiethylamine 20. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a pale oil (9.0 mg, 21%).


 $\mathbf{R}_{f} = 0.20 \; (30\% \; \text{ethyl acetate-hexanes}).$

¹**H** NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 5.55 (ddd, J = 48.6, 8.7, 2.5 Hz, 1H), 2.98 (ddd, J = 16.8, 14.7, 8.7 Hz, 1H), 2.77–2.69 (m, 1H), 2.69–2.62 (m, 4H), 2.35 (s, 3H), 1.06 (t, J = 7.1 Hz, 6H).

¹³C NMR (125 MHZ, CDCl₃) δ 138.1 (d, $J_{C-F} = 1.5$ Hz), 136.3 (d, $J_{C-F} = 20.5$ Hz), 129.1, 125.6 (d, $J_{C-F} = 6.5$ Hz), 93.4 (d, $J_{C-F} = 172.9$ Hz), 59.4 (d, $J_{C-F} = 23.9$ Hz), 47.8, 21.2, 11.8.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -177.06.

FTIR (thin film): cm⁻¹ 2970, 2927, 1720, 1450, 1270, 1111, 1069, 816, 711. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{21}FN^+$ 210.1653; found: 210.1650.

2-Fluoro-N-methyl-N-phenethyl-2-(p-tolyl)ethan-1-amine (4p). Synthesized using **GP3** from **1a** and *O*-benzoyl-*N*-benzyl-*N*-methylhydroxylamine **2q**. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 20% ethyl acetate–hexanes), as a pale oil (29.8 mg, 55%).

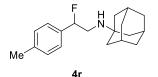
 $\mathbf{R}_f = 0.10 \ (20\% \text{ ethyl acetate-hexanes}).$

¹**H NMR** (500 MHz, CDCl₃) δ 7.31–7.27 (m, 2H), 7.23 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 7.25–7.17 (m, 3H), 5.59 (ddd, J = 48.7, 8.6, 2.8 Hz, 1H), 3.01 (ddd, J = 16.6, 14.3, 8.6 Hz, 1H), 2.86–2.64 (m,4H), 2.78–2.64 (m, 1H), 2.48 (s, 3H), 2.36 (s, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 140.3, 138.2 (d, $J_{C-F} = 1.7$ Hz), 136.0 (d, $J_{C-F} = 19.8$ Hz), 129.2, 128.7, 128.4, 126.0, 125.6 (d, $J_{C-F} = 6.5$ Hz), 92.9 (d, $J_{C-F} = 172.9$ Hz), 63.5 (d, $J_{C-F} = 23.9$ Hz), 59.9, 42.9, 33.8, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -176.41. **FTIR** (thin film): cm⁻¹ 2924, 2851, 1453, 1122, 1030, 813, 746, 698. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₈H₂₃FN⁺ 272.1809; found: 272.1802.

N-(2-Fluoro-2-(*p*-tolyl)ethyl)-2-methylpropan-2-amine (4q). Synthesized using GP3 from 1a and *O*-benzoyl-*N*-(*tert*-butyl)hydroxylamine 2r. Isolated by flash column chromatography (6% ethyl acetate–hexanes to 12% ethyl acetate–hexanes), as a pale oil (11.2 mg, 26%).


 $\mathbf{R}_{f} = 0.10 \ (12\% \text{ ethyl acetate-hexanes}).$

¹**H** NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 7.9 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 5.51 (ddd, J = 48.9, 9.0, 3.0 Hz, 1H), 3.08 (ddd, J = 15.3, 12.5, 9.1 Hz, 1H), 2.80 (ddd, J = 33.3, 12.5, 3.2 Hz, 1H), 2.36 (s, 3H), 1.12 (s, 9H).

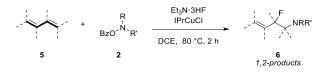
¹³C NMR (125 MHZ, CDCl₃) δ 138.4 (d, $J_{C-F} = 1.7$ Hz), 135.7 (d, $J_{C-F} = 19.6$ Hz), 129.2, 125.7 (d, $J_{C-F} = 6.5$ Hz), 95.0 (d, $J_{C-F} = 170.1$ Hz), 50.3, 49.2 (d, $J_{C-F} = 24.1$ Hz), 28.9, 21.2.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -180.14.

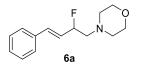
FTIR (thin film): cm⁻¹ 2962, 2924, 1721, 1514, 1361, 1231, 1111, 1014, 815. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{13}H_{21}FN^+$ 210.1653; found: 210.1659.

N-(2-Fluoro-2-(*p*-tolyl)ethyl)adamantan-1-amine (4r). Synthesized using GP3 from 1a and *N*-(adamantan-1-yl)-*O*-benzoylhydroxylamine 2s. Isolated by flash column chromatography (5% ethyl acetate–hexanes to 12% ethyl acetate–hexanes), as a pale oil (20.4 mg, 36%).

 $\mathbf{R}_f = 0.15$ (12% ethyl acetate-hexanes).


¹**H** NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.49 (ddd, J = 49.0, 9.0, 3.2 Hz, 1H), 3.12 (ddd, J = 15.3, 12.5, 9.1 Hz, 1H), 2.82 (ddd, J = 33.4, 12.5, 3.2 Hz, 1H), 2.36 (s, 3H), 2.07 (s, 3H), 1.66 (d, J = 12.1 Hz, 6H), 1.63 – 1.56 (m, 6H).

¹³C NMR (125 MHZ, CDCl₃) δ 138.4 (d, $J_{C-F} = 1.8$ Hz), 135.8 (d, $J_{C-F} = 19.6$ Hz), 129.2, 125.7 (d, $J_{C-F} = 6.5$ Hz), 95.2 (d, $J_{C-F} = 170.0$ Hz), 50.3, 47.1 (d, $J_{C-F} = 24.3$ Hz), 42.8, 36.7, 29.6, 21.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -180.02.


FTIR (thin film): cm⁻¹ 2901, 2846, 1515, 1450, 1356, 1310, 1151, 1111, 1033, 814. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{19}H_{27}FN^+$ 288.2122; found: 288.2123.

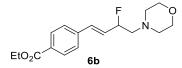
6. Aminofluorination of 1,3-dienes and compound characterization data

General procedure 4 (GP4) for aminofluorination of 1,3-dienes

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylamine **2** (0.2 mmol, 1.0 equiv) and IPrCuCl (4.9 mg, 5 mol %). DCE (1.0 mL), 1,3-diene **5** (0.4 mmol, 2.0 equiv) and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine (verified by TLC analysis, 20% ethyl acetate–hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography.

(E)-4-(2-Fluoro-4-phenylbut-3-en-1-yl)morpholine (6a). Synthesized using GP4 from 5a and Obenzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (12% ethyl acetate-hexanes to 20% ethyl acetate-hexanes), as a pale oil (21.2 mg, 45%).

 $\mathbf{R}_{f} = 0.20$ (30% ethyl acetate-hexanes).


¹**H NMR** (CDCl₃, 500 MHz): δ 7.40 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 6.70 (dd, J = 16.0, 3.3 Hz, 1H), 6.24 (ddd, J = 16.0, 13.3, 6.5 Hz, 1H), 5.40–5.11 (m, 1H), 3.75 (t, 4H), 2.79 (ddd, J = 18.3, 14.0, 8.0 Hz, 1H), 2.72–2.45 (m, 1H), 2.63–2.45 (m, 4H).

¹³C NMR (125 MHZ, CDCl₃) δ 135.9 (d, $J_{C-F} = 1.4$ Hz), 133.1 (d, $J_{C-F} = 11.5$ Hz), 128.7, 128.3, 126.7, 125.5 (d, $J_{C-F} = 18.4$ Hz), 91.7 (d, $J_{C-F} = 170.0$ Hz), 66.9, 63.1 (d, J = 22.6 Hz), 54.2.

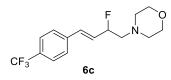
¹⁹**F NMR** (CDCl₃, 471 MHz): δ -174.38.

FTIR (thin film): cm⁻¹ 1635, 1451, 1279, 1117, 1010, 745, 695.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{19}FNO^+$ 236.1445; found: 236.1446.

Ethyl (*E*)-4-(3-fluoro-4-morpholinobut-1-en-1-yl)benzoate (6b). Synthesized using GP4 from 5b and *O*-benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 30% ethyl acetate–hexanes), as a yellowish oil (29.0 mg, 47%).

 $\mathbf{R}_{f} = 0.25$ (50% ethyl acetate-hexanes).

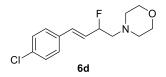

¹**H NMR** (CDCl₃, 500 MHz): δ 8.00 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 6.73 (d, J = 16.0 Hz, 1H), 6.35 (ddd, J = 16.0, 13.4, 6.4 Hz, 1H), 5.41–5.19 (m, 1H),4.37 (q, J = 7.1 Hz, 2H), 3.74 (t, J = 4.4 Hz, 4H), 2.79 (ddd, J = 18.7, 14.1, 7.9 Hz, 1H), 2.73–2.63 (m, 1H), 2.58–2.49 (m, 4H), 1.39 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 166.2, 140.2, 131.7 (d, $J_{C-F} = 11.8$ Hz), 130.0, 129.9, 128.0 (d, $J_{C-F} = 18.4$ Hz), 126.5, 91.3 (d, $J_{C-F} = 171.5$ Hz), 66.9, 62.9 (d, $J_{C-F} = 22.2$ Hz), 61.0, 54.1, 14.3.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -176.56.

FTIR (thin film): cm⁻¹ 2958, 2854, 1711, 1607, 1453, 1272, 1106, 1018, 868, 762.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{23}FNO_3^+$ 308.1657; found: 308.1660.


(E)-4-(2-fluoro-4-(4-(trifluoromethyl)phenyl)but-3-en-1-yl)morpholine (6c). Synthesized using GP4 from 5c and O-benzovlhydroxylmorpholine 2a. Isolated by flash column chromatography (12% ethyl acetate-hexanes to 25% ethyl acetate-hexanes), as a yellowish oil (22.6 mg, 38%). $\mathbf{R}_{f} = 0.30$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.58 (d, J = 8.1 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 6.73 (dd, J = 16.0, 1.9 Hz, 1H), 6.34 (ddd, J = 18.8, 15.4, 5.9 Hz, 1H), 5.45–5.10 (m, 1H), 3.75 (t, J = 4.5 Hz, 4H), 2.79 (ddd, J = 18.8, 14.0, 7.8 Hz, 1H), 2.71–2.61 (m, 1H), 2.64–2.56 (m, 4H).

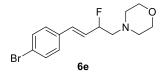
¹³C NMR (125 MHZ, CDCl₃) δ 139.5, 131.2 (d, $J_{C-F} = 11.9$ Hz), 130.0 (q, $J_{C-F} = 32.7$ Hz), 128.3 (d, $J_{C-F} = 18.4$ Hz), 126.8, 125.6 (q, $J_{C-F} = 3.7$ Hz), 124.1 (q, $J_{C-F} = 271.9$ Hz), 91.2 (d, $J_{C-F} = 171.7$ Hz), 66.9, 62.9 (d, J_{C-F} = 22.2 Hz), 54.1.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -62.61, -176.98.

FTIR (thin film): cm⁻¹ 2856, 2814, 1616, 1454, 1323, 1164, 1115, 1066, 1015, 868. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{15}H_{18}F_4NO^+$ 304.1319; found: 304.1321.

(E)-4-(4-(4-Chlorophenyl)-2-fluorobut-3-en-1-yl)morpholine (6d). Synthesized using GP4 from 5d and O-benzovlhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetatehexanes to 25% ethyl acetate-hexanes), as a yellowish oil (26.3 mg, 49%).

 $\mathbf{R}_{f} = 0.21$ (30% ethyl acetate-hexanes).

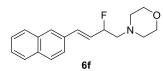

¹**H** NMR (CDCl₃, 500 MHz): δ 7.32 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.65 (dd, J = 16.0, 2.6 Hz, 1H), 6.22 (ddd, J = 16.0, 13.7, 6.3 Hz, 1H), 5.37–5.03 (m, 1H), 3.74 (t, J = 4.6 Hz, 4H), 2.78 (ddd, J = 18.5, 14.0, 7.9 Hz, 1H), 2.69–2.59 (m, 1H), 2.63–2.53 (m, 4H).

¹³C NMR (125 MHZ, CDCl₃) δ 134.5, 134.0, 131.7 (d, J_{C-F} = 11.8 Hz), 128.9, 127.9, 126.2 (d, J_{C-F} = 18.4 Hz), 91.5 (d, $J_{C-F} = 170.7$ Hz), 66.9, 63.0 (d, $J_{C-F} = 22.2$ Hz), 54.2.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -175.22.

FTIR (thin film): cm⁻¹ 2855, 2811, 1491, 1453, 1115, 1089, 1011, 968, 869, 719.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{18}$ ClFNO⁺ 270.1056; found: 270.1055.



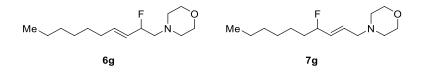
(E)-4-(4-(4-Bromophenyl)-2-fluorobut-3-en-1-yl)morpholine (6e). Synthesized using GP4 from 5e and O-benzovlhydroxylmorpholine 2a. Isolated by flash column chromatography (10% ethyl acetatehexanes to 25% ethyl acetate-hexanes), as a yellowish solid (30.4 mg, 48%).

 $\mathbf{R}_{f} = 0.22$ (30% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.45 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 6.63 (dd, J = 16.0, 2.9 Hz, 1H), 6.23 (ddd, J = 16.0, 13.9, 6.3 Hz, 1H), 5.36–5.09 (m, 1H), 3.74 (t, J = 4.5 Hz, 4H), 2.77 (ddd, J = 18.5, 14.0, 7.9 Hz, 1H), 2.67–2.58 (m, 1H), 2.64–2.39 (m, 4H).

¹³C NMR (125 MHZ, CDCl₃) δ 134.9, 131.8, 131.7 (d, $J_{C-F} = 12.0$ Hz), 128.2, 126.3 (d, $J_{C-F} = 18.4$ Hz), 122.1, 91.5 (d, $J_{C-F} = 170.8$ Hz), 66.9, 63.0 (d, $J_{C-F} = 22.5$ Hz), 54.2. ¹⁹F NMR (CDCl₃, 471 MHz): δ -175.42. FTIR (thin film): cm⁻¹ 2957, 2854, 1487, 1453, 1115, 1071, 1008, 967, 868, 712. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₈BrFNO⁺ 314.0550; found: 314.0550.

(E)-4-(2-Fluoro-4-(naphthalen-2-yl)but-3-en-1-yl)morpholine (6f). Synthesized using GP4 from 5f and O-benzoylhydroxylmorpholine 2a. Isolated by flash column chromatography (12% ethyl acetate-hexanes to 20% ethyl acetate-hexanes), as a yellowish oil (18.4 mg, 33%).


 $\mathbf{R}_f = 0.20 \; (30\% \; \text{ethyl acetate-hexanes}).$

¹**H** NMR (CDCl₃, 500 MHz): δ 7.85–7.78 (m, 3H), 7.76 (s, 1H), 7.59 (d, J = 8.5 Hz, 1H), 7.51–7.43 (m, 2H), 6.88 (dd, J = 15.9, 3.0 Hz, 1H), 6.36 (ddd, J = 15.9, 13.5, 6.4 Hz, 1H), 5.56–5.26 (m, 1H), 3.80 (t, J = 4.4 Hz, 4H), 2.87 (ddd, J = 18.1, 14.1, 8.0 Hz, 1H), 2.8–2.69 (m, 1H), 2.76–2.60 (m, 4H).

¹³C NMR (125 MHZ, CDCl₃) δ 133.5, 133.4 (d, J_{C-F} = 11.6 Hz), 133.3, 133.3, 128.4, 128.1, 127.7, 127.2, 126.4, 126.3, 125.4 (d, J_{C-F} = 18.9 Hz), 123.4, 91.5 (d, J_{C-F} = 170.2 Hz),66.6, 62.9 (d, J_{C-F} = 22.4 Hz), 54.0.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -174.02.

FTIR (thin film): cm⁻¹ 2924, 2853, 1716, 1596, 1452, 1271, 1115, 1009, 966, 867, 746. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₁FNO⁺ 286.1602; found: 286.1600.

(*E*)-4-(2-fluorodec-3-en-1-yl)morpholine (6g) and (*E*)-4-(4-fluorodec-2-en-1-yl)morpholine (7g). Synthesized using **GP4** from 5g and *O*-benzoylhydroxylmorpholine 2a. ¹H-NMR analysis of the crude reaction mixture indicated the formation of 1,2-product 6g and 1,4-product 7g in a ratio of 7:1.

1,2-Product 6g was isolated by flash column chromatography (5% ethyl acetate-hexanes to 10% ethyl acetate-hexanes) as a yellowish oil (17.1 mg, 35%).

 $\mathbf{R}_{f} = 0.20 \ (13\% \text{ ethyl acetate-hexanes}).$

¹**H NMR** (CDCl₃, 500 MHz): δ 5.89–5.75 (m, 1H), 5.61–5.45 (m, 1H), 5.05 (dt, *J* = 14.8, 6.5 Hz, 1H), 3.82–3.65 (t, *J* = 4.6, 4H), 2.69 (ddd, *J* = 17.7, 14.0, 8.2 Hz, 1H), 2.61–2.51 (m, 4H), 2.57–2.41 (m, 1H), 2.11–2.00 (m, 2H), 1.44–1.33 (m, 2H), 1.3–1.18 (m, 6H), 0.88 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 136.3 (d, $J_{C-F} = 11.1$ Hz), 126.4 (d, $J_{C-F} = 18.7$ Hz), 91.9 (d, $J_{C-F} = 167.3$ Hz), 66.9, 63.2 (d, $J_{C-F} = 22.8$ Hz), 54.1, 32.2 (d, $J_{C-F} = 1.2$ Hz), 31.7, 28.8 (d, $J_{C-F} = 2.5$ Hz), 22.6, 14.1. ¹⁹F NMR (CDCl₃, 471 MHz): δ -171.31.

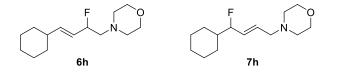
FTIR (thin film): cm⁻¹ 2925, 2854, 1672, 1454, 1294, 1119, 1009, 968, 869.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{27}FNO^+$ 244.2071; found: 244.2073.

1,4-Product 7g was isolated by flash column chromatography (10% ethyl acetate–hexanes to 25% ethyl acetate–hexanes) as a yellowish oil (3.4 mg, 7%).

 $\mathbf{R}_{f} = 0.15$ (20% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 5.82–5.75 (m, 1H), 5.74–5.65 (m, 1H), 4.86 (ddd, J = 48.8, 12.8, 6.3 Hz,


1H), 3.72 (t, J = 4.6 Hz, 4H), 3.01 (dd, J = 5.8, 3.6 Hz, 2H), 2.54-2.30 (m, 4H), 1.77-1.67 (m, 1H), 1.64-1.641.57 (m, 1H), 1.37-1.24 (m, 8H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 132.6 (d, J_{C-F} = 20.4 Hz), 129.6 (d, J_{C-F} = 10.5 Hz), 93.2 (d, J_{C-F} = 165.2 Hz), 66.9, 60.5, 53.5, 35.4 (d, $J_{C-F} = 22.5$ Hz), 31.7, 29.0, 24.7 (d, $J_{C-F} = 4.5$ Hz), 22.5, 14.1.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -172.83.

FTIR (thin film): cm⁻¹ 2927, 2855, 1677, 1454, 1118, 1004, 974, 867.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{27}FNO^+$ 244.2071; found: 244.2073.

(E)-4-(4-Cyclohexyl-2-fluorobut-3-en-1-yl)morpholine (6h) and (E)-4-(4-Cyclohexyl-4-fluorobut-2en-1-yl)morpholine (7h). Synthesized using GP4 from 5h and O-benzoylhydroxylmorpholine 2a. ¹H-NMR analysis of the crude reaction mixture indicated the formation of 1,2-product 6h and 1,4-product 7h in a ratio of 8:1.

1,2-Product 6h was isolated by flash column chromatography (5% ethyl acetate-hexanes to 10% ethyl acetate-hexanes) as a yellowish oil (21.4 mg, 44%).

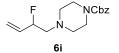
 $\mathbf{R}_{f} = 0.20$ (10% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 5.76 (ddd, J = 15.5, 6.0, 4.5 Hz, 1H), 5.47 (dddd, J = 15.6, 11.0, 7.1, 1.3 Hz, 1H), 5.15–4.80 (m, 1H), 3.73 (t, J = 4.5Hz, 4H), 2.69 (ddd, J = 17.6, 14.0, 8.3 Hz, 1H), 2.55 (t, J = 4.5 Hz, 4H), 2.48 (ddd, J = 31.9, 14.0, 2.7 Hz, 1H), 2.10–1.87 (m, 1H), 1.80–1.59 (m, 5H), 1.34–1.21 (m, 2H), 1.20–1.12 (m, 1H), 1.12–1.01 (m, 2H).

¹³C NMR (125 MHZ, CDCl₃) δ 141.6 (d, J = 10.8 Hz), 123.9 (d, $J_{C-F} = 19.0$ Hz), 92.1 (d, $J_{C-F} = 167.4$ Hz), 66.9, 63.3 (d, $J_{C-F} = 22.8$ Hz), 54.1, 40.3, 32.5 (d, $J_{C-F} = 1.8$ Hz), 32.4 (d, $J_{C-F} = 1.8$ Hz), 26.1, 25.9. ¹⁹**F NMR** (CDCl₃, 471 MHz): δ -171.47.

FTIR (thin film): cm⁻¹ 2923, 2851, 2810, 1620, 1450, 1293, 1140, 1118, 1009, 969, 869. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{25}FNO^+$ 242.1915; found: 242.1915.

1,4-Product 7h was isolated by flash column chromatography (10% ethyl acetate-hexanes to 25% ethyl acetate-hexanes) as a vellowish oil (2.4 mg, 5%).


 $\mathbf{R}_{f} = 0.10$ (20% ethyl acetate-hexanes).

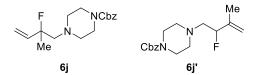
¹**H** NMR (CDCl₃, 500 MHz): δ 5.85–5.57 (m, 2H), 4.58 (dt, J = 48.5, 6.6 Hz, 1H), 3.72 (t, J = 4.6 Hz, 4H), 3.11–2.85 (m, 2H), 2.44 (s, 4H), 1.86 (d, J = 12.8 Hz, 1H), 1.81–1.72 (m, 2H), 1.67 (d, J = 12.2 Hz, 1H), 1.60–1.49 (m, 1H), 1.30–1.09 (m, 4H), 1.07–0.94 (m, 2H).

¹³C NMR (125 MHZ, CDCl₃) δ 131.1 (d, J = 20.3 Hz), 130.7 (d, J = 12.2 Hz), 97.2 (d, J = 167.7 Hz), 66.9, 60.6, 53.5, 42.3 (d, J = 21.1 Hz), 28.2 (d, J = 4.5 Hz), 27.9 (d, J = 5.1 Hz), 26.3, 25.8, 25.7. ¹⁹**F NMR** (CDCl₃, 471 MHz): δ -178.48.

FTIR (thin film): cm⁻¹ 2923, 2851, 1718, 1450, 1269, 1117, 1069, 969, 869.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₁₄H₂₅FNO⁺ 242.1915; found: 242.1914.

Benzyl 4-(2-fluorobut-3-en-1-yl)piperazine-1-carboxylate (6i). Synthesized using GP4 from 5i and Obenzoyl-4-benzyloxycarbonyl-hydroxylpiperazine 2i. Isolated by flash column chromatography (12% ethyl acetate-hexanes to 25% ethyl acetate-hexanes), as a colorless oil (30.0 mg, 51%).


 $\mathbf{R}_f = 0.50 \ (50\% \ \text{ethyl acetate-hexanes}).$

¹**H NMR** (CDCl₃, 500 MHz): δ 7.44–7.29 (m, 5H), 5.99–5.77 (m, 1H), 5.44–5.32 (m, 1H), 5.27 (d, J = 10.7 Hz, 1H), 5.13 (s, 2H), 5.16–5.00 (m, 1H), 3.66–3.47 (m, 4H), 2.70 (ddd, J = 18.7, 14.2, 8.0 Hz, 1H), 2.61–2.50 (m, 1H), 2.58–2.41(m, 4H).

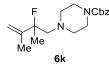
¹³**C NMR** (125 MHZ, CDCl₃) δ 155.2, 136.7, 134.6 (d, J_{C-F} = 19.3 Hz), 128.5, 128.0, 127.9, 117.6 (d, J_{C-F} = 11.8 Hz), 91.6 (d, J_{C-F} = 170.9 Hz), 67.1, 62.4 (d, J_{C-F} = 21.9 Hz), 53.3, 43.8.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -178.96.

FTIR (thin film): cm⁻¹ 2924, 2814, 1696, 1426, 1234, 1121, 1001, 933, 696. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₁₆H₂₂FN₂O₂⁺ 293.1660; found: 293.1662.

Benzyl 4-(2-fluoro-2-methylbut-3-en-1-yl)piperazine-1-carboxylate (6j) and benzyl 4-(2-fluoro-3-methylbut-3-en-1-yl)piperazine-1-carboxylate (6j'). Synthesized using GP4 from 5j and O-benzoyl-4-benzyloxycarbonyl-hydroxylpiperazine 2j. ¹H-NMR analysis of the crude reaction mixture indicated the formation of two 1,2-products 6j and 6j' in a ratio of 10:1.

1,2-Product **6j** was isolated by flash column chromatography (2.5% 1,4-dioxane-hexanes), as a colorless oil (27.5 mg, 45%).


 $\mathbf{R}_{f} = 0.10 \ (10\% \ 1,4\text{-dioxane-hexanes}).$

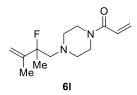
¹**H** NMR (CDCl₃, 500 MHz): δ 7.45–7.21 (m, 5H), 5.94 (td, J = 17.6, 11.0 Hz, 1H), 5.30 (d, J = 17.4 Hz, 1H), 5.15 (d, J = 11.1 Hz, 1H), 5.13 (s, 2H), 3.49 (t, J = 5.0 Hz, 4H), 2.59–2.33 (m, 2H), 2.59–2.33 (m, 4H), 1.44 (d, J = 21.6 Hz, 3H).

¹³C NMR (125 MHZ, CDCl₃) δ 155.3, 139.7 (d, $J_{C-F} = 22.2$ Hz), 136.8, 128.5, 128.0, 127.9, 114.0 (d, $J_{C-F} = 11.1$ Hz), 96.8 (d, $J_{C-F} = 171.4$ Hz), 67.1, 65.7 (d, $J_{C-F} = 22.3$ Hz), 54.1, 54.1, 43.9, 23.4 (d, $J_{C-F} = 24.8$ Hz).

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -147.99.

FTIR (thin film): cm⁻¹ 2926, 2858, 2810, 1698, 1427, 1362, 1242, 1123, 1007, 920, 752. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{24}FN_2O_2^+$ 307.1816; found: 307.1816. Minor product **6j**' was unable to be obtained as a pure product.

Benzyl 4-(2-fluoro-2,3-dimethylbut-3-en-1-yl)piperazine-1-carboxylate (6k). Synthesized using **GP4** from **5k** and *O*-benzoyl-4-benzyloxycarbonyl-hydroxylpiperazine **2j**. Isolated by flash column chromatography (2.5% 1,4-dioxane–hexanes to 3.3% 1,4-dioxane–hexanes), as a colorless oil (27.0 mg, 42%).


 $\mathbf{R}_{f} = 0.15 \ (10\% \ 1,4\text{-dioxane-hexanes}).$

¹**H NMR** (CDCl₃, 500 MHz): δ 7.46–7.26 (m, 5H), 5.13 (s, 2H), 5.01 (s, 1H), 4.89 (s, 1H), 3.51 (s, 4H), 2.82–2.34 (m, 2H), 2.82–2.34 (m, 4H), 1.77 (s, 3H), 1.46 (d, *J* = 22.2 Hz, 3H).

¹³**C NMR** (125 MHZ, CDCl₃) δ 155.2, 146.3 (d, $J_{C-F} = 19.9$ Hz), 136.8, 128.5, 128.0, 127.9, 110.7 (d, $J_{C-F} = 11.4$ Hz), 99.0 (d, $J_{C-F} = 174.4$ Hz), 67.1, 64.4 (d, $J_{C-F} = 22.1$ Hz), 54.0 (d, $J_{C-F} = 2.0$ Hz), 43.7, 23.2 (d, $J_{C-F} = 25.4$ Hz), 19.3 (d, $J_{C-F} = 5.5$ Hz).

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -146.45.

FTIR (thin film): cm⁻¹ 2938, 2861, 2810, 1698, 1427, 1237, 1119, 1094, 1008, 905, 734. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{26}FN_2O_2^+$ 321.1973; found: 321.1973.

1-(4-(2-Fluoro-2,3-dimethylbut-3-en-1-yl)piperazin-1-yl)prop-2-en-1-one (6l). Synthesized using GP4 from 5k and 4-acryloylpiperazin-1-yl benzoate 2u. Isolated by flash column chromatography (10% ethyl acetate-hexanes to 20% ethyl acetate-hexanes), as a pale oil (21.2 mg, 44%).

 $\mathbf{R}_f = 0.35$ (25% ethyl acetate-hexanes).

¹**H NMR** (CDCl₃, 500 MHz): δ 6.54 (dd, J = 16.8, 10.6 Hz, 1H), 6.27 (dd, J = 16.8, 1.9 Hz, 1H), 5.67 (dd, J = 10.6, 1.9 Hz, 1H), 5.00 (s, 1H), 4.88 (dd, J = 2.3, 1.5 Hz, 1H), 3.59 (d, J = 71.1 Hz, 4H), 2.76–2.37 (m, 2H), 2.76–2.37 (m, 4H), 1.77 (s, 3H), 1.45 (d, J = 22.2 Hz, 3H).

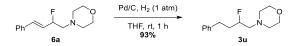
¹³C NMR (125 MHZ, CDCl₃) δ 165.3, 146.4 (d, $J_{C-F} = 20.1$ Hz), 127.7, 127.5, 110.5 (d, $J_{C-F} = 11.4$ Hz), 99.2 (d, $J_{C-F} = 174.1$ Hz), 64.4 (d, $J_{C-F} = 22.0$ Hz), 54.3 (d, $J_{C-F} = 41.0$ Hz), 45.9, 42.1, 23.3 (d, $J_{C-F} = 25.6$ Hz), 19.3 (d, $J_{C-F} = 5.4$ Hz).

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -146.57.

FTIR (thin film): cm⁻¹ 2982, 2924, 2809, 1648, 1613, 1439, 1238, 1129, 1007, 905, 791. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₂₂FN₂O⁺ 241.1711; found: 241.1707.

trans-4-(2-Fluorocyclohex-3-en-1-yl)morpholine (6m). Synthesized using GP4 from 5m and *O*-benzoylhydroxylmorpholine 2a. Only *trans*-isomer was observed (dr >20:1) by ¹H-NMR analysis of the crude reaction mixture. Isolated by flash column chromatography (12% ethyl acetate–hexanes to 25% ethyl acetate–hexanes), as a colorless oil (16.5 mg, 45%).

 $\mathbf{R}_f = 0.20$ (50% ethyl acetate-hexanes).


¹**H** NMR (CDCl₃, 500 MHz): δ 5.87 (dd, J = 9.7, 2.5 Hz, 1H), 5.76–5.64 (m, 1H), 5.28–5.11 (m, 1H), 3.73 (t, J = 4.5 Hz, 4H), 2.81–2.57 (m, 1H), 2.81–2.57 (m, 4H), 2.23–2.09 (m, 2H), 1.92 (dd, J = 8.9, 4.5 Hz, 1H), 1.59–1.47 (m, 1H).

¹³C NMR (125 MHZ, CDCl₃) δ 131.5 (d, $J_{C-F} = 9.5$ Hz), 126.3 (d, $J_{C-F} = 21.6$ Hz), 88.7 (d, $J_{C-F} = 166.2$ Hz), 67.5, 64.4 (d, $J_{C-F} = 16.1$ Hz), 49.9, 25.4 (d, $J_{C-F} = 2.9$ Hz), 23.1 (d, $J_{C-F} = 7.4$ Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -172.49.

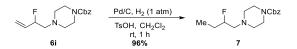
FTIR (thin film): cm⁻¹ 2924, 2852, 1717, 1451, 1268, 1116, 1015, 901, 854, 732. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{10}H_{17}FNO^+$ 186.1289; found: 186.1287.

7. Synthetic applications

7.1. Transformations of β -fluoro homoallylic amines to alkyl-substituted β -fluoroalkylamines

4-(2-Fluoro-4-phenylbutyl)morpholine (3u). To a stirring solution of (*E*)-4-(2-fluoro-4-phenylbut-3-en-1-yl)morpholine **6a** (23.5 mg, 0.1 mmol, 1 equiv) in THF (2.0 mL) was added Pd/C (10% on activated carbon, 4 mg) at room temperature. After the inner atmosphere of the flask was changed to hydrogen by a hydrogen balloon (1atm), the resulting mixture was allowed to stir at room temperature for 1 h. Upon the completion consumption of **6a** (monitored by LC-MS analysis), the reaction was stopped immediately and filtered. The solvent was removed under reduced pressure. The resulting residue was purified by silica gel chromatography (40% ethyl acetate-hexanes), giving **3u** as yellow oil (22.1 mg, 93%).

 $\mathbf{R}_f = 0.10$ (33% ethyl acetate-hexanes).


¹**H** NMR (CDCl₃, 500 MHz): δ 7.32–7.27 (m, 2H), 7.23–7.18 (m, 3H), 4.81–4.52 (m, 1H), 3.75–3.58 (m, 4H), 2.88–2.78 (m, 1H), 2.75–2.68 (m, 1H), 2.68–2.58 (m, 1H), 2.55–2.41 (m, 5H), 2.07–1.95 (m, 1H), 1.95–1.78 (m, 1H).

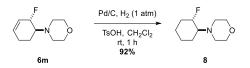
¹³C NMR (CDCl₃, 125 MHZ): δ 141.2, 128.5, 128.8, 126.1, 91.5 (d, $J_{C-F} = 170.0$ Hz), 66.9, 62.8 (d, $J_{C-F} = 20.5$ Hz), 54.3, 35.2 (d, $J_{C-F} = 20.8$ Hz), 31.2 (d, $J_{C-F} = 4.6$ Hz).

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -182.13.

FTIR (thin film): cm⁻¹ 2952, 2853, 1717, 1453, 1273, 1116, 1035, 867, 699.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{14}H_{21}FNO^+$ 238.1602; found: 238.1600.

Benzyl 4-(2-fluorobutyl)piperazine-1-carboxylate (7). To a stirring solution of benzyl 4-(2-fluorobut-3en-1-yl)piperazine-1-carboxylate **6i** (29.2 mg, 0.1 mmol, 1 equiv) in CH_2Cl_2 (2.0 mL) was added Pd/C (10% on activated carbon, 4 mg) and TsOH·H₂O (19 mg, 0.1 mmol, 1.0 equiv) at room temperature. After the inner atmosphere of the flask was changed to hydrogen by a hydrogen balloon (1atm), the resulting mixture was allowed to stir at room temperature for 1 h. Upon the completion consumption of **6i** (monitored by LC-MS analysis), the reaction was stopped immediately and filtered through a plug of activated, neutral Al_2O_3 (Brockman grade I, 58–60Å). The solvent was removed under reduced pressure. The resulting residue was purified by silica gel chromatography (30% ethyl acetate–hexanes), giving **7** as yellow oil (28.2 mg, 96%).


 $\mathbf{R}_{f} = 0.15$ (20% ethyl acetate-hexanes).

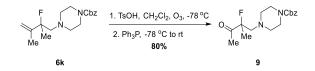
¹**H NMR** (CDCl₃, 500 MHz): δ 7.50–7.26 (m, 5H), 5.13 (s, 2H), 4.59 (dtdd, J = 50.0, 7.5, 5.0, 2.6 Hz, 1H), 3.53 (t, J = 4.5 Hz, 4H), 2.62 (ddd, J = 19.1, 14.0, 7.6 Hz, 1H), 2.55–2.33 (m, 1H), 2.55–2.33 (m, 4H), 1.77–1.47 (m, 2H), 0.98 (t, J = 7.5 Hz, 3H).

¹³**C** NMR (CDCl₃, 125 MHZ): δ 155.2, 136.8, 128.5, 128.0, 127.9, 93.6 (d, $J_{C-F} = 170.0$ Hz), 67.1, 62.1 (d, $J_{C-F} = 20.8$ Hz), 53.5, 43.8, 26.6 (d, $J_{C-F} = 21.3$ Hz), 9.3 (d, $J_{C-F} = 6.1$ Hz).

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -181.26.

FTIR (thin film): cm⁻¹ 2935, 2812, 1697, 1426, 1233, 1119, 997, 854, 763, 697. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{16}H_{24}FN_2O_2^+$ 295.1916; found: 295.1816.

4-(2-Fluorocyclohexyl)morpholine (8). To a stirring solution of 4-(2-fluorocyclohex-3-en-1-


vl)morpholine 6m (18.5 mg, 0.1 mmol, 1 equiv) in CH₂Cl₂ (2.0 mL) was added Pd/C (10% on activated carbon, 4 mg) and TsOH·H₂O (19 mg, 0.1 mmol, 1.0 equiv) at room temperature. After the inner atmosphere of the flask was changed to hydrogen by a hydrogen balloon (1atm), the resulting mixture was allowed to stir at room temperature for 1 h. Upon the completion consumption of **6m** (monitored by LC-MS analysis), the reaction was stopped immediately and filtered through a plug of activated, neutral Al_2O_3 (Brockman grade I, 58–60Å). The solvent was removed under reduced pressure. The resulting residue was purified by silica gel chromatography (50% ethyl acetate-hexanes), giving 8 as yellow oil (17.2 mg, 92%).

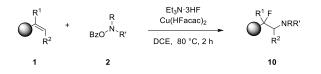
 $\mathbf{R}_{f} = 0.20$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 4.52 (dtd, J = 50.3, 10.1, 4.8 Hz, 1H), 3.71 (t, J = 4.4 Hz, 4H), 2.69 (t, J = 4.4 Hz, 4H), 2.50 (dddd, 13.6 Hz, 11.3 Hz, 4.8 Hz, 2.2 Hz, 1H), 2.20-2.00 (m, 1H), 1.95-1.81 (m, 1H), 1.78–1.65 (m, 2H), 1.53–1.38 (m, 1H), 1.33–1.12 (m, 1H), 1.33–1.12 (m, 2H).

¹³C NMR (CDCl₃, 125 MHZ): δ 92.0 (d, J_{C-F} = 177.3 Hz), 67.7, 67.2 (d, J_{C-F} = 15.3 Hz), 49.8, 32.3 (d, J_{C-F} = 18.0 Hz), 26.1 (d, J_{C-F} = 8.3 Hz), 24.7 (d, J_{C-F} = 1.8 Hz), 23.8 (d, J_{C-F} = 11.2 Hz). ¹⁹F NMR (CDCl₃, 471 MHz): δ -174.21.

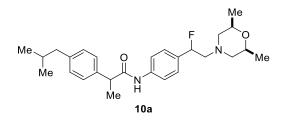
FTIR (thin film): cm⁻¹ 2933, 2854, 1451, 1266, 1116, 1012, 940, 868, 848, 665. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{10}H_{19}FNO^+$ 188.1445; found: 188.1444.

Benzyl 4-(2-fluoro-2-methyl-3-oxobutyl)piperazine-1-carboxylate (9). A solution of benzyl 4-(2fluoro-2,3-dimethylbut-3-en-1-yl)piperazine-1-carboxylate 6k (32.0 mg, 0.10 mmol, 1.0 equiv) and TsOH·H₂O (28.5 mg, 0.15 mmol, 1.5 equiv) in CH₂Cl₂ was cooled to -78 °C. Ozone was then bubbled through until the solution turned light blue after 10 min. Then triphenylphosphine (39.3, 0.15 mmol, 1.5 equiv) was added. The reaction mixture was allowed to slowly warm up to room temperature and to stir for another 8 h. To the reaction mixture was added water (4 mL) and extracted with dichloromethane (8 $mL \times 3$). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude reaction mixture was purified by silica column chromatography (50% ethyl acetate-hexanes), giving 9 as yellow oil (25.8 mg, 80%).


 $\mathbf{R}_{f} = 0.20 \ (25\% \text{ ethyl acetate-hexanes}).$

¹**H** NMR (CDCl₃, 500 MHz): δ 7.40–7.28 (m, 5H), 5.11 (s, 2H), 2.79 (dd, J = 33.5, 14.4 Hz, 1H), 2.62 (dd, J = 15.6, 14.4 Hz, 1H), 2.69-2.54 (m, 2H), 2.49-2.33 (m, 2H), 2.28 (d, J = 5.3 Hz, 3H), 1.35 (d, J = 5.3 Hz, 3H), 121.5 Hz, 3H).

¹³C NMR (CDCl₃, 125 MHZ): δ 210.9 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} = 30.2 Hz), 155.2, 136.7, 128.5, 128.0, 127.9, 102.7 (d, J_{C-F} F = 184.9 Hz), 67.1, 63.9 (d, $J_{C-F} = 19.3$ Hz), 54.2 (d, $J_{C-F} = 2.4$ Hz), 44.0, 26.7, 20.8 (d, $J_{C-F} = 23.9$ Hz). ¹⁹**F NMR** (CDCl₃, 471 MHz): δ -156.11.


FTIR (thin film): cm⁻¹ 2860, 2810, 1697, 1425, 1358, 1236, 1098, 1008, 849, 734, 696. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{17}H_{24}FN_2O_3^+$ 323.1766; found: 323.1764.

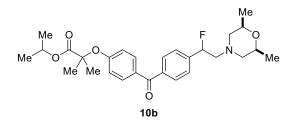
7.2. Synthesis of the bioactive β-fluoro alkylamine compounds

General procedure 3 (GP3) for alkene aminofluorination reactions.

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylamine **2** (0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol%). DCE (1.0 mL), alkene **1** (0.4 mmol, 2.0 equiv), and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine (verified by TLC, 20% ethyl acetate–hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography.

N-(4-(2-(2,6-Dimethylmorpholino)-1-fluoroethyl)phenyl)-2-(4-isobutylphenyl)propanamide (10a). Synthesized using GP3 from 1aa and *O*-benzoyl-2,6-dimethyl-hydroxylmorpholine 2h. ¹⁹F-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 1:1.

Isolated by flash column chromatography (20% ethyl acetate-hexanes to 33% ethyl acetate-hexanes), as a yellowish oil (55.5 mg, 63%).


 $\mathbf{R}_{f} = 0.10 (33\% \text{ ethyl acetate-hexanes}).$

¹**H NMR** (CDCl₃, 500 MHz): δ 7.43 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 5.59 (ddd, J = 48.6, 8.5, 1.7 Hz, 1H), 3.78–3.65 (m, 2H), 3.78–3.65 (m, 1H), 2.90 (d, J = 11.3 Hz, 1H), 2.87–2.81 (m, 1H), 2.79 (d, J = 10.4 Hz, 1H), 2.57 (dd, J = 33.8, 14.5 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 1.97–1.79 (m, 2H), 1.97–1.79 (m, 1H), 1.58 (d, J = 7.1 Hz, 3H), 1.16 (d, J = 4.1 Hz, 3H), 0.90 (d, J = 6.6 Hz, 6H).

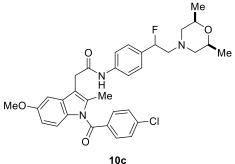
¹³**C NMR** (CDCl₃, 125 MHZ): δ 172.7, 141.2, 138.1, 137.9, 134.4 (d, $J_{C-F} = 20.3$ Hz), 129.9, 127.4, 126.3 (d, $J_{C-F} = 6.6$ Hz), 119.6, 92.2 (d, $J_{C-F} = 173.6$ Hz), 71.6, 64.4 (d, $J_{C-F} = 23.5$ Hz), 59.9, 59.6, 47.8, 45.0, 30.2, 22.4, 19.2, 19.1, 18.5.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -175.18, -175.20.

FTIR (thin film): cm⁻¹ 2969, 2632, 2868, 1663, 1601, 1516, 1454, 1411, 1248, 1083, 885, 840, 735. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{27}H_{38}FN_2O_2^+$ 441.2912; found: 441.2912.

Isopropyl 2-(4-(2-(2,6-dimethylmorpholino)-1-fluoroethyl)benzoyl)phenoxy)-2-methylpropanoate (10b). Synthesized using GP3 from 1ab and *O*-benzoyl-2,6-dimethyl-hydroxylmorpholine 2h. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 40% ethyl acetate–hexanes), as a yellowish oil (37.0 mg, 38%).

 $\mathbf{R}_{f} = 0.20 (33\% \text{ ethyl acetate-hexanes}).$

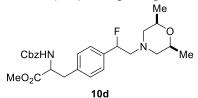

¹**H** NMR (CDCl₃, 500 MHz): δ 7.76 (d, J = 4.1 Hz, 2H), 7.74 (d, J = 4.1 Hz, 2H), 7.43 (d, J = 8.1 Hz, 2H),

6.86 (d, J = 8.1 Hz, 2H), 5.73 (ddd, J = 48.9, 8.5, 2.3 Hz, 1H), 5.19-4.95 (m, 1H), 3.79-3.58 (m, 2H), 2.89 (ddd, J = 22.5, 14.4, 8.5 Hz, 2H), 2.81 (d, J = 10.9 Hz, 1H), 2.66 (ddd, J = 33.6, 14.4, 2.3 Hz, 1H), 1.95 (dd, J = 23.4, 10.8 Hz, 2H), 1.66 (s, 6H), 1.20 (d, J = 6.3 Hz, 6H), 1.18 (d, J = 3.1 Hz, 3H), 1.17 (d, J = 3.1 Hz,= 3.1 Hz, 3H).

¹³C NMR (CDCl₃, 125 MHZ): δ 195.0, 173.1, 159.7, 142.7 (d, $J_{C-F} = 20.0$ Hz), 138.2, 132.0, 130.4, 129.9, 125.2 (d, $J_{C-F} = 7.3$ Hz), 117.2, 92.2 (d, $J_{C-F} = 175.4$ Hz), 79.4, 71.7, 69.4, 64.4 (d, $J_{C-F} = 22.5$ Hz), 60.0, 59.7, 25.4, 21.5, 19.2, 19.1.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -179.49.

FTIR (thin film): cm⁻¹ 2978, 2933, 2807, 1729, 1653, 1598, 1249, 1144, 1102, 929, 854, 767. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{28}H_{37}FNO_5^+$ 486.2650; found: 486.2645.


2-(1-(4-Chlorobenzovl)-5-methoxy-2-methyl-1H-indol-3-vl)-N-(4-(2-(2,6-dimethylmorpholino)-1fluoroethyl)phenyl)acetamide (10c). Synthesized using GP3 from 1ac and O-benzoyl-2,6-dimethylhydroxylmorpholine 2h from the reaction on 0.1 mmol scale. Isolated by flash column chromatography (33% ethyl acetate-hexanes to 70% ethyl acetate-hexanes), as a yellowish oil (38.3 mg, 65%). $\mathbf{R}_{f} = 0.20$ (67% ethyl acetate-hexanes).

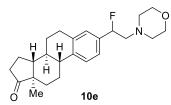
¹**H** NMR (CDCl₃, 500 MHz): δ 7.67 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.43–7.33 (m, 2H), 7.38 (br, 1H), 7.30–7.16 (m, 2H), 6.94 (s, 1H), 6.87 (d, J = 7.3 Hz, 1H), 6.71 (d, J = 7.3 Hz, 1H), 5.59 (dd, J = 48.6, 7.5 Hz, 1H), 3.80 (s, 3H), 3.80 (s, 2H), 3.76–3.64 (m, 2H), 2.88 (d, J = 10.7 Hz, 1H), 2.85–2.80 (m, 1H), 2.77 (d, J = 11.1 Hz, 1H), 2.64–2.49 (m, 1H), 2.44 (s, 3H), 1.97–1.83 (m, 2H), 1.16 (d, J = 3.3Hz, 3H), 1.15 (d, *J* = 3.3 Hz, 3H).

¹³C NMR (CDCl₃, 125 MHZ): δ 168.4, 168.3, 156.4, 139.7, 137.6, 136.7, 135.1, 134.9, 133.5, 131.2, 131.0, 130.1, 129.3, 126.3 (d, $J_{C-F} = 6.6$ Hz), 120.1, 115.2, 112.5, 112.2, 100.8, 92.2 (d, $J_{C-F} = 173.7$ Hz), 71.6, 64.4 (d, J_{C-F} = 23.4 Hz), 60.0, 59.6, 55.8, 33.4, 19.2, 19.1, 13.4.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -175.59.

FTIR (thin film): cm⁻¹ 3294, 2929, 2855, 1679, 1603, 1477, 1357, 1322, 1144, 1087, 836, 754. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{33}H_{36}ClFN_3O_4^+$ 592.2373; found: 592.2372.

2-(((benzyloxy)carbonyl)amino)-3-(4-(2-(2,6-dimethylmorpholino)-1-fluoroethyl)phenyl) Methyl propanoate (10d). Synthesized using GP3 from 1ad and O-benzoyl-2,6-dimethyl-hydroxylmorpholine **2h.** ¹⁹F-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 1:1. Isolated by flash column chromatography (20% ethyl acetate-hexanes to 33% ethyl acetate-hexanes), as a yellowish oil (56.8 mg, 60%).


 $\mathbf{R}_{f} = 0.25$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.39–7.29 (m, 5H), 7.24 (d, J = 7.8 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 5.62 (ddd, J = 48.8, 8.7, 1.9 Hz, 1H), 5.22 (d, J = 6.8 Hz, 1H), 5.13–5.01 (m, 2H), 4.66 (dd, J = 13.5, 5.8 Hz, 1H), 3.83–3.61 (m, 2H), 3.72 (s, 3H), 3.21–3.02 (m, 2H), 2.90 (d, J = 11.0 Hz, 1H), 2.88–2.82 (m, 1H), 2.79 (d, J = 11.0 Hz, 1H), 2.57 (dd, J = 34.8, 14.3 Hz, 1H), 1.97–1.85 (m, 2H), 1.17 (d, J = 2.5 Hz, 3H), 1.16 (d, J = 2.5 Hz, 3H).

¹³**C NMR** (CDCl₃, 125 MHZ): δ 171.8, 155.6, 137.7 (d, $J_{C-F} = 20.1$ Hz), 136.2, 136.1, 129.5, 128.6, 128.3, 128.1, 125.8 (d, $J_{C-F} = 6.7$ Hz), 92.4 (d, $J_{C-F} = 173.7$ Hz), 71.7, 71.6, 67.0, 64.5 (d, $J_{C-F} = 23.0$ Hz), 60.1, 59.6, 54.7, 52.4, 37.9, 37.8, 19.2, 19.1.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -176.68, -176.68.

FTIR (thin film): cm⁻¹ 3330, 2970, 2870, 1718, 1514, 1454, 1212, 1112, 886, 736, 698. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₂₆H₃₄FN₂O₅⁺ 473.2446; found: 473.2445.

3-(1-Fluoro-2-morpholinoethyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H***-cyclopenta[a] phenanthren-17-one (10e).** Synthesized using **GP3** from **1ae** and *O*-benzoylhydroxylmorpholine **2a**. Run the reaction at (0.1 mmol) scale. ¹⁹F-NMR analysis of the crude reaction mixture indicated a diastereomeric ratio (dr) of 1:1. Isolated by flash column chromatography (10% ethyl acetate–hexanes to 40% ethyl acetate–hexanes), as a yellowish oil (33.6 mg, 87%).

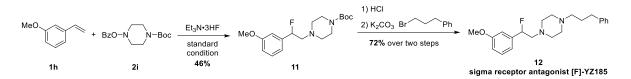
 $\mathbf{R}_f = 0.25$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.30 (d, J = 8.1 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 7.08 (s, 1H), 5.61 (ddd, J = 49.1, 8.9, 1.8 Hz, 1H), 3.75 (t, J = 4.6 Hz, 4H), 2.99–2.86 (m, 2H), 2.99–2.86 (m, 1H), 2.69–2.56 (m, 1H), 2.69–2.56 (m, 4H), 2.51 (dd, J = 18.1, 8.9 Hz, 1H), 2.41 (dd, J = 18.1, 10.1 Hz, 1H), 2.36–2.25 (m, 1H), 2.20–2.09 (m, 1H), 2.10–2.00 (m, 2H), 2.00–1.93 (m, 1H), 1.68–1.57 (m, 2H), 1.57–1.40 (m, 4H), 0.91 (s, 3H).

¹³C NMR (CDCl₃, 125 MHZ): δ 220.7, 140.3, 140.2, 136.8, 136.3 (d, $J_{C-F} = 19.7$ Hz), 136.1 (d, $J_{C-F} = 19.7$ Hz), 126.3 (d, $J_{C-F} = 6.5$ Hz), 126.2 (d, $J_{C-F} = 6.5$ Hz), 125.6, 125.5, 123.1, 123.0, 92.6 (d, $J_{C-F} = 173.2$ Hz), 92.5 (d, $J_{C-F} = 173.2$ Hz), 67.0, 65.0 (d, $J_{C-F} = 23.5$ Hz), 64.9 (d, $J_{C-F} = 23.5$ Hz), 54.1, 50.5, 48.0, 44.4, 38.2, 38.1, 35.9, 31.6, 29.5, 29.4, 26.3, 25.7, 21.6, 13.9.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -175.26, -175.53.

FTIR (thin film): cm⁻¹ 2929, 2855, 1736, 1453, 1257, 1116, 1008, 869, 734.


HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{24}H_{33}FNO_2^+$ 386.2490; found: 386.2489.

2-Fluoro-*N*,*N*-dimethyl-2-(1-tosyl-1*H*-indol-3-yl)ethan-1-amine (10f). Synthesized using GP3 from 1af and *O*-benzoyl-*N*,*N*-dimethylhydroxylamine 2p. Isolated by flash column chromatography (20% ethyl acetate–hexanes to 50% ethyl acetate–hexanes), as a yellowish oil (20.9 mg, 26%). $\mathbf{R}_f = 0.20$ (50% ethyl acetate–hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.97 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 7.9 Hz, 2H), 7.62 (d, J = 2.3 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.26 (t, J = 7.7 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 5.85 (ddd, J = 48.4, 8.5, 2.2 Hz, 1H), 3.05 (ddd, J = 17.0, 14.0, 8.6 Hz, 1H), 2.76 (ddd, J = 32.1, 14.0, 2.5 Hz,

1H), 2.40 (s, 6H), 2.35 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHZ): δ 145.2, 135.1 (d, $J_{C-F} = 9.0$ Hz), 130.0, 128.4 (d, $J_{C-F} = 2.7$ Hz), 126.9, 125.1, 123.7 (d, $J_{C-F} = 9.3$ Hz), 123.4, 120.2, 120.1, 120.0, 113.8, 87.3 (d, $J_{C-F} = 169.8$ Hz), 63.5 (d, $J_{C-F} = 22.8$ Hz), 46.0, 21.6. ¹⁹**F NMR** (CDCl₃, 471 MHz): δ -176.88. **FTIR** (thin film): cm⁻¹ 2923, 2853, 1596, 1446, 1370, 1172, 1019, 974, 746. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₂FN₂O₂S⁺ 361.1381; found: 361.1377.

7.3. Synthesis of the sigma receptor antagonist derivative [F]-YZ185

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoyl-4-*tert*-butoxycarbonylhydroxylpiperazine **2i** (0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol%). DCE (1.0 mL), 1methoxy-3-vinylbenzene **1h** (0.4 mmol, 2.0 equiv), and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was then stirred at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine, verified by TLC (20% ethyl acetate–hexanes) analysis. The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography (50% ethyl acetate–hexanes), giving **11** as yellowish oil (30.7 mg, 46%).

tert-Butyl 4-(2-fluoro-2-(3-methoxyphenyl)ethyl)piperazine-1-carboxylate (11).

 $\mathbf{R}_{f} = 0.15$ (25% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.28 (t, J = 7.8 Hz, 1H), 6.88 (d, J = 7.8 Hz, 2H), 6.78 (s, 1H), 5.62 (ddd, J = 48.9, 8.7, 2.2 Hz, 1H), 3.81 (s, 3H), 3.47 (t, J = 4.6 Hz, 4H), 2.91 (ddd, J = 17.6, 14.3, 8.7 Hz, 1H), 2.65 (ddd, J = 34.3, 14.3, 2.5 Hz, 1H), 2.60–2.49 (m, 4H), 1.46 (s, 9H).

¹³C NMR (CDCl₃, 125 MHZ): δ 159.7, 154.7, 140.3 (d, $J_{C-F} = 19.8$ Hz), 129.6, 117.7 (d, $J_{C-F} = 7.1$ Hz), 113.9, 111.1 (d, $J_{C-F} = 7.8$ Hz), 92.6 (d, $J_{C-F} = 174.6$ Hz), 79.7, 64.6 (d, $J_{C-F} = 23.0$ Hz), 55.3, 53.4, 28.4. ¹⁹F NMR (CDCl₃, 471 MHz): δ -177.09.

FTIR (thin film): cm⁻¹ 2933, 1692, 1421, 1365, 1245, 1169, 1125, 1004, 868, 779, 698. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{28}FN_2O_3^+$ 339.2079; found: 339.2076.

To a 25-mL round-bottom flask was added *tert*-butyl 4-(2-fluoro-2-(3-methoxyphenyl)ethyl)piperazine-1-carboxylate **11** (33.8 mg, 0.1 mmol, 1.0 equiv), 1,4-dioxane (2.0 mL), HCl in 1,4-dioxane (4 M, 0.2 mL, 0.8 mmol, 8.0 equiv). The reaction was allowed to stir at room temperature for 8 h, and then concentrated under reduced pressure. The crude solid was used for the next step without further purification.

To a solution of the crude residue in DMSO (2 mL), was added potassium carbonate (27.6 mg, 0.2 mmol, 2.0 equiv), 1-bromo-3-phenylpropane (23.9 mg, 0.12 mmol, 1.2 equiv). The mixture was allowed to stir at room temperature for overnight. The reaction was quenched by the addition of water (2 mL). The mixture was extracted with ethyl acetate (5 mL \times 3). The combined organic layers were washed with water (10 mL \times 2) and the brine (10 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash column chromatography (30% ethyl acetate–hexanes to 50% ethyl acetate–hexanes) gave **12** as colorless oil (25.6 mg, 72% over two steps).

1-(2-Fluoro-2-(3-methoxyphenyl)ethyl)-4-(3-phenylpropyl)piperazine (12).

 $\mathbf{R}_f = 0.15$ (50% ethyl acetate-hexanes).

¹**H** NMR (CDCl₃, 500 MHz): δ 7.28 (dd, *J* = 8.5, 7.0 Hz, 3H), 7.19 (d, *J* = 7.1 Hz, 3H), 6.94–6.80 (m, 3H), 5.62 (ddd, *J* = 49.1, 8.8, 1.9 Hz, 1H), 3.81 (s, 3H), 2.91 (ddd, *J* = 17.6, 14.3, 8.9 Hz, 1H), 2.78–2.46 (m, 1H), 2.78–2.46 (m, 2H), 2.45–2.34 (m, 2H), 1.84 (q, *J* = 7.7 Hz, 2H).

¹³**C NMR** (CDCl₃, 125 MHz): δ 159.7, 142.1, 140.5 (d, $J_{C-F} = 19.7$ Hz), 129.6, 128.4, 128.3, 125.8, 117.8 (d, $J_{C-F} = 6.7$ Hz), 113.9, 111.1 (d, $J_{C-F} = 7.5$ Hz), 92.6 (d, $J_{C-F} = 174.4$ Hz), 64.6 (d, $J_{C-F} = 22.8$ Hz), 58.0, 55.3, 53.6, 53.1, 33.7, 28.5.

¹⁹**F NMR** (CDCl₃, 471 MHz): δ -177.01.

FTIR (thin film): cm⁻¹ 2934, 2809, 1699, 1602, 1493, 1454, 1267, 1158, 1030, 784, 748. **HRMS** (ESI) m/z: $[M+H]^+$ Calcd for C₂₂H₃₀FN₂O⁺ 357.2337; found: 357.2337.

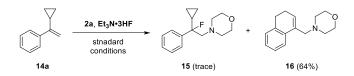
8. Mechanism studies

8.1. Control experiment in the presence of 2,6-di-tert-butyl-4-methylphenol (BHT)

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylmorpholine **2a** (41.4 mg, 0.2 mmol, 1.0 equiv), 2,6-di-tert-butyl-4-methylphenol (BHT, 44.1 mg, 0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol %). DCE (1.0 mL), 4-methylstyrene **1a** (0.4 mmol, 2.0 equiv) and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine (verified by TLC, 20% ethyl acetate–hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography (20% ethyl acetate–hexanes), giving **13a** as yellow oil (46.1 mg, 54%).

2,6-Di-tert-butyl-4-methyl-4-(2-morpholino-1-(p-tolyl)ethyl)cyclohexa-2,5-dien-1-one (13a).

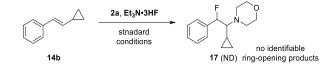
 $\mathbf{R}_f = 0.31$ (33% ethyl acetate-hexanes).


¹**H** NMR (CDCl₃, 500 MHz): δ 7.08 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 7.9 Hz, 2H), 6.56 (d, J = 2.8 Hz, 1H), 6.43 (d, J = 2.8 Hz, 1H), 3.61–3.50 (m, 4H), 2.92 (dd, J = 8.1, 4.5 Hz, 1H), 2.53 (dd, J = 12.9, 8.1 Hz, 1H), 2.48 (dd, J = 12.9, 4.5 Hz, 1H), 2.32 (s, 3H), 2.28–2.24 (m, 4H), 1.26 (s, 9H), 1.15 (s, 9H), 1.07 (s, 3H).

¹³C NMR (CDCl₃, 125 MHZ): δ 186.3, 146.5, 146.4, 144.3, 137.3, 136.4, 129.2, 128.5, 66.9, 60.1, 53.9, 52.5, 42.4, 34.9, 34.8, 29.5, 29.4, 25.2, 21.0.

FTIR (thin film): cm⁻¹ 1656, 1637, 1456, 1362, 1249, 1118, 910, 868, 734.

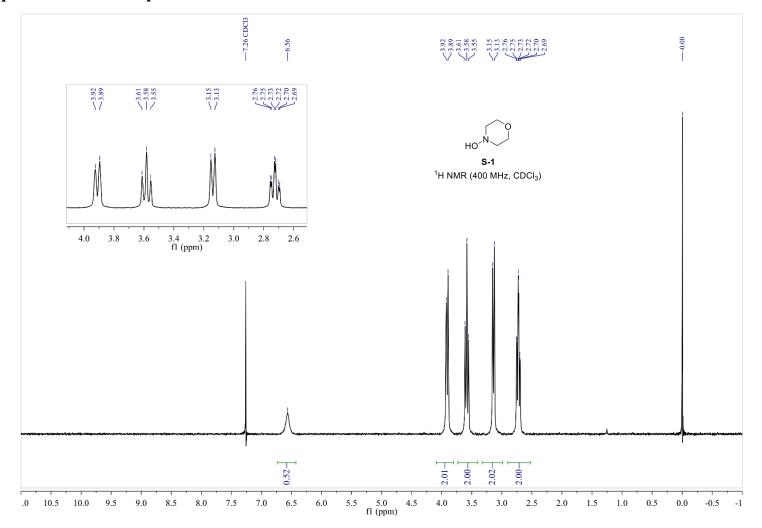
HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{28}H_{42}NO_2^+$ 424.3210; found: 424.3215.

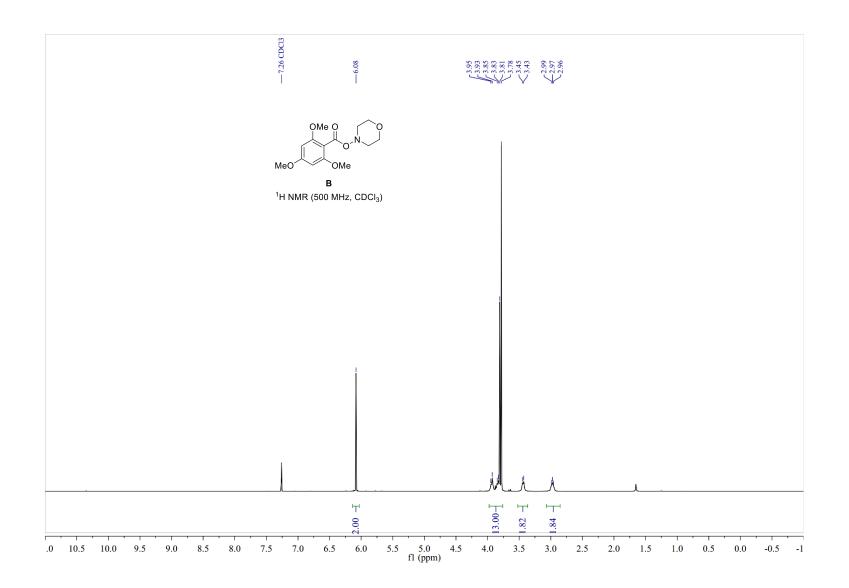

8.2. Radical clock experiments

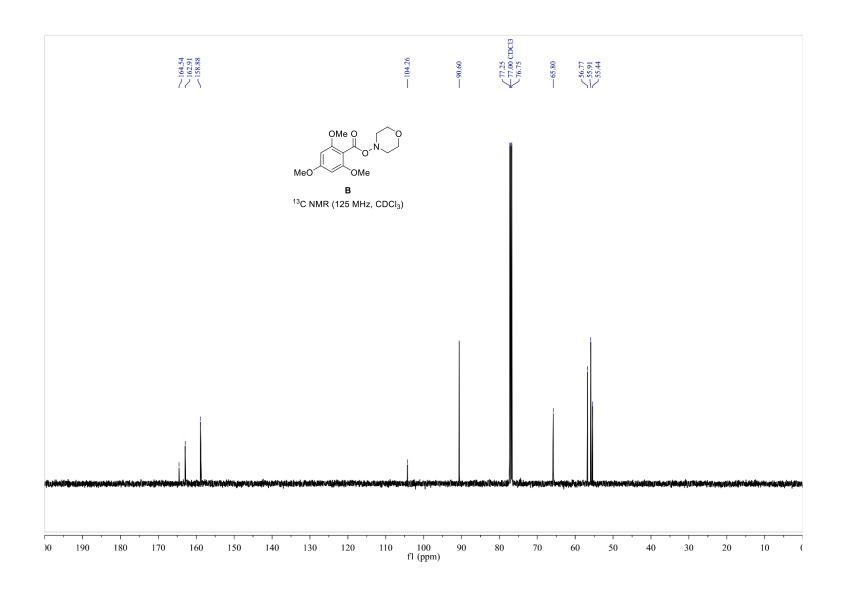
To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylmorpholine **2a** (41.4 mg, 0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol %). DCE (1.0 mL), (1-cyclopropylvinyl)benzene **14a** (0.4 mmol, 2.0 equiv), and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine (verified by TLC, 20% ethyl acetate–hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was purified by silica column chromatography (10% ethyl acetate–hexanes), giving **16** as clear oil (29.4 mg, 64%)

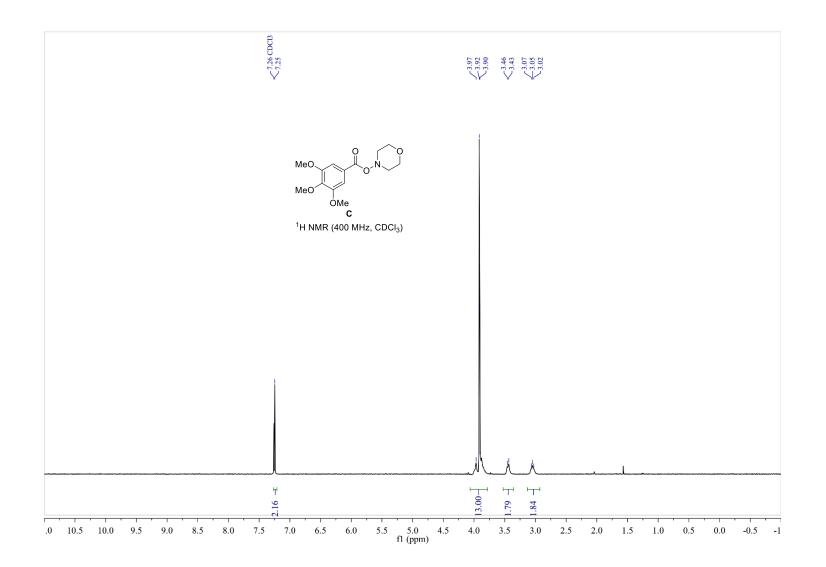
4-((3,4-Dihydronaphthalen-1-yl)methyl)morpholine (16).

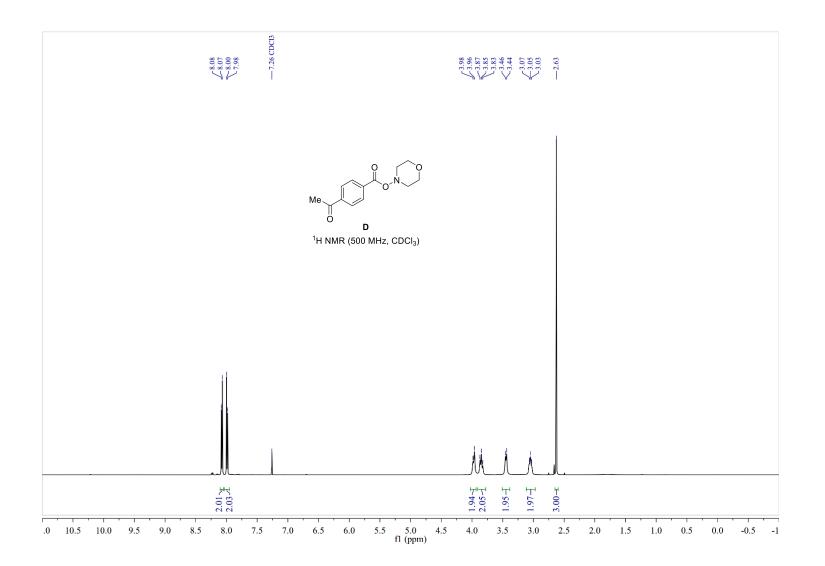
¹**H NMR** (CDCl₃, 500 MHz): δ 7.57 (d, J = 7.6 Hz, 1H), 7.22–7.11 (m, 3H), 6.02 (t, J = 4.2 Hz, 1H), 3.75–3.66 (m, 4H), 3.30 (s, 2H), 2.76 (t, J = 8.0 Hz, 2H), 2.48 (br s, 4H), 2.35–2.26 (m, 2H). Spectroscopic data match a previous report.⁸

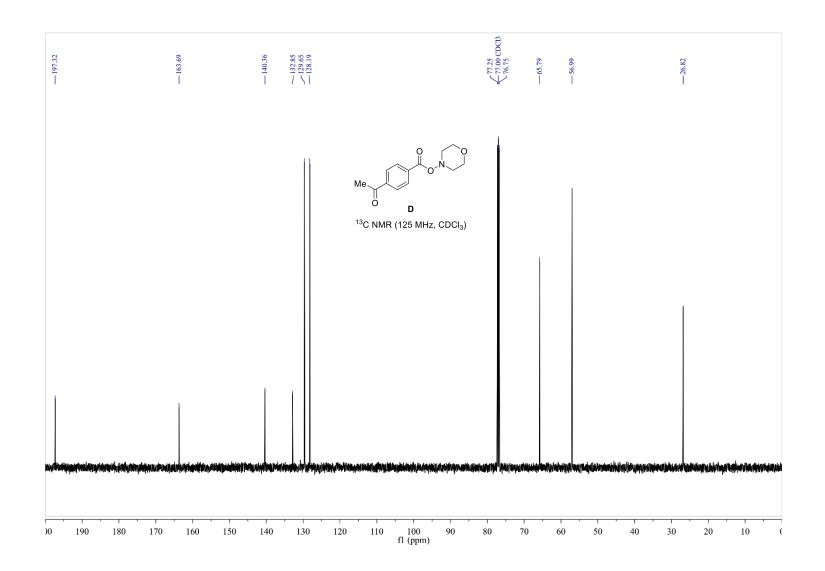


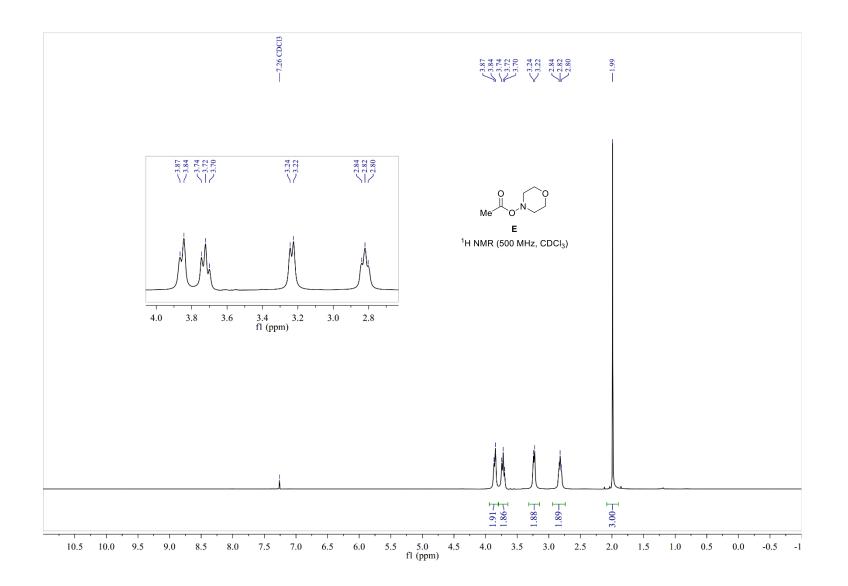

To a 10-mL FEP tube with Teflon-coated micro stir bar was added *O*-benzoylhydroxylmorpholine **2a** (41.4 mg, 0.2 mmol, 1.0 equiv) and Cu(HFacac)₂ (2.4 mg, 2.5 mol %). DCE (1.0 mL), (*E*)-(2-cyclopropylvinyl)benzene **14b** (0.4 mmol, 2.0 equiv), and Et₃N•3HF (322 mg, 2 mmol, 10 equiv) were sequentially added. The mixture was allowed to stir at 80 °C for 2 h until the consumption of *O*-benzoylhydroxylamine (verified by TLC, 20% ethyl acetate–hexanes). The resulting reaction mixture was cooled to room temperature and quenched through the addition of Et₃N (0.5 mL). The solution was then diluted with ethyl acetate to a final volume of 5.0 mL and filtered through a plug of activated, neutral Al₂O₃ (Brockman grade I, 58–60Å). The filtrate was concentrated under reduced pressure, providing the crude reaction mixture. The crude reaction mixture was analyzed by LC-MS, ¹H NMR and ¹⁹F NMR spectrometry, none of which shows identifiable ring-opening product **17**.

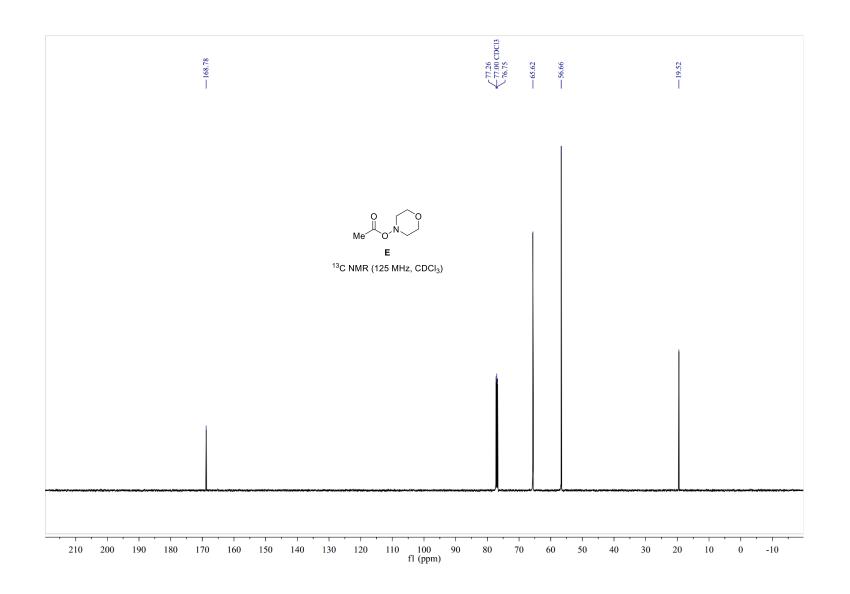

9. References

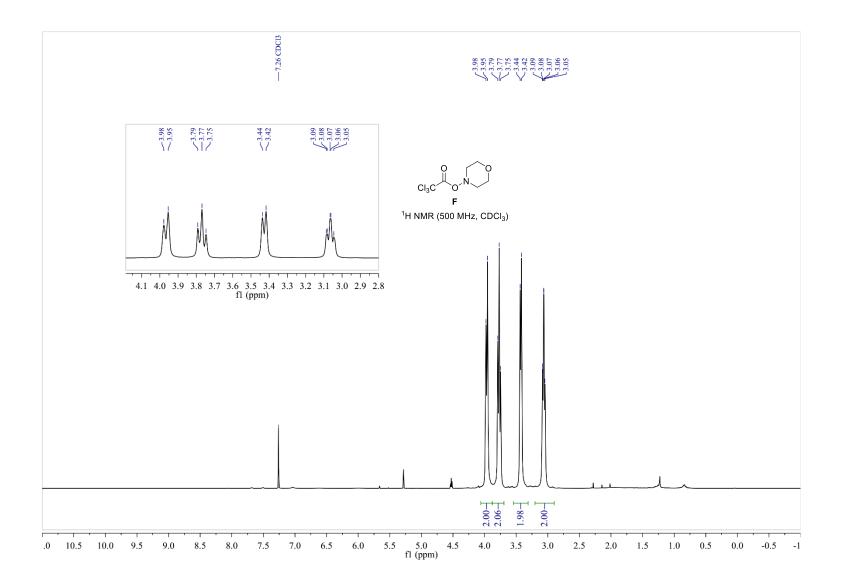

- 1 Kang, T.; Kim, N.; Cheng, P. T.; Zhang, H.; Foo, K.; Engle, K. M. Nickel-Catalyzed 1, 2-Carboamination of Alkenyl Alcohols. J. Am. Chem. Soc. 2021, 143, 13962–13970.
- 2 An, Y.; Zhang, B.-S.; Zhang, Z.; Liu, C.; Gou, X.-Y.; Ding, Y.-N.; Liang, Y.-M. A Carboxylate-Assisted Amination/Unactivated C (Sp²)-H Arylation Reaction *via* a Palladium/Norbornene Cooperative Catalysis. *Chem. Commun.* **2020**, *56*, 5933–5936.
- 3 Kokare, N. D.; Nagawade, R. R.; Rane, V. P.; Shinde, D. B., Design, Synthesis and Utilization of a Novel Coupling Reagent for the Preparation of *O*-Alkyl Hydroxamic Acids. *Tetrahedron Lett.* **2007**, *48*, 4437–4440.
- 4 Svejstrup, T. D.; Ruffoni, A.; Juliá, F.; Aubert, V. M.; Leonori, D., Synthesis of Arylamines via Aminium Radicals. *Angew. Chem. Int. Ed.* **2017**, *56*, 14948–14952.
- (a) Biloski, A. J.; Ganem, B., Improved Oxidation of Amines with Dibenzoyl Peroxide. Synthesis 1983, 537–538. (b) Berman, A. M.; Johnson, J. S. Copper-Catalyzed Electrophilic Amination of Organozinc Nucleophiles: Documentation of O-Benzoyl Hydroxylamines as Broadly Useful R₂N(+) and RHN(+) Synthons. J. Org. Chem. 2006, 71, 219–224. (c) Dhanju, S.; Crich, D., Synthesis of N, N, O-Trisubstituted Hydroxylamines by Stepwise Reduction and Substitution of O-Acyl N, N-Disubstituted Hydroxylamines. Org. Lett. 2016, 18, 1820–1823. (d) Shi, H.; Babinski, D. J.; Ritter, T., Modular C–H Functionalization Cascade of Aryl Iodides. J. Am. Chem. Soc. 2015, 137, 3775–3778. (e) Fan, L.; Liu, J.; Bai, L.; Wang, Y.; Luan, X., Rapid Assembly of Diversely Functionalized Spiroindenes by a Three-Component Palladium-Catalyzed C–H Amination/Phenol Dearomatization Domino Reaction. Angew. Chem. Int. Ed. 2017, 56, 14257–14261. (f) Zhu, S.; Buchwald, S. L., Enantioselective CuH-Catalyzed Anti-Markovnikov Hydroamination of 1, 1-Disubstituted Alkenes. J. Am. Chem. Soc. 2014, 136, 15913–15916.
- 6 Yu, S.; Noble, A.; Bedford, R. B.; Aggarwal, V. K. Methylenespiro[2.3]hexanes *via* Nickel-Catalyzed Cyclopropanations with [1.1.1] Propellane. *J. Am. Chem. Soc.* **2019**, *141*, 20325–20334.
- 7 Kurandina, D.; Parasram, M.; Gevorgyan, V. Visible Light-Induced Room-Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. *Angew. Chem. Int. Ed.* **2017**, *56*, 14212–14216.
- 8 Hemric, B. N.; Shen, K.; Wang, Q., Copper-Catalyzed Amino Lactonization and Amino Oxygenation of Alkenes Using *O*-Benzoylhydroxylamines. *J. Am. Chem. Soc.* **2016**, *138*, 5813–5816.

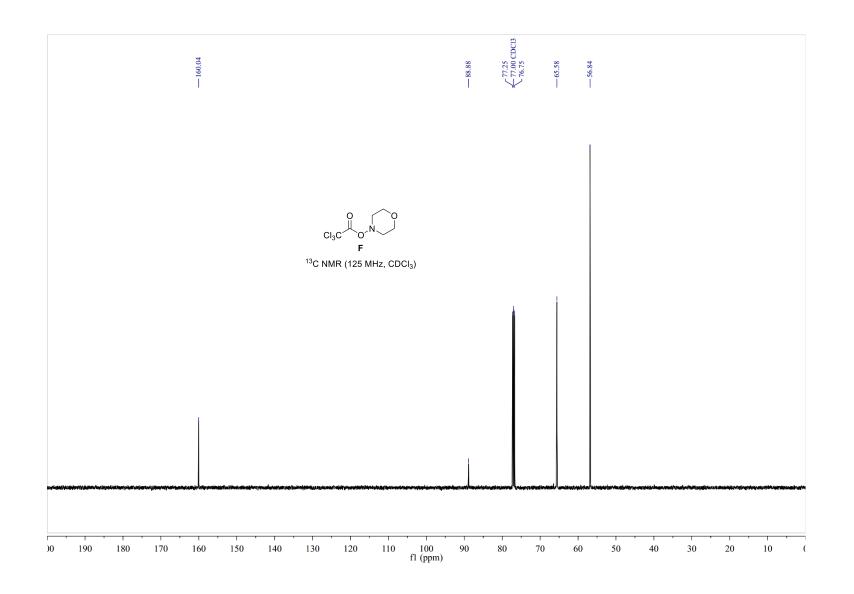

10. Copies of the NMR Spectra

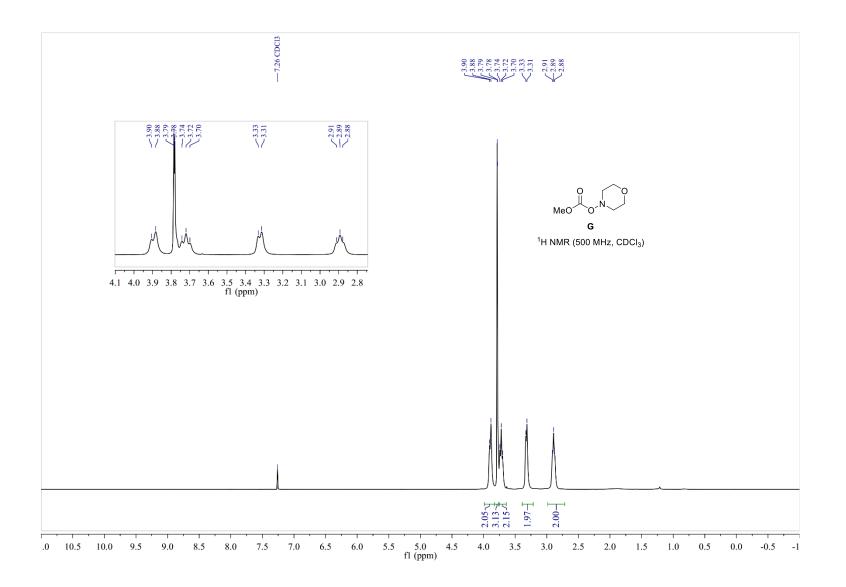


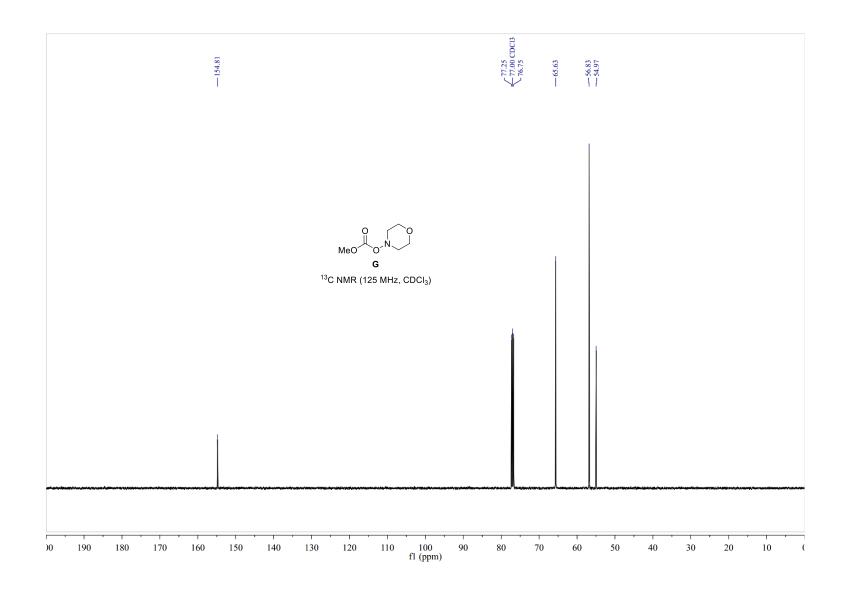


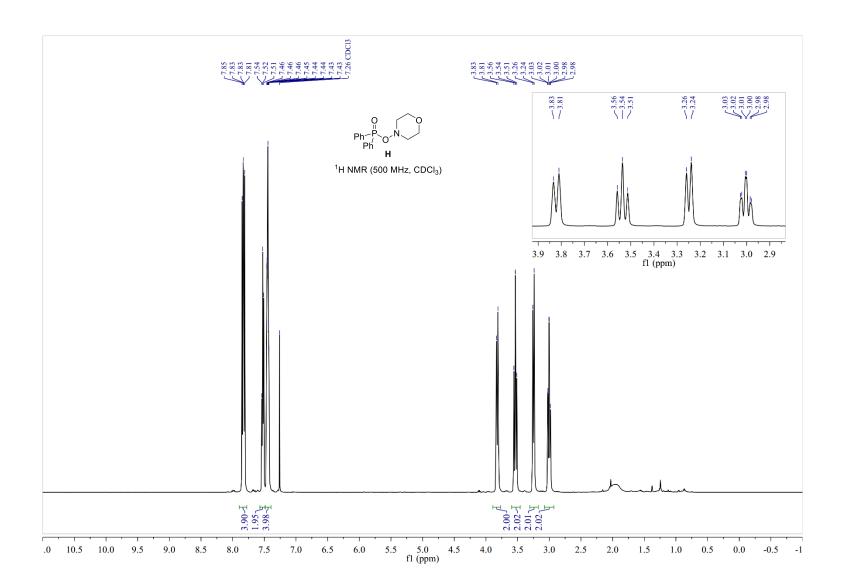


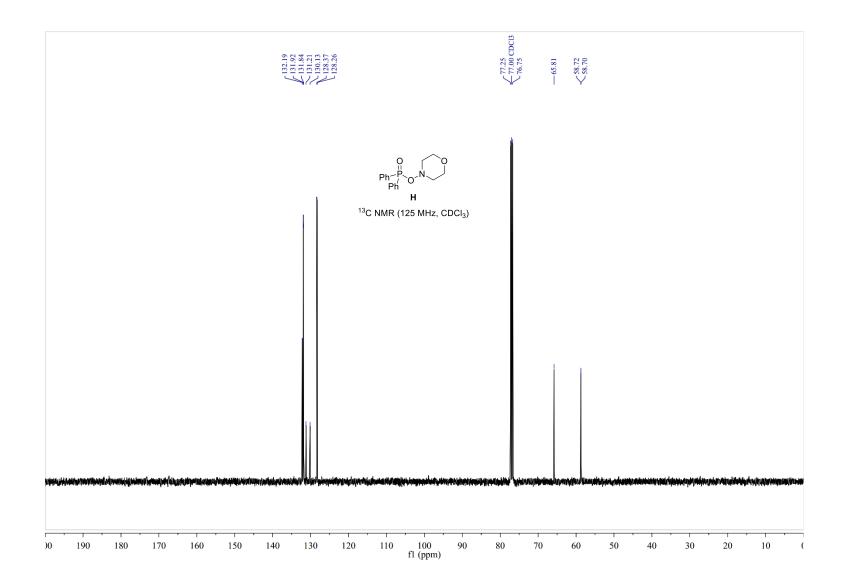


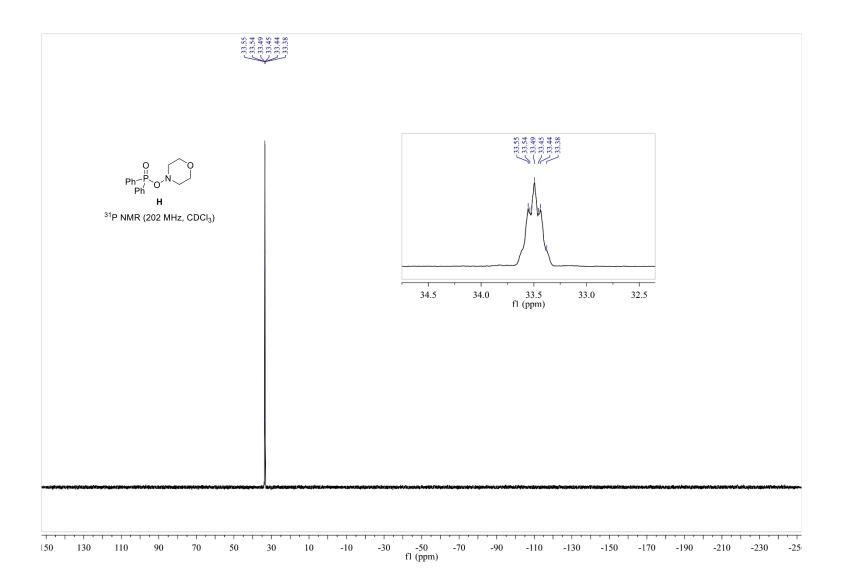


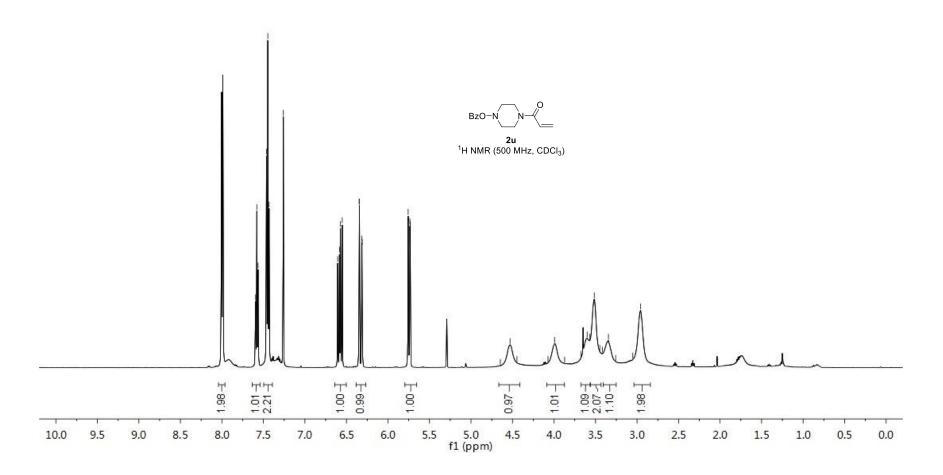


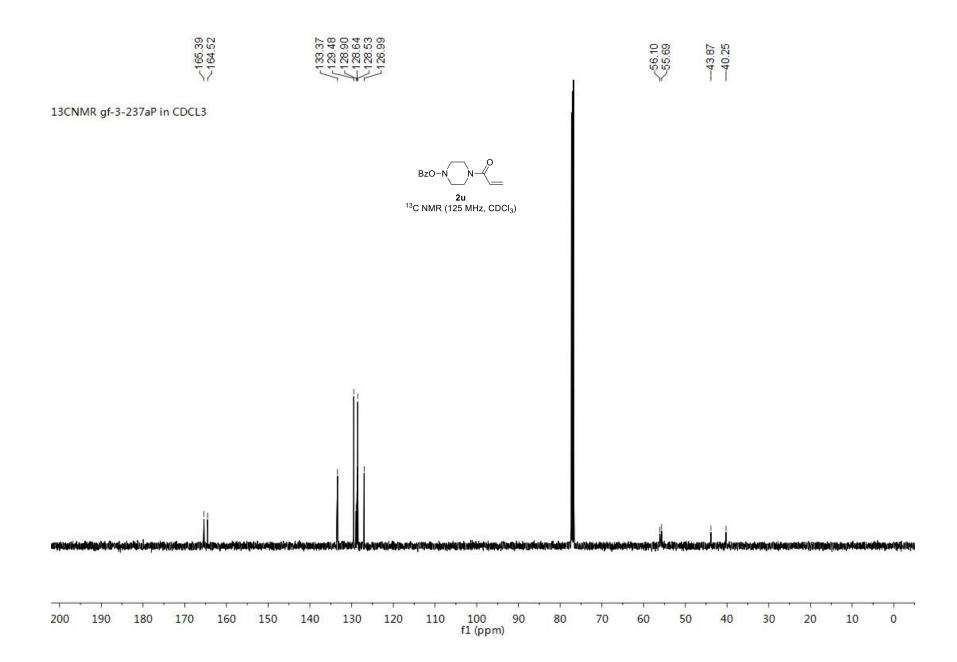


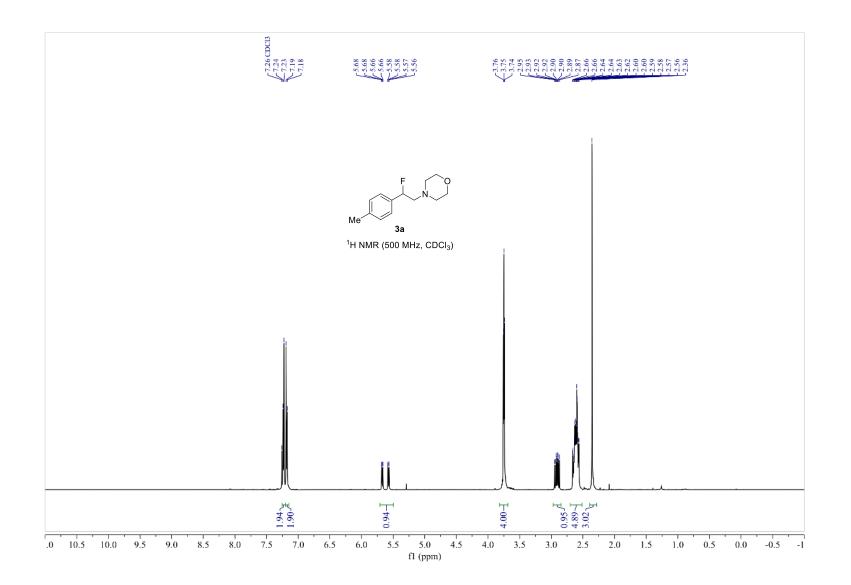


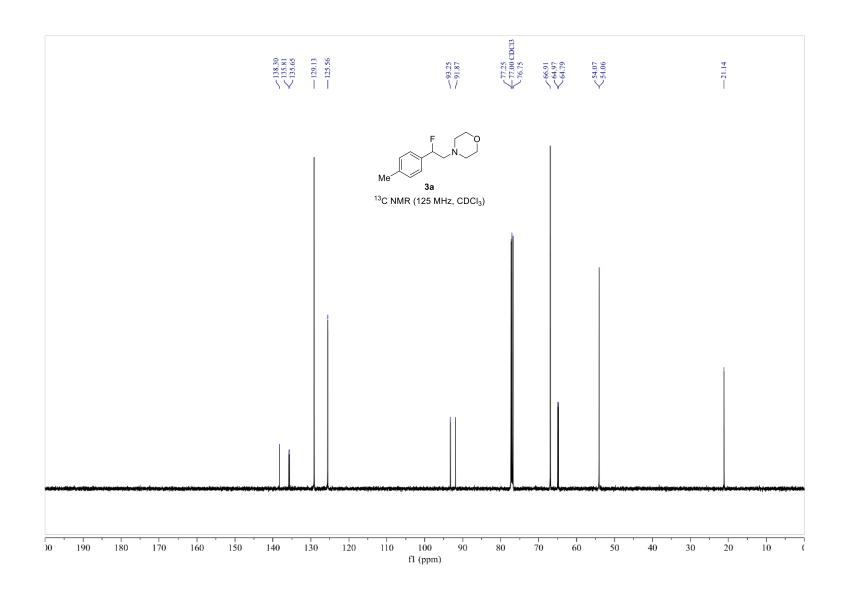




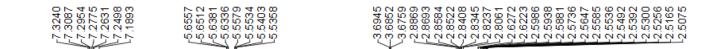


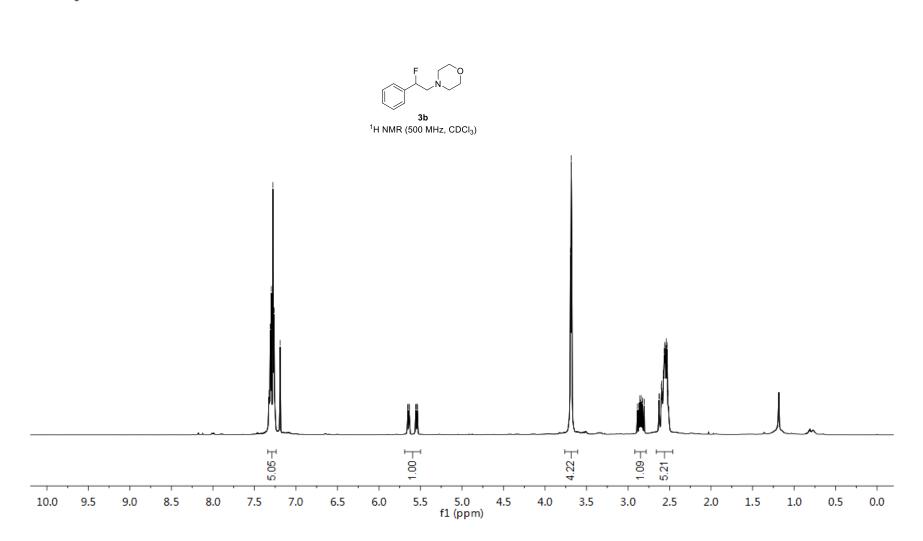


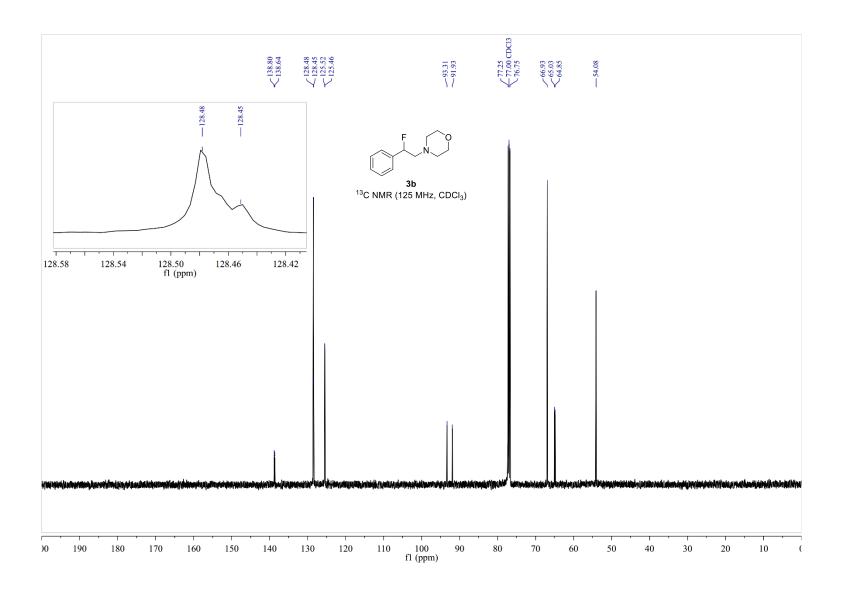


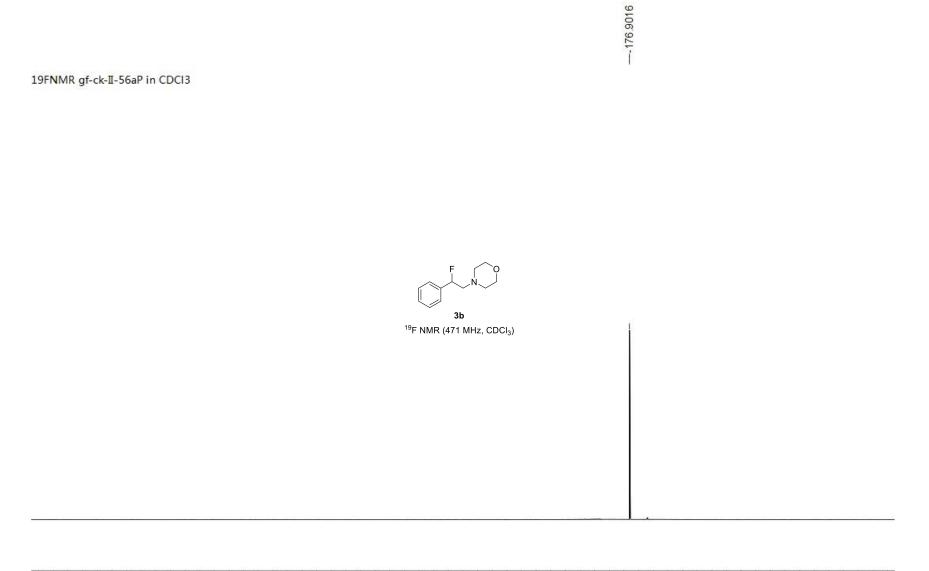


1HNMR gf-3-237aP in CDCL3

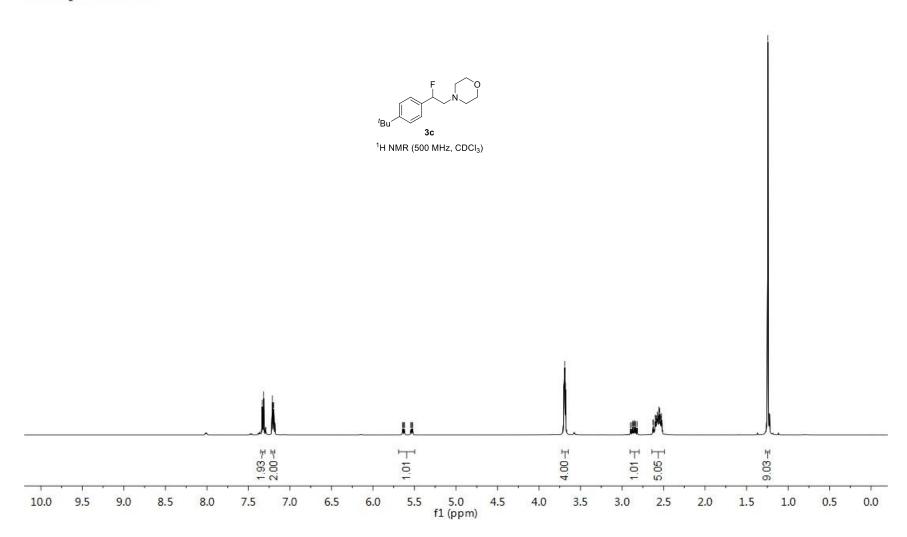


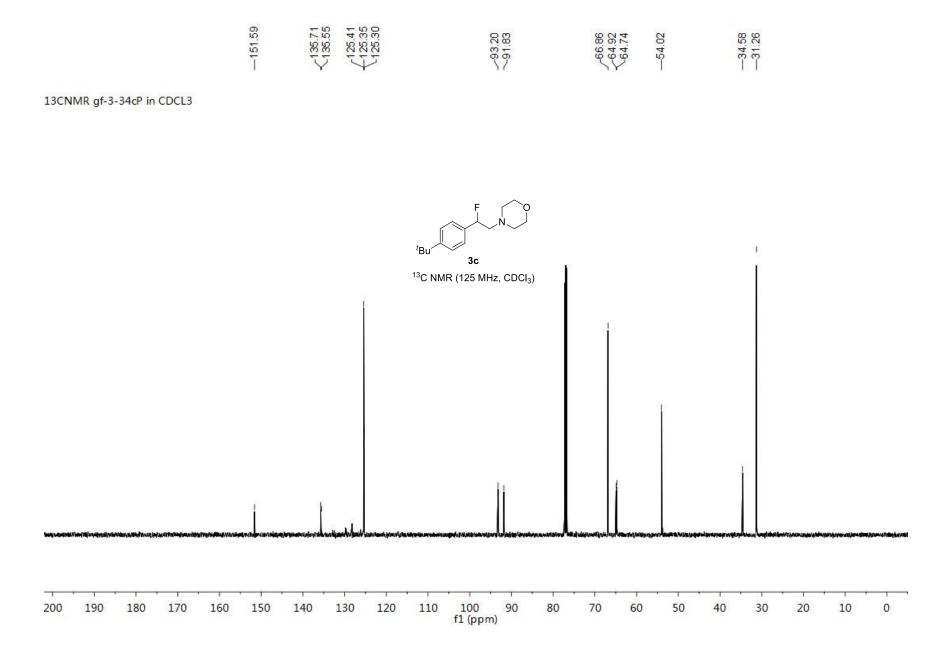

19F NMR gf-3-32a P in CDCl3


`Q Me **3a** ¹⁹F NMR (471 MHz, CDCl₃)

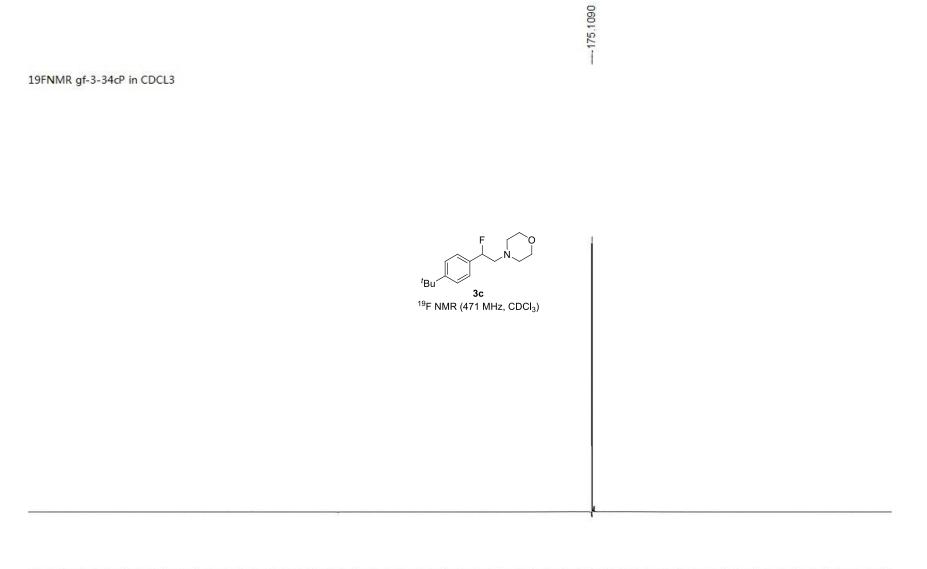

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 f1 (ppm)

1HNMR gf-ck-II-56aP in CDCl3

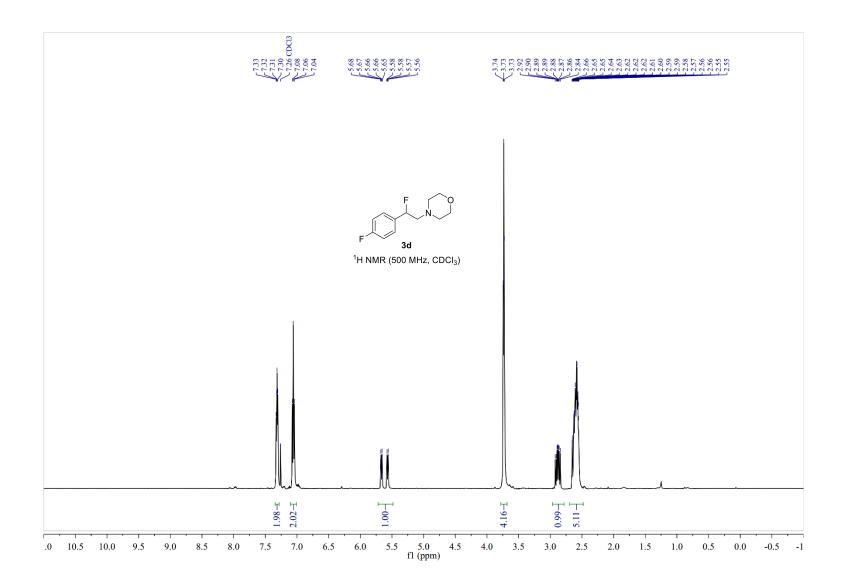


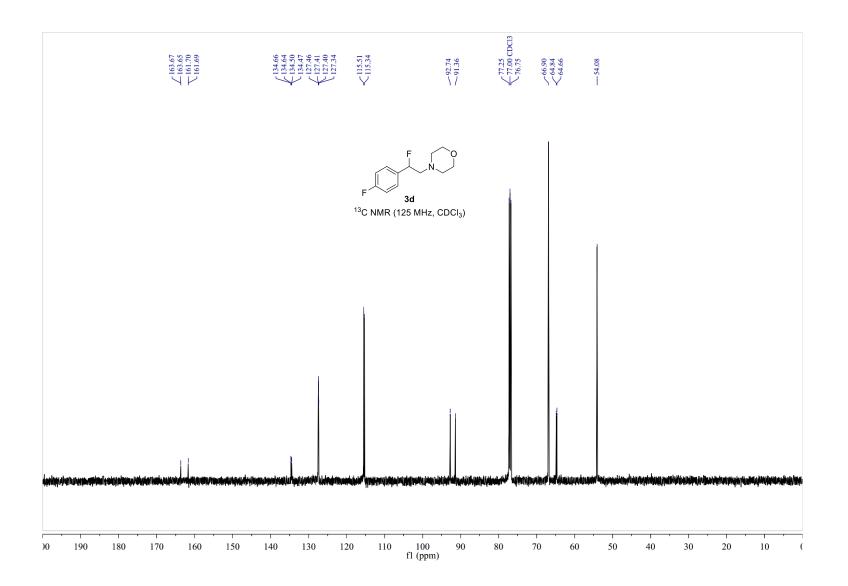


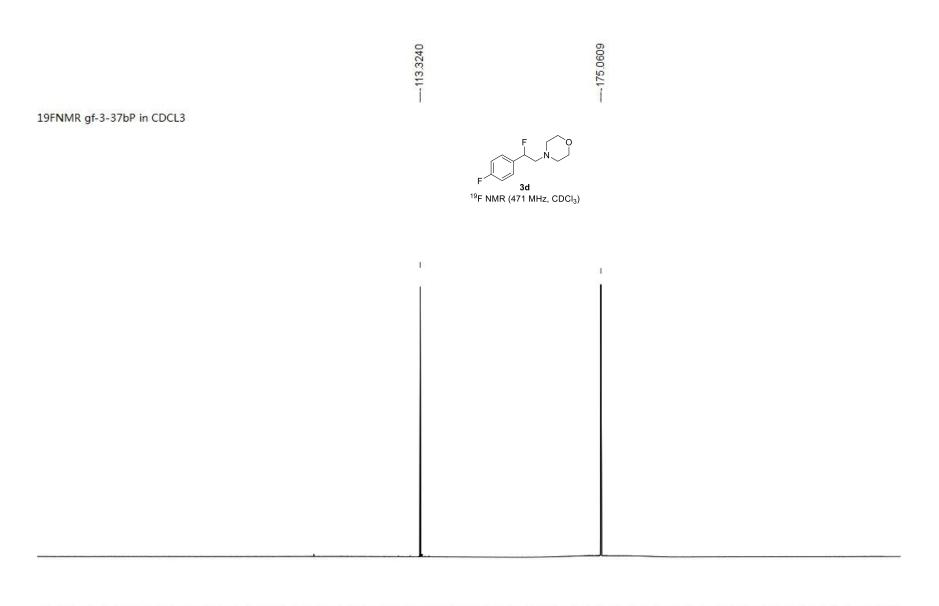
20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)

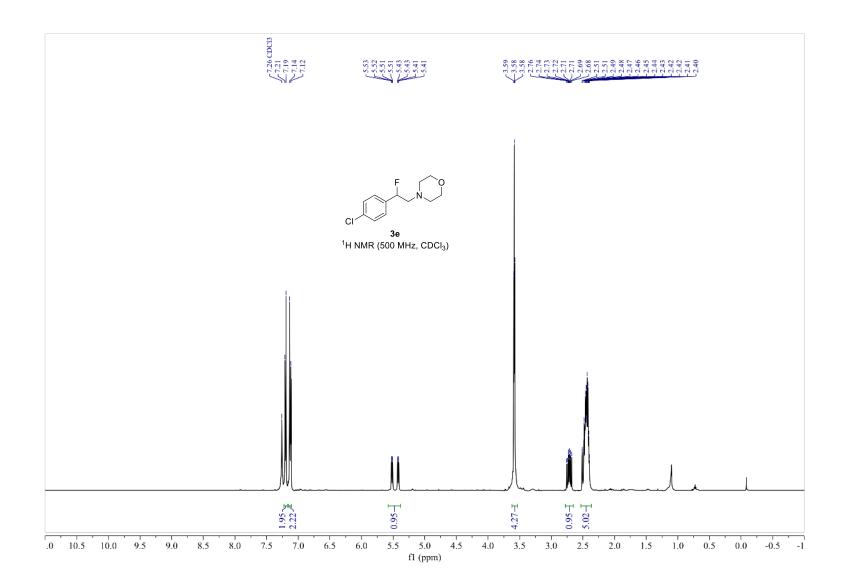


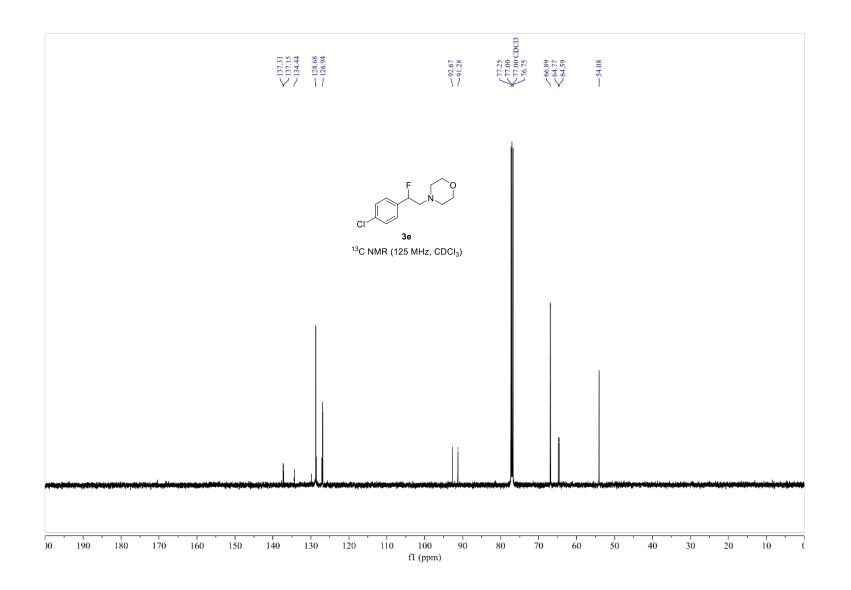
1HNMR gf-3-34cP in CDCl3

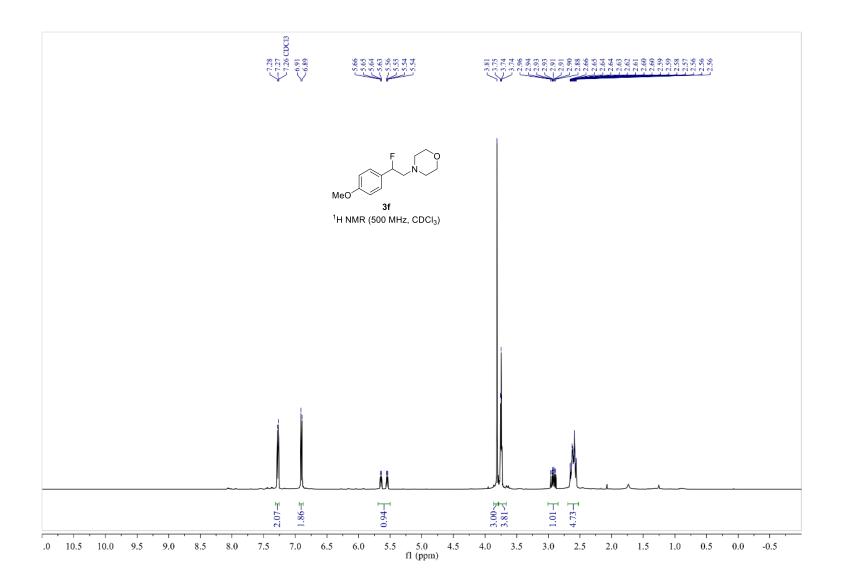


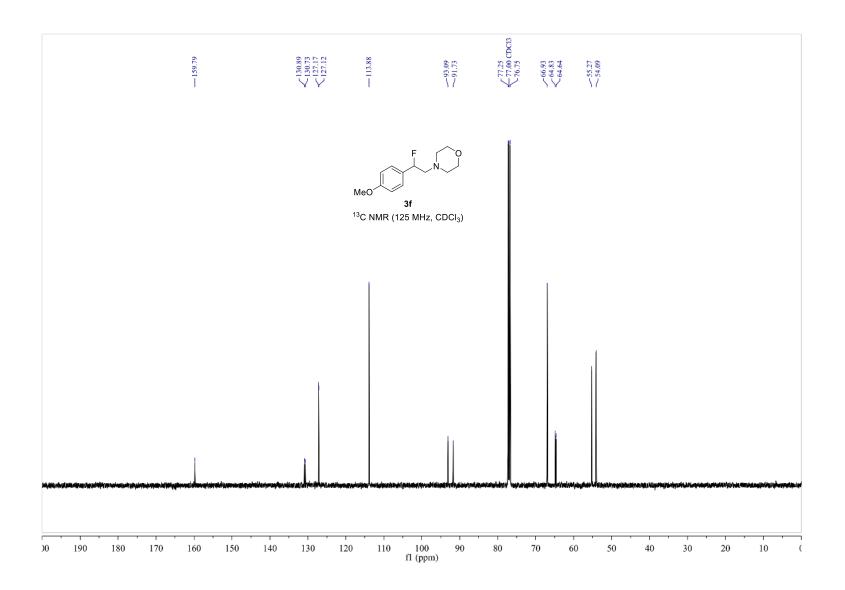


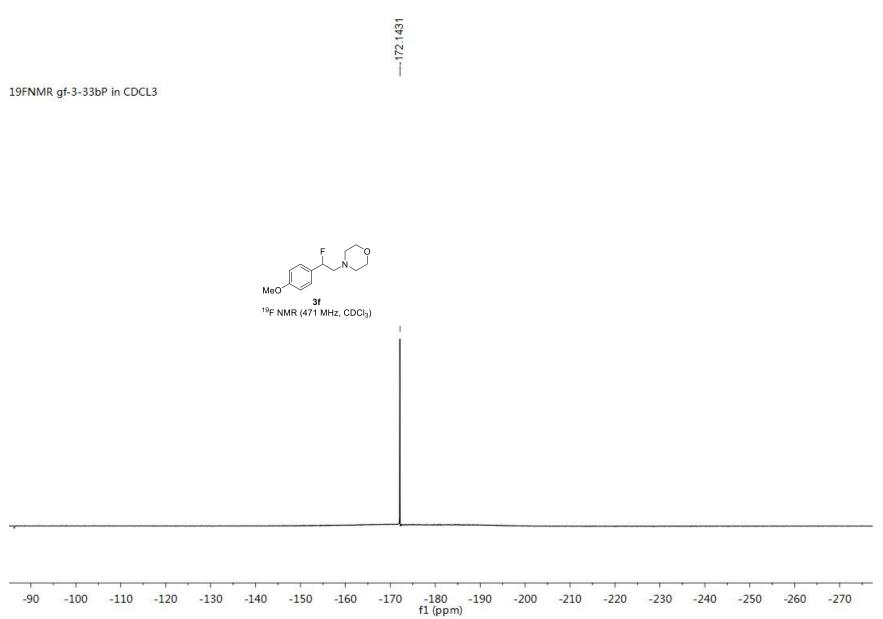

S66

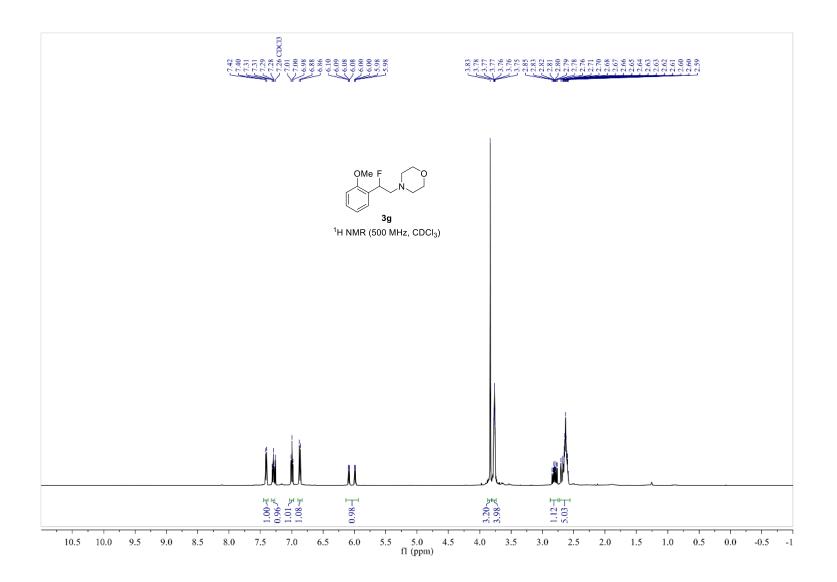

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 f1 (ppm)

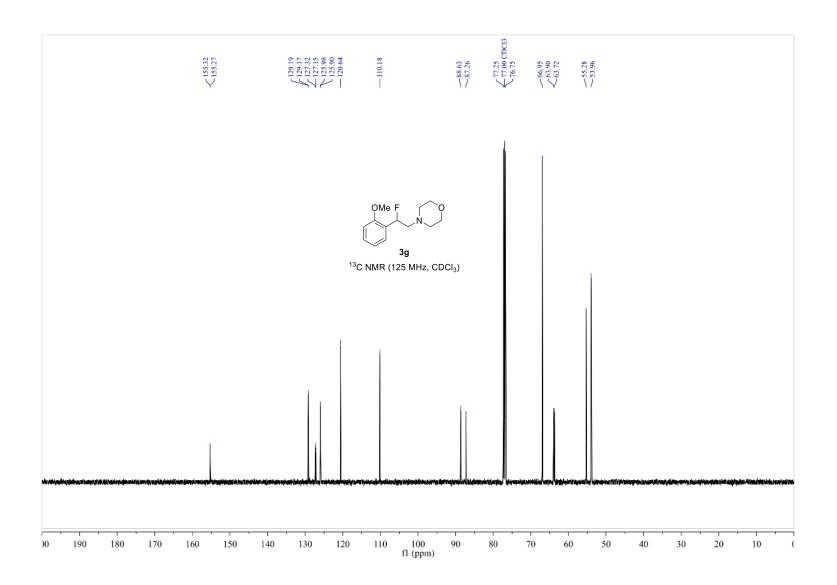


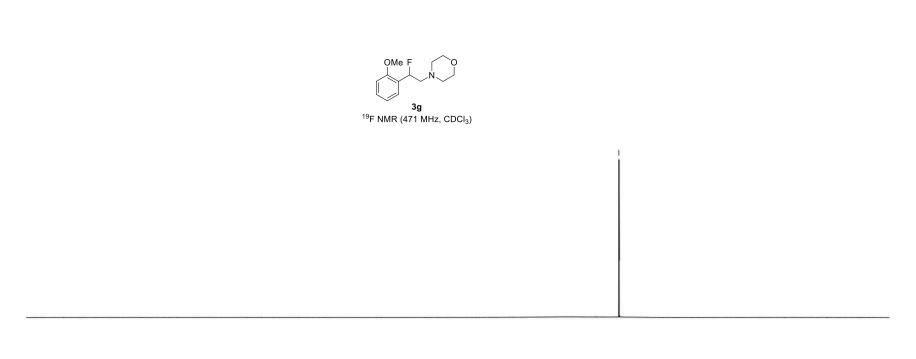


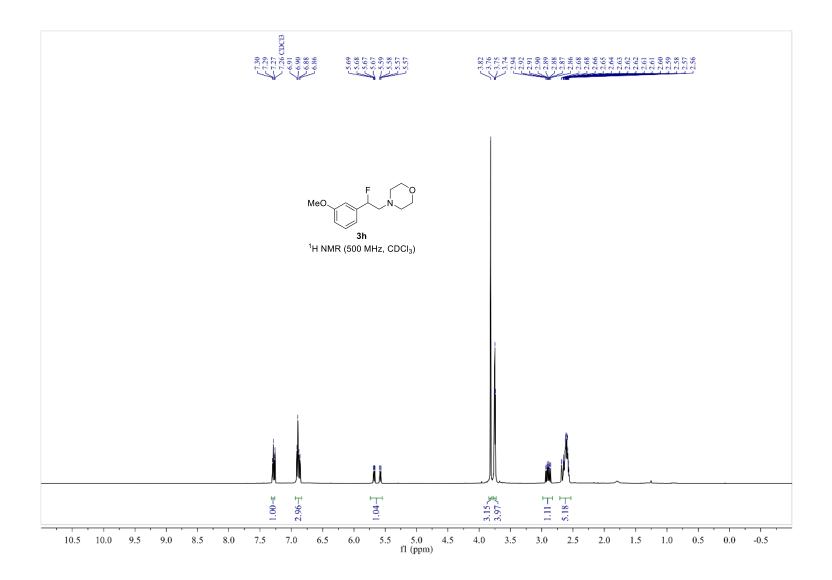

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 f1 (ppm)

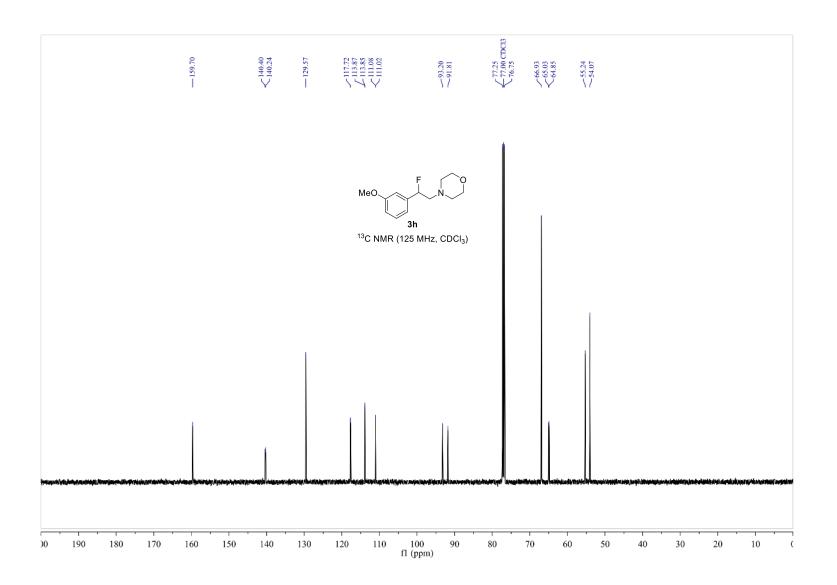


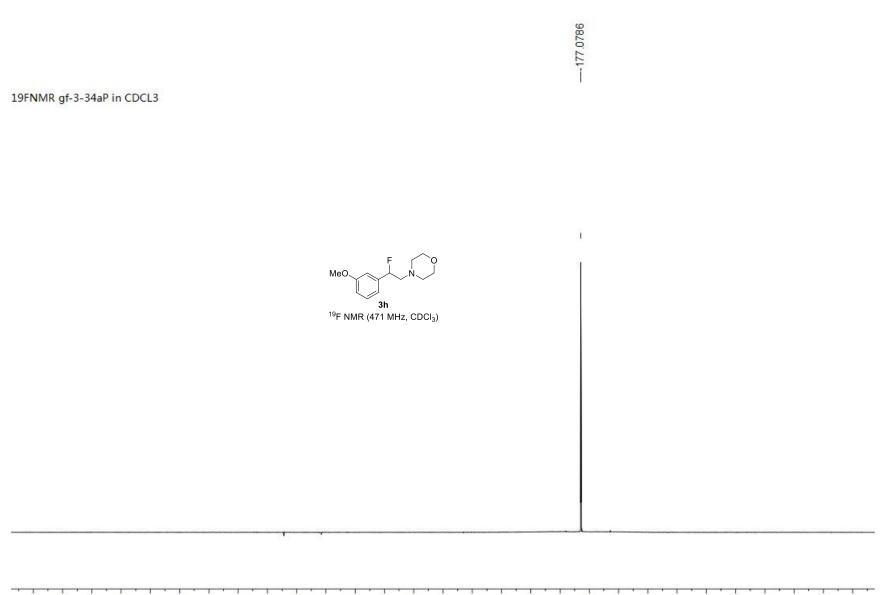


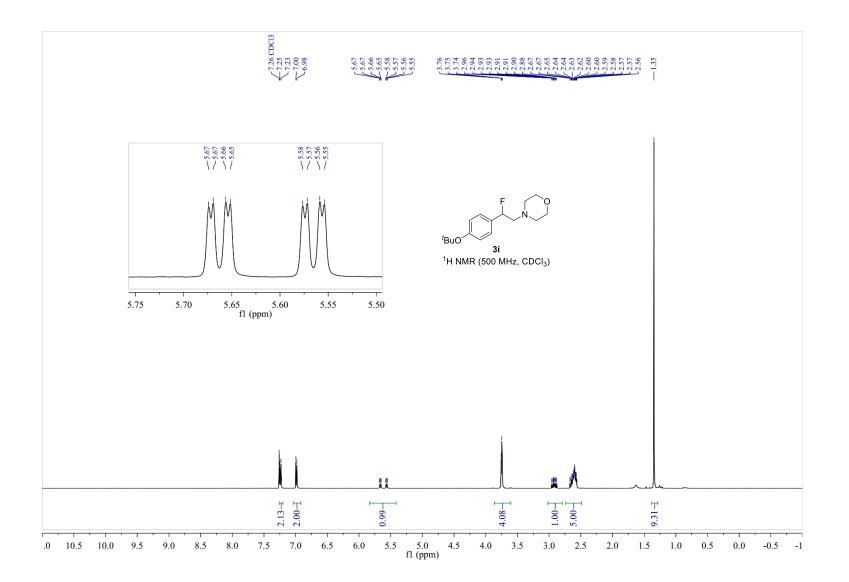

19FNMR gf-3-37cP in CDCL3 | `0 .N_ **3e** ¹⁹F NMR (471 MHz, CDCl₃)

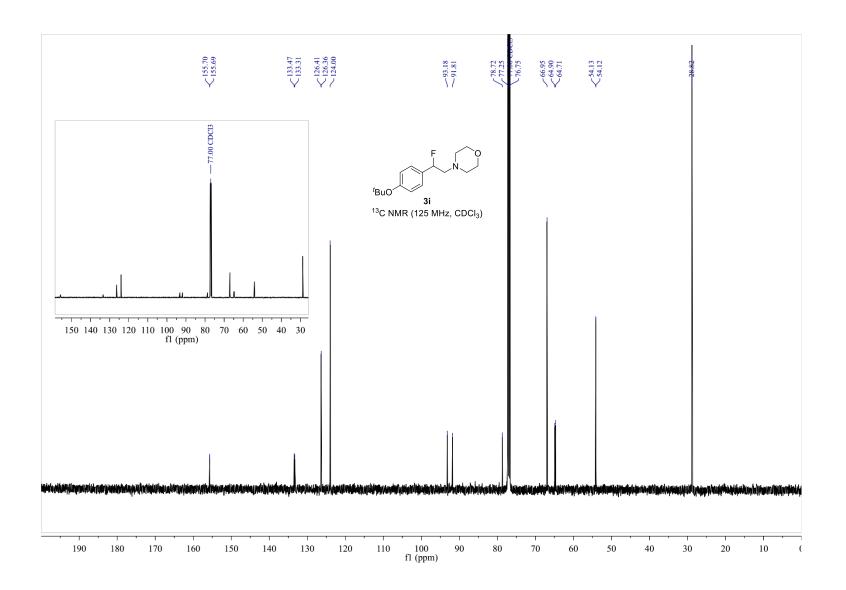


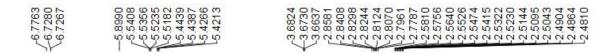


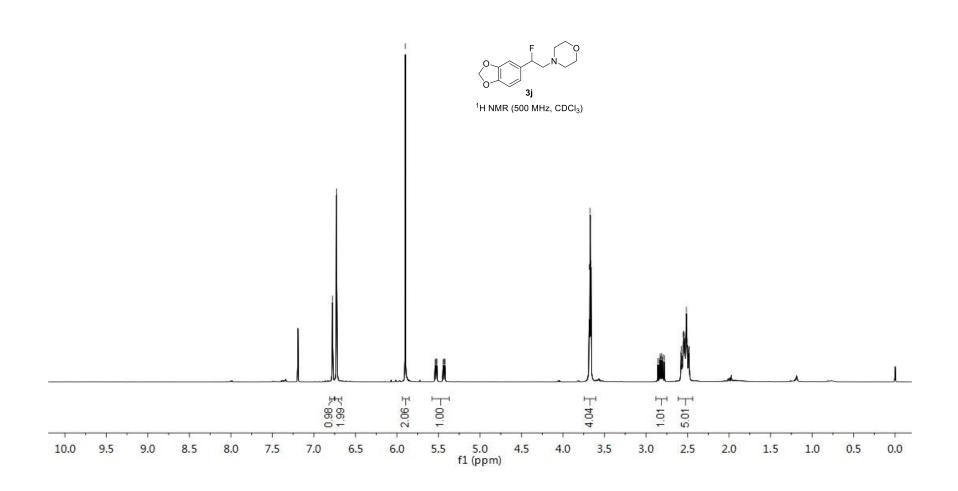


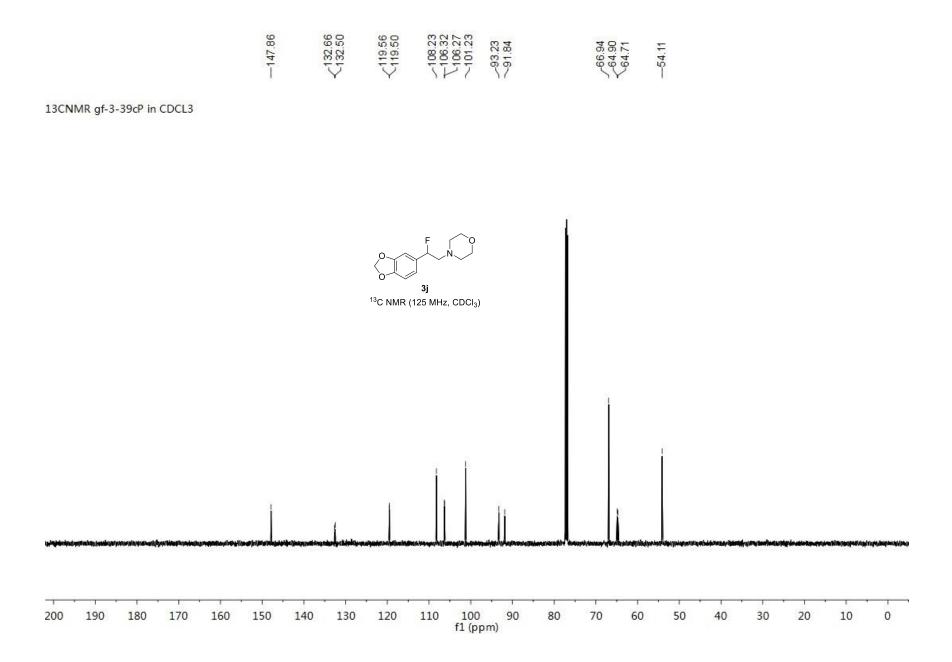


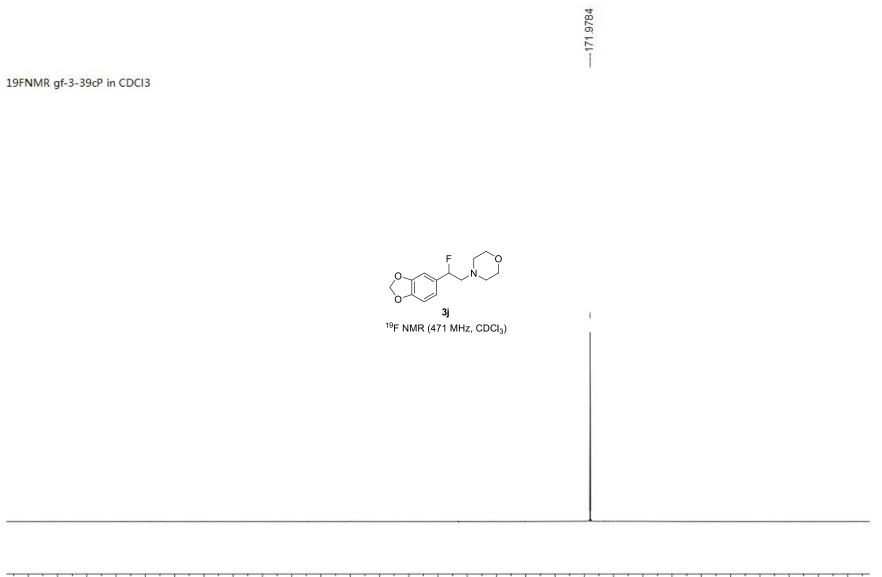

19FNMR gf-3-34bP in CDCL3

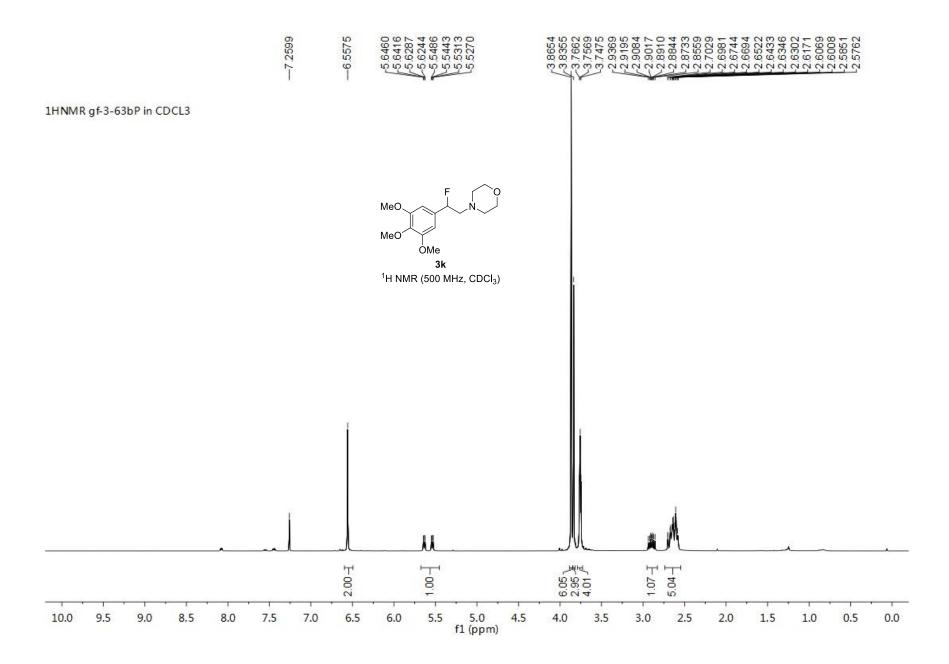


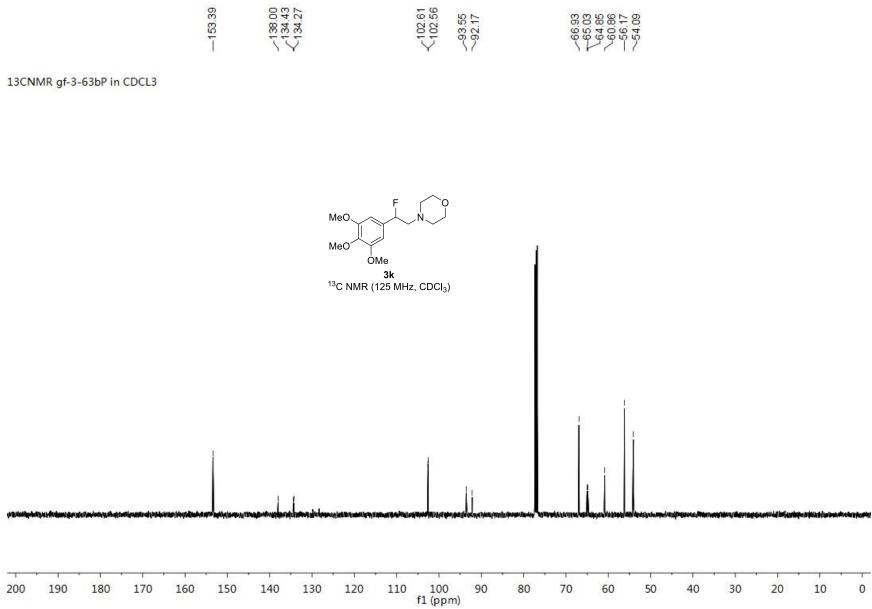


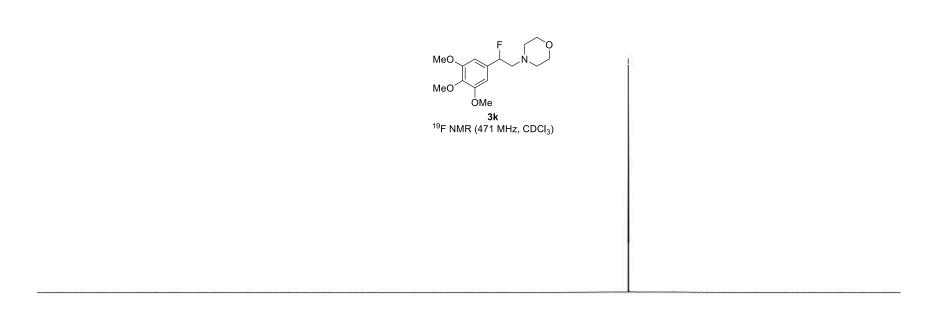


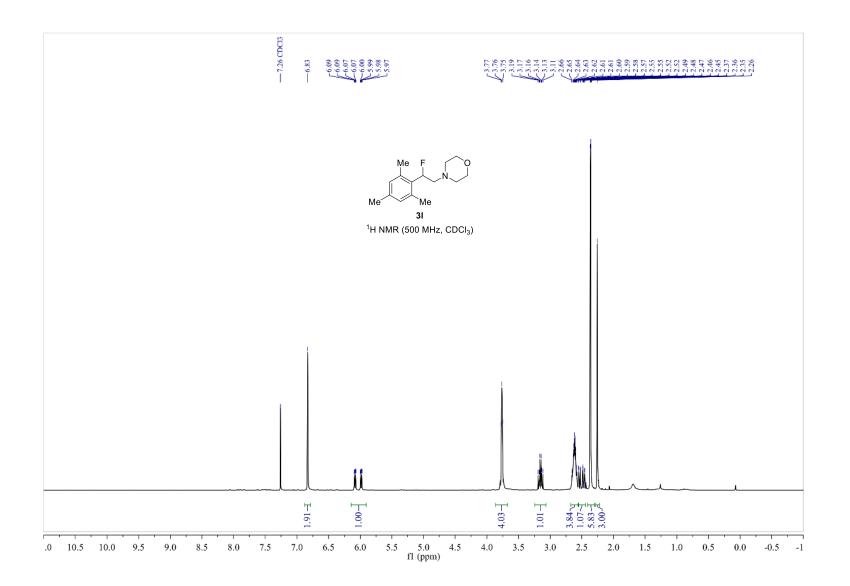

19FNMR gf-3-38aP in CDCL3

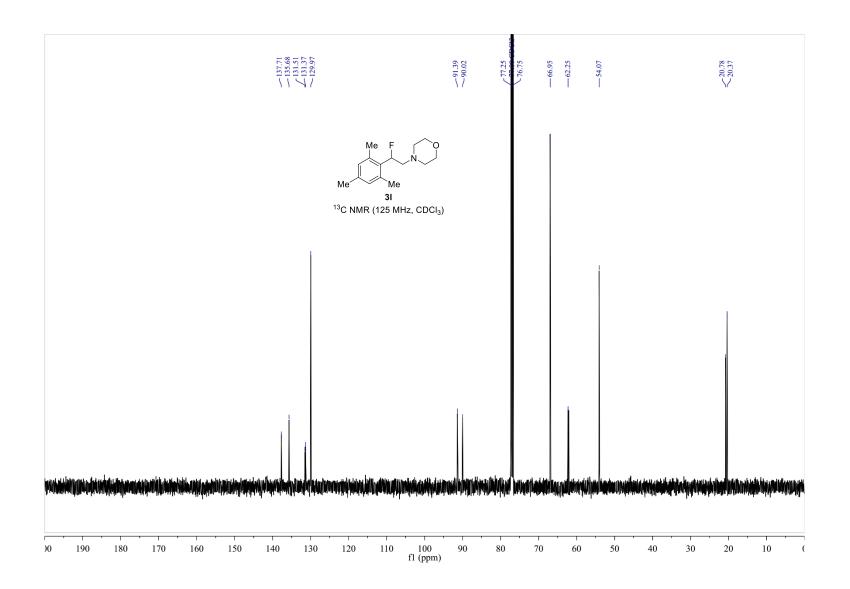

`o ^tBuO² **3i** ¹⁹F NMR (471 MHz, CDCl₃)



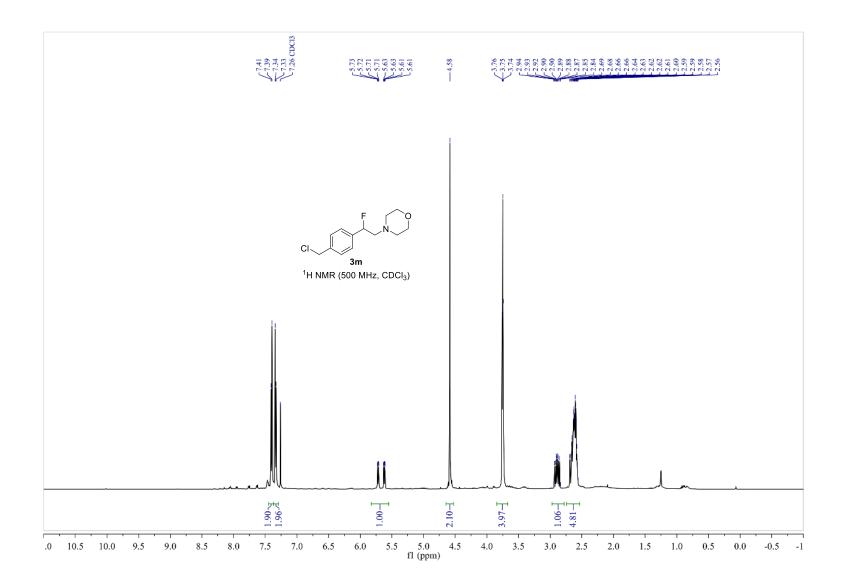

1HNMR gf-3-39cP in CDCL3

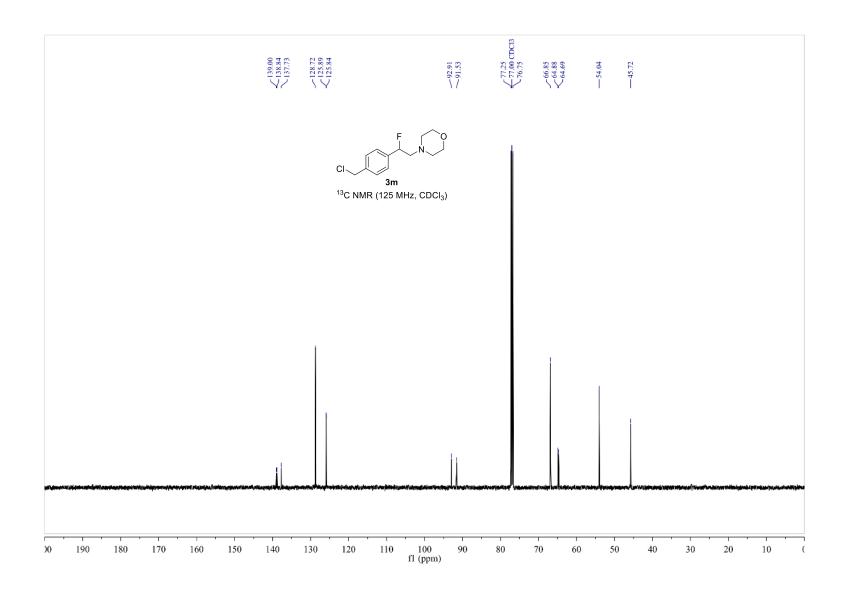


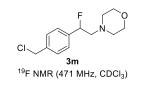


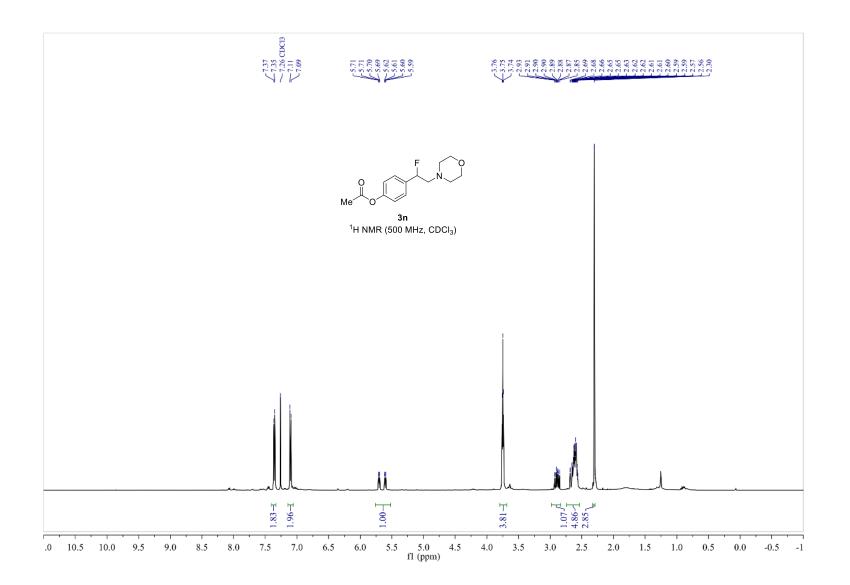

S90

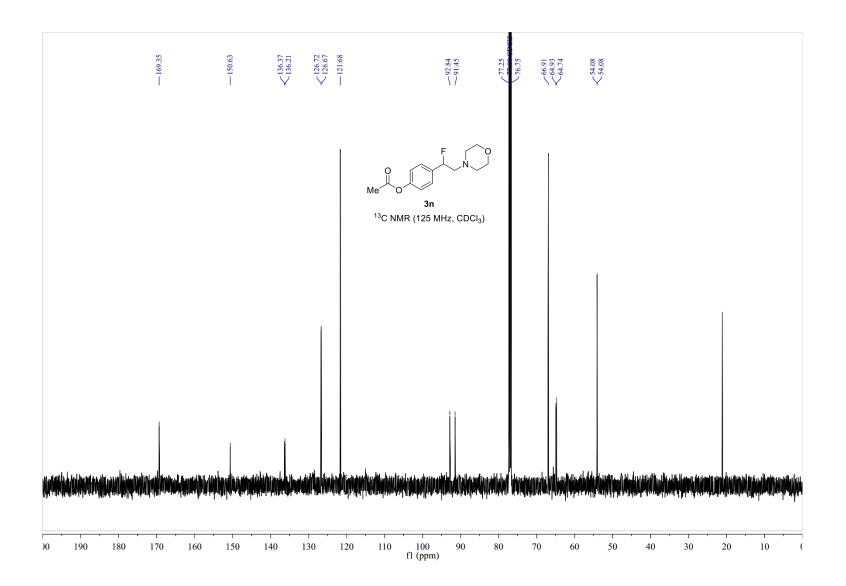
19FNMR gf-3-63bP in CDCL3



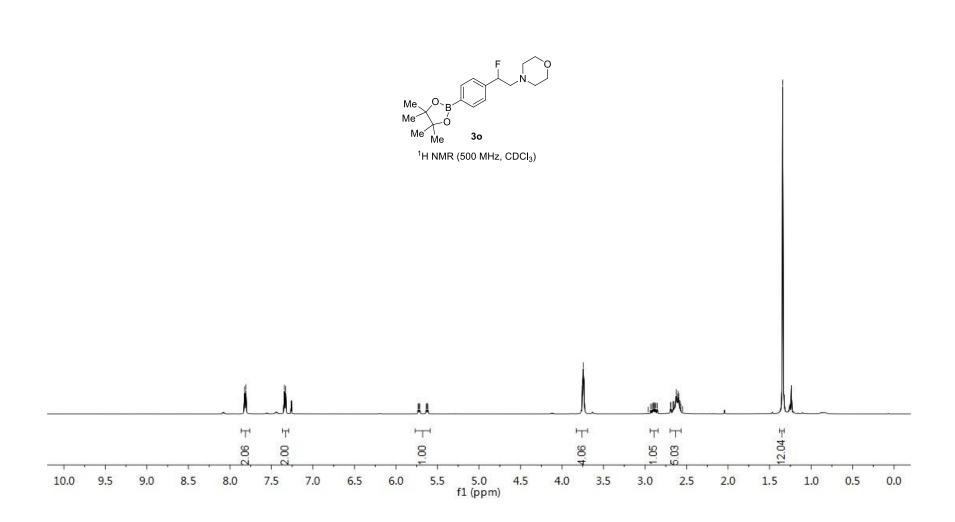


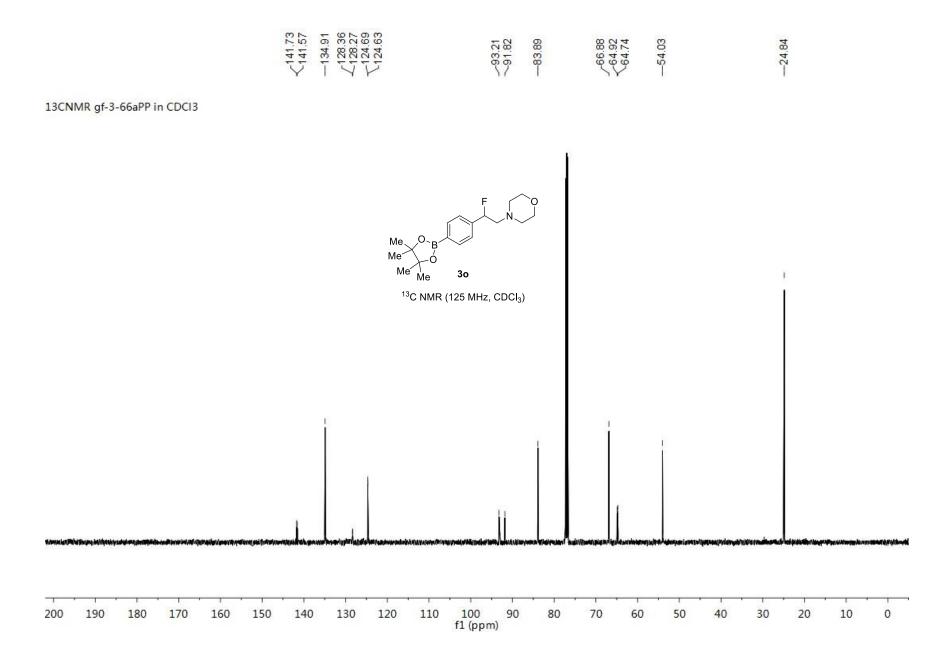

Me `0 Me `Me **3I** ¹⁹F NMR (471 MHz, CDCl₃)

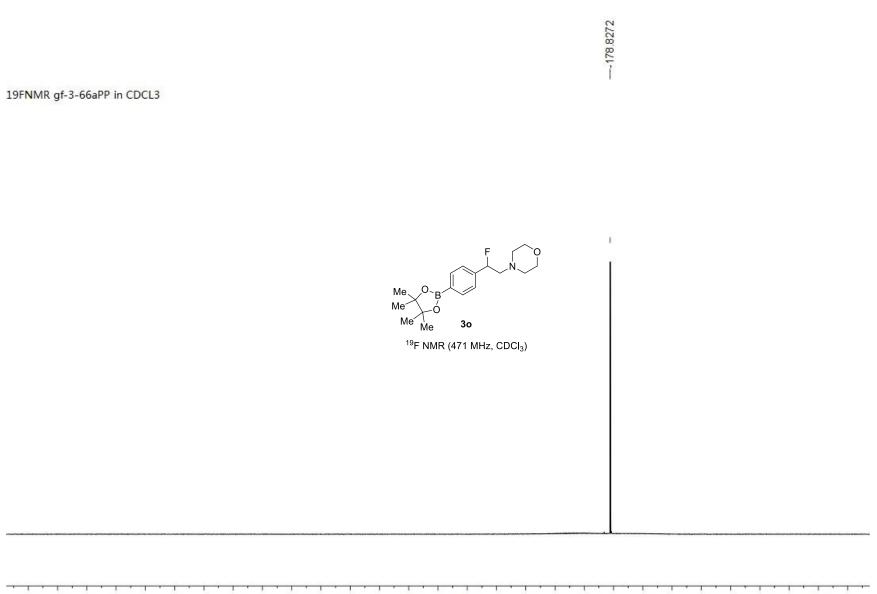

19FNMR gf-3-41aP in CDCL3

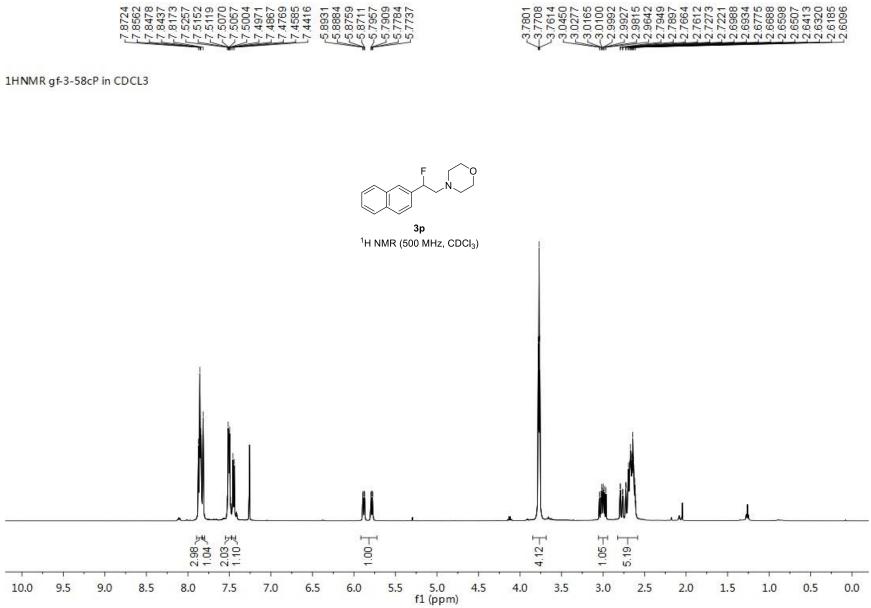


19FNMR gf-3-45aP in CDCL3

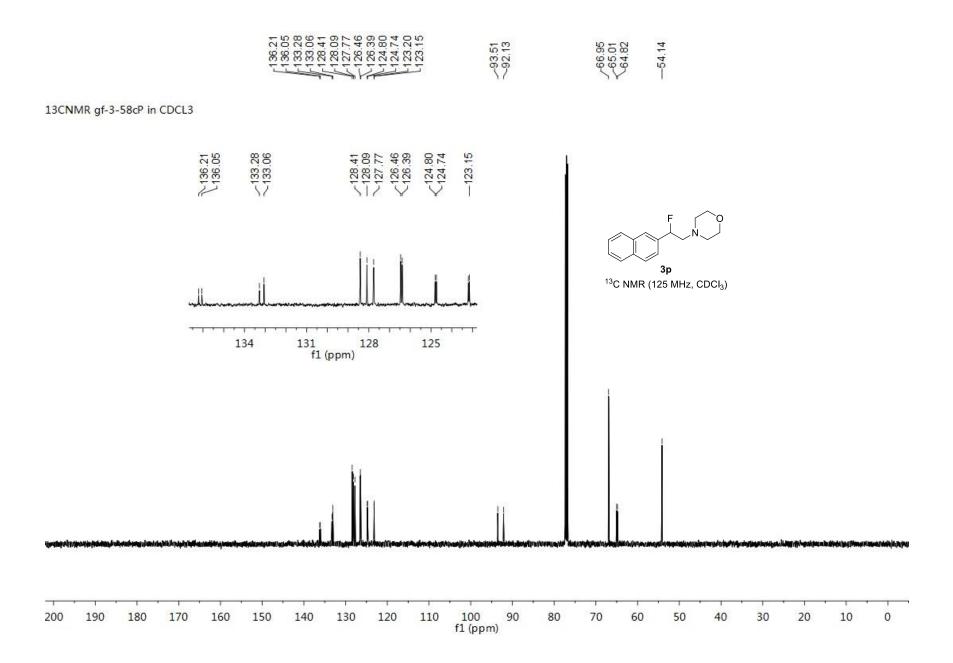

19FNMR gf-3-38bP in CDCL3

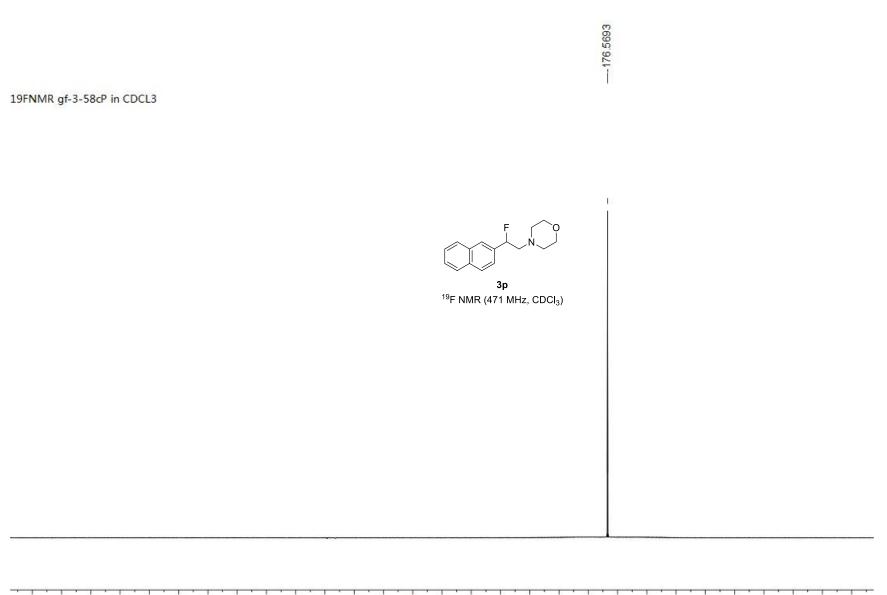

F N O Me

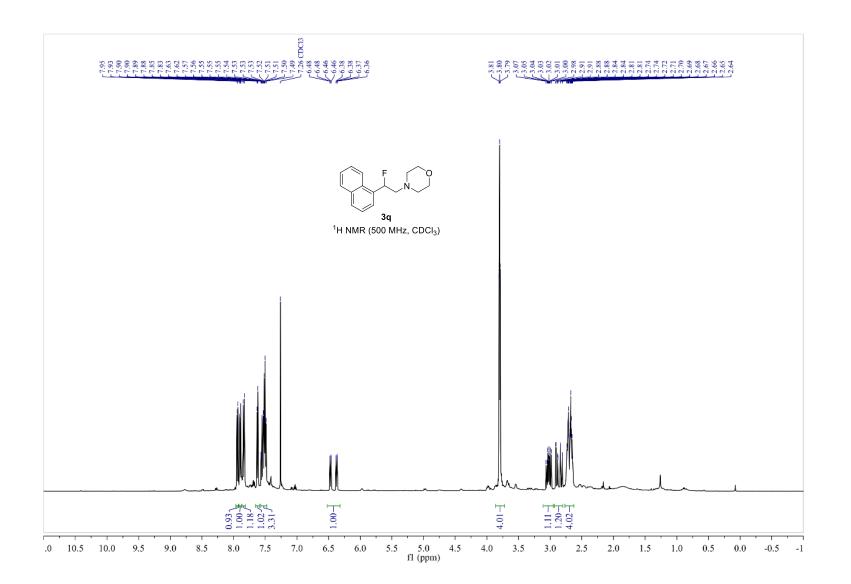

3n ¹⁹F NMR (471 MHz, CDCl₃)

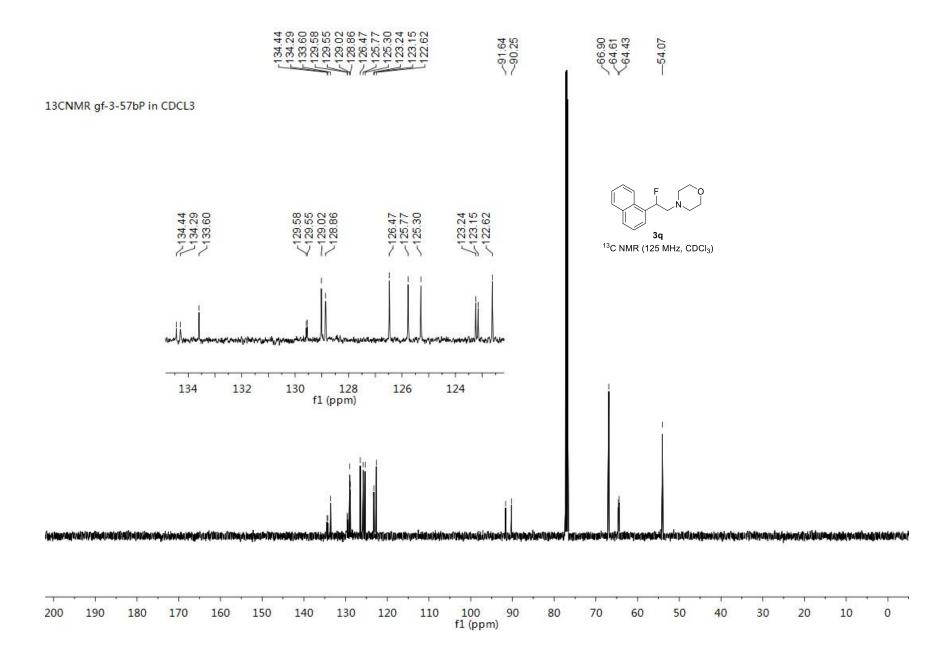


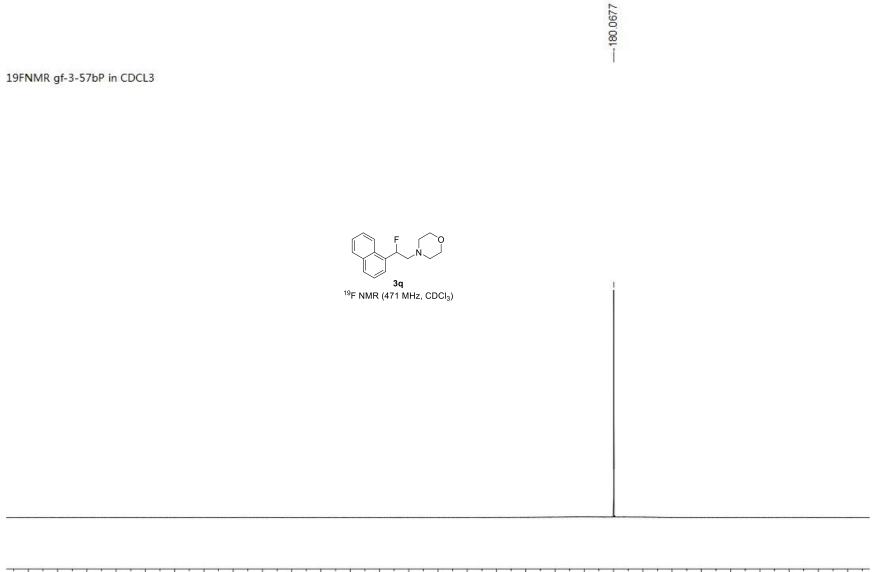
1HNMR gf-3-66aPP in CDCL3

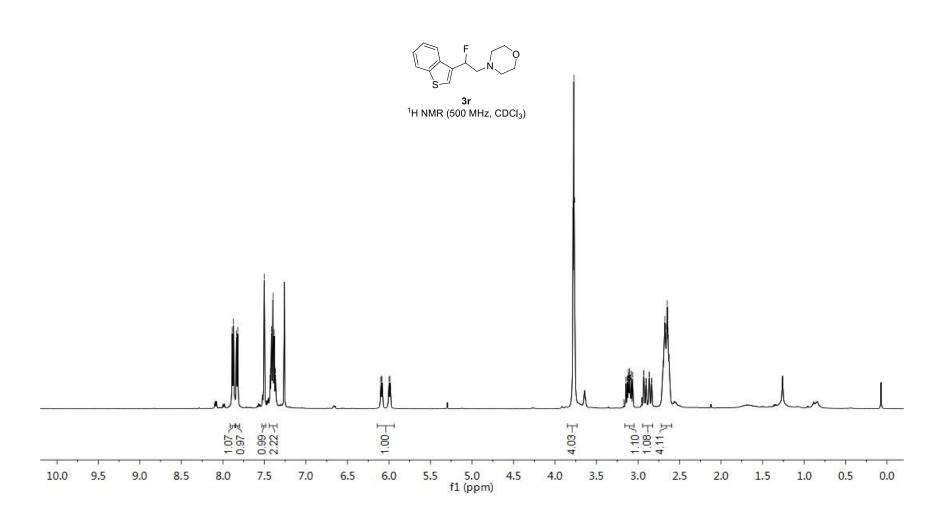


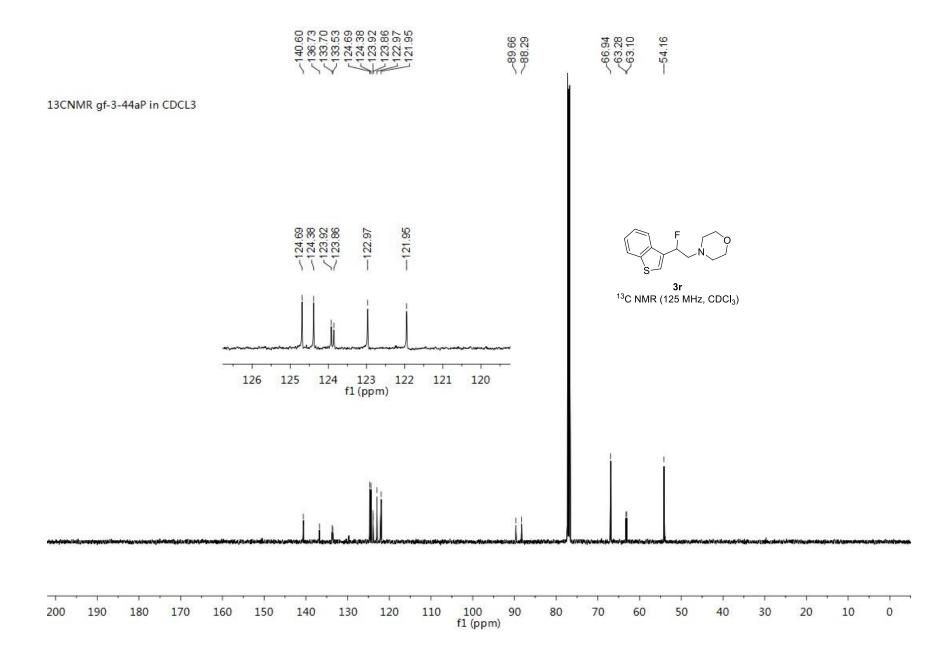


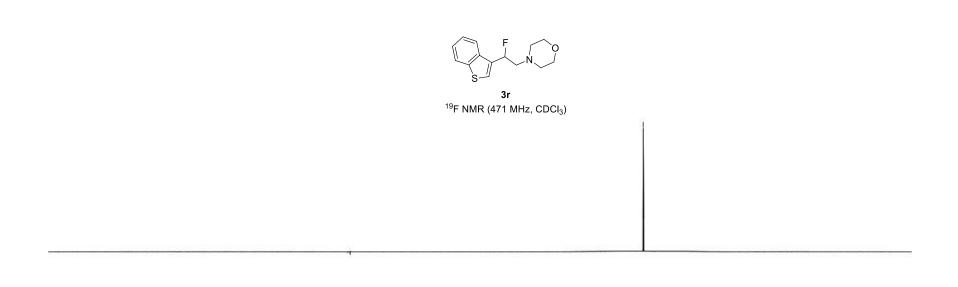




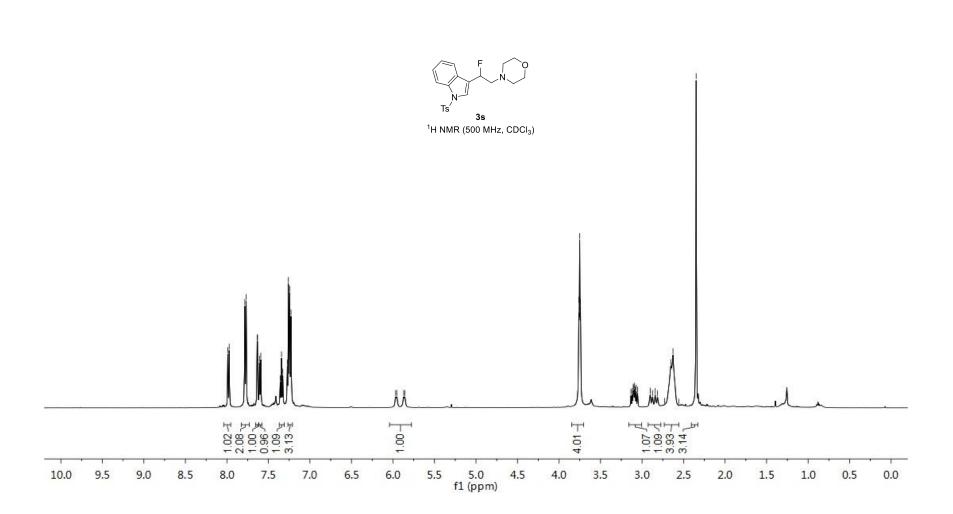

S104

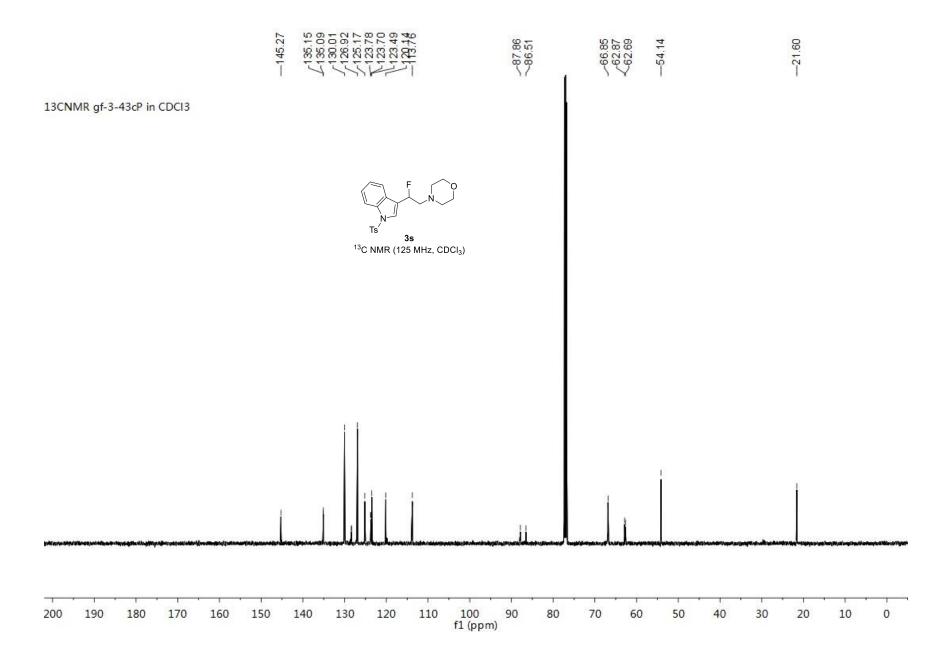




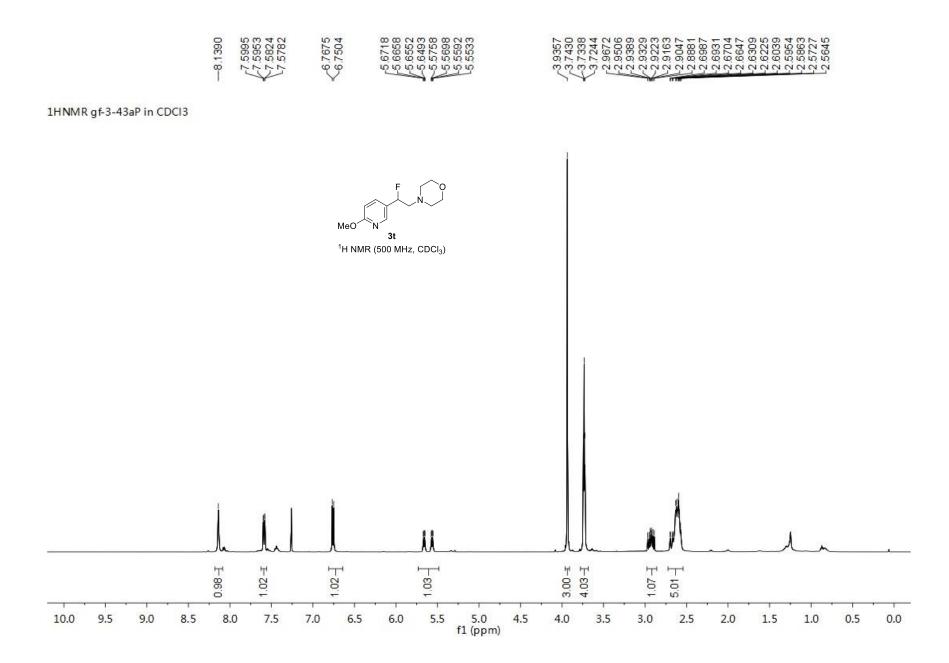

1HMR gf-3-44aP in CDCL3

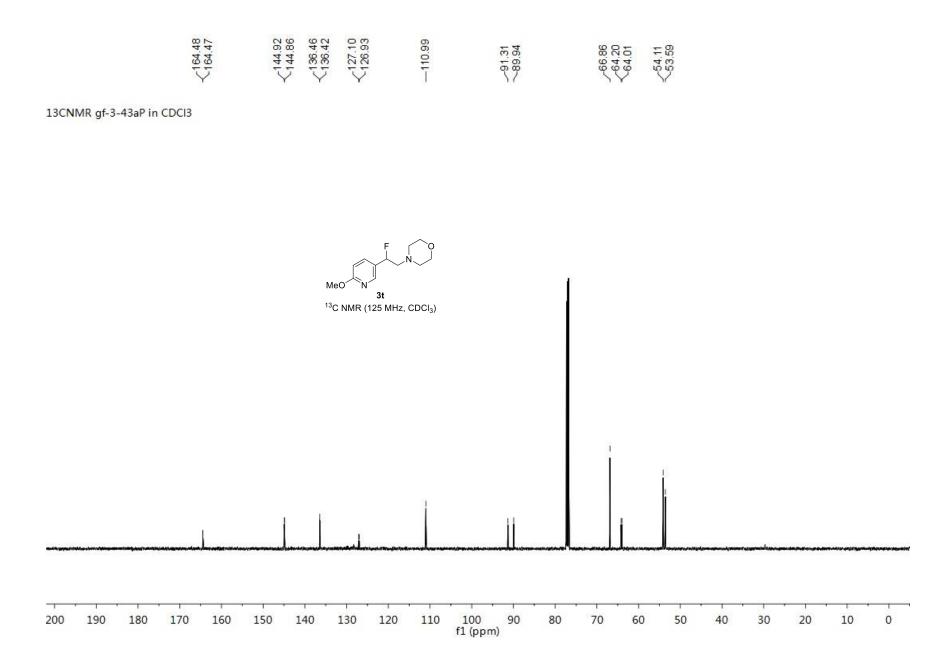
7,8872 7,8724 7,8368 7,5024 7,5024 7,4154 7,3376 7,3376 7,3376 7,3376



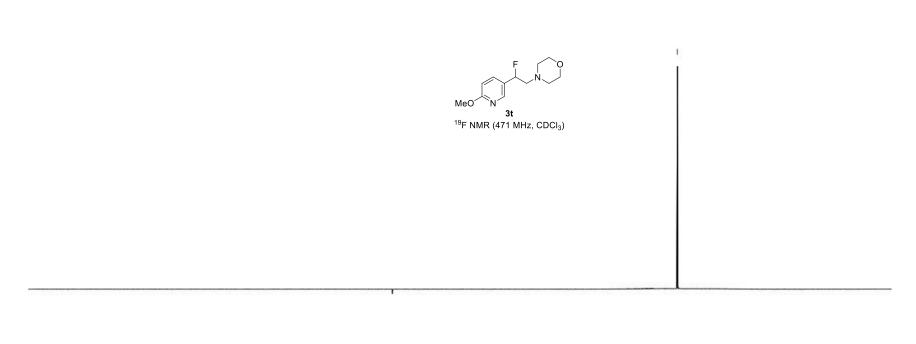

19FNMR gf-3-44aP in CDCL3

1HNMR gf-3-43cP in CDCL3

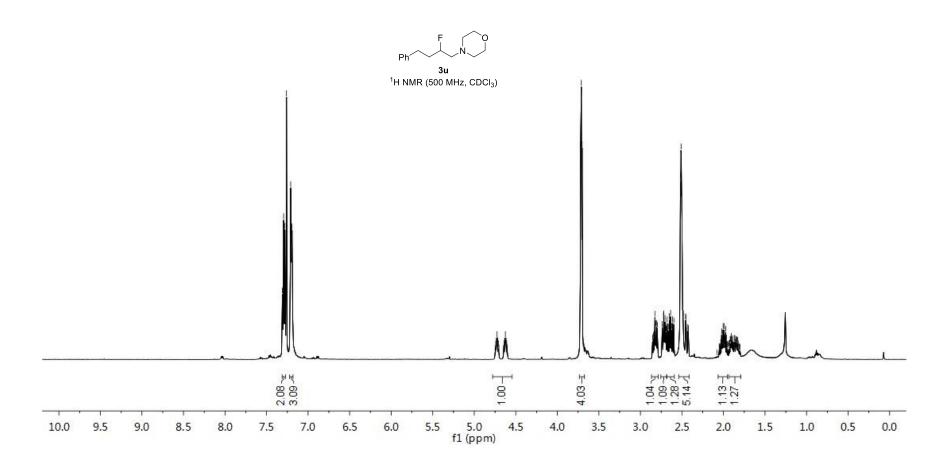


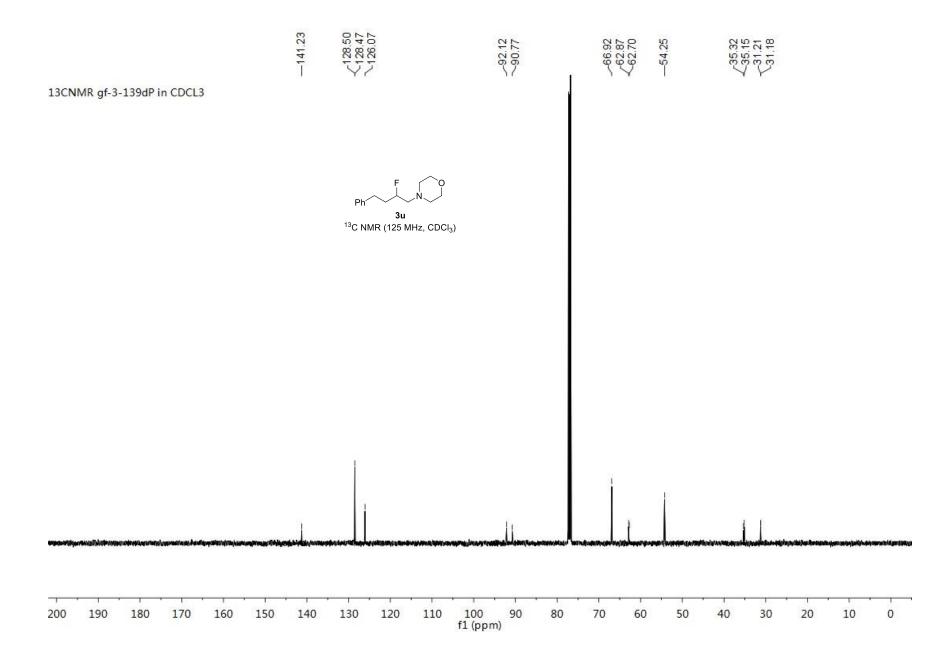


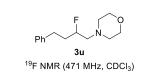
19FNMR gf-3-43cP in CDCI3


`O Ts ¹⁹F NMR (471 MHz, CDCl₃)

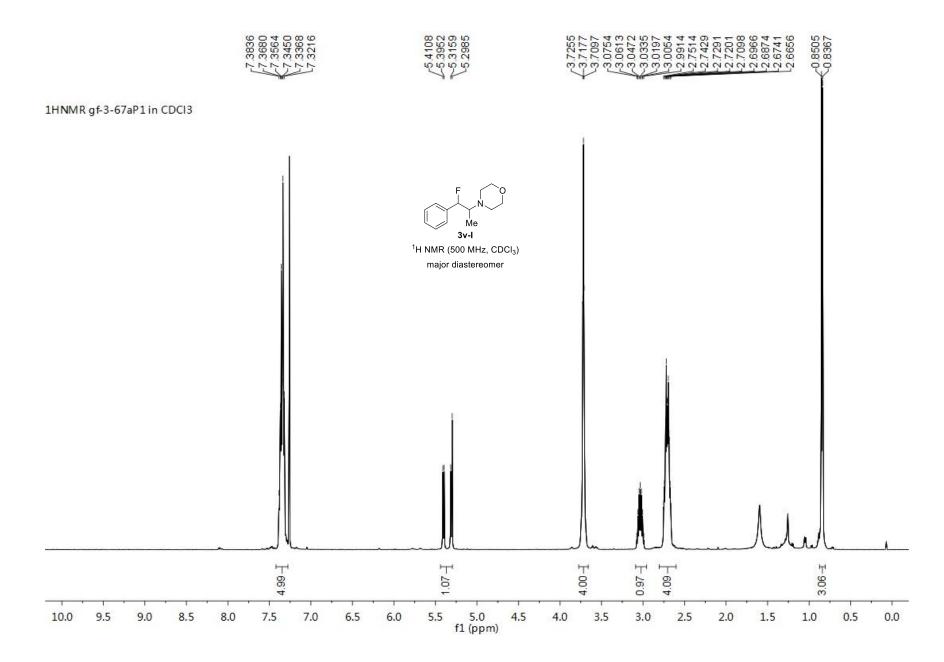
30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)



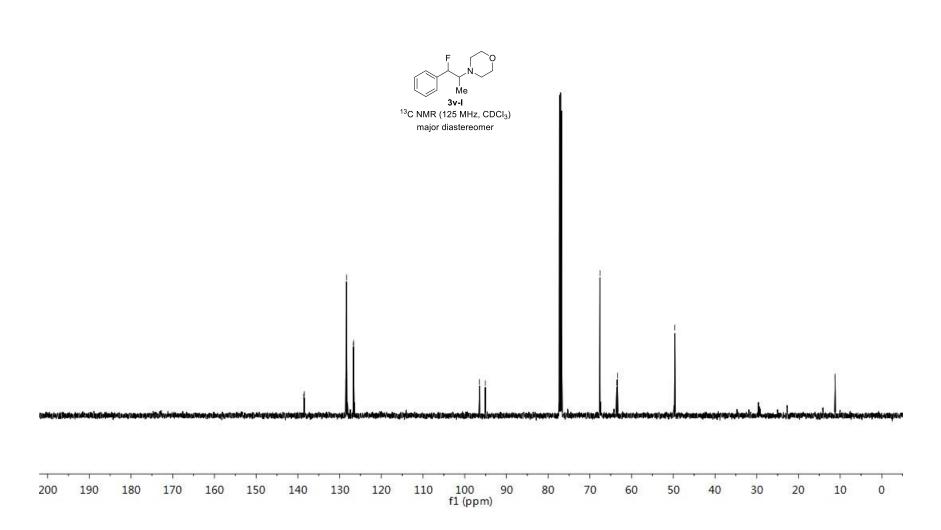

19FNMR gf-3-43aP in CDCL3


2,2,2,2,3,3,3,4,4,2,2,2,3,3,4,4,4,7,2,2,3,3,4,4,7,2,2,3,3,4,4,7,2,2,3,3,4,4,7,2,2,3,3,4,4,4,7,3,3,3,3,4,4,4,7,3,3,3,3,4,4,4,7,3,3,3,3	836300000000000000000000000000000000000

1HNMR gf-3-139dP in CDCL3

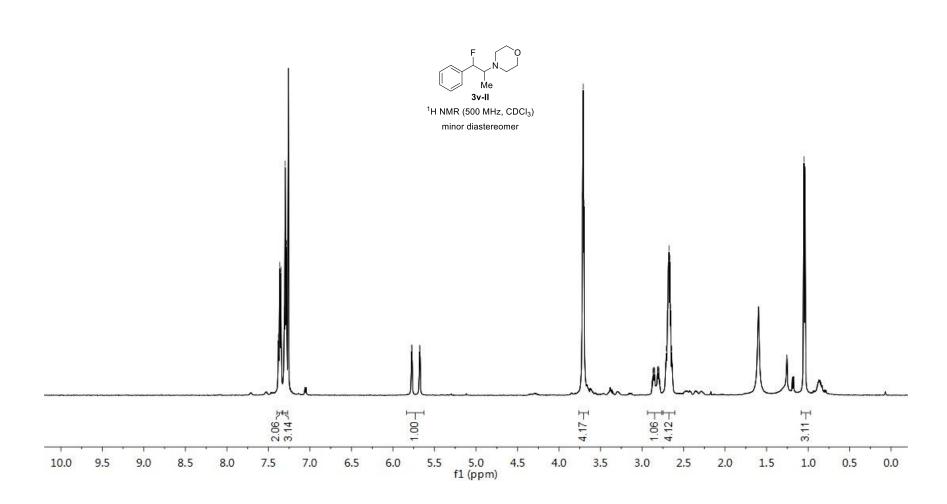


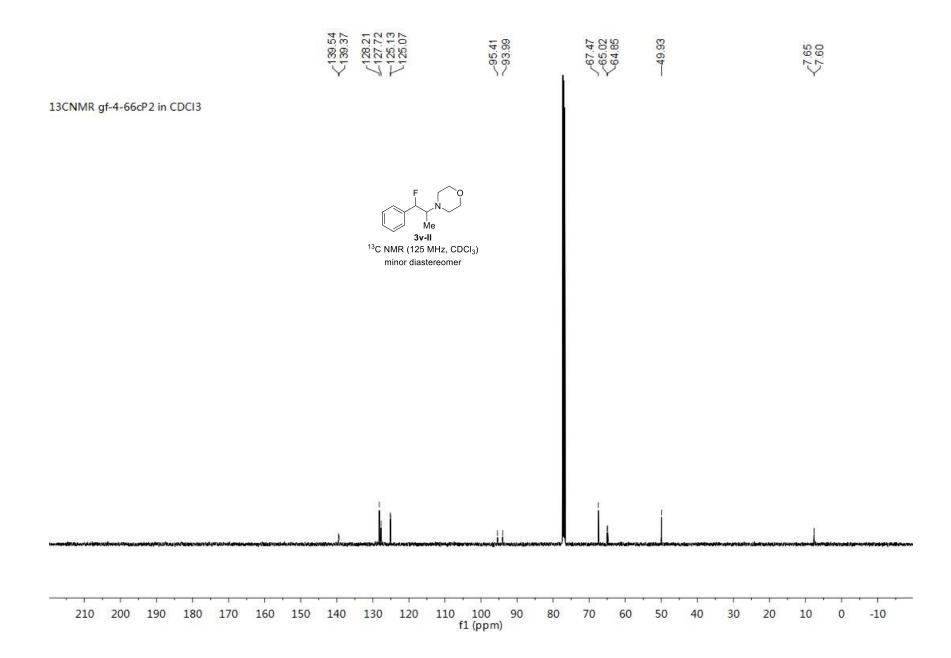
19FNMR gf-3-139dP in CDCL3



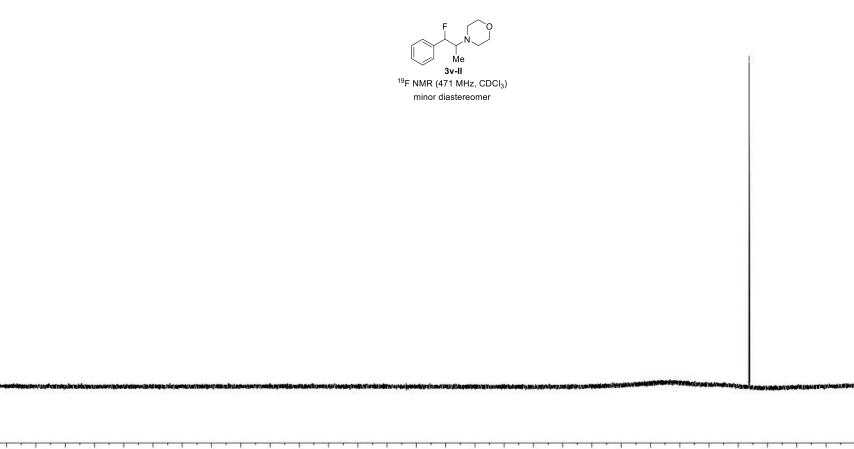
30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

13CNMR gf-4-66cP1 in CDCI3

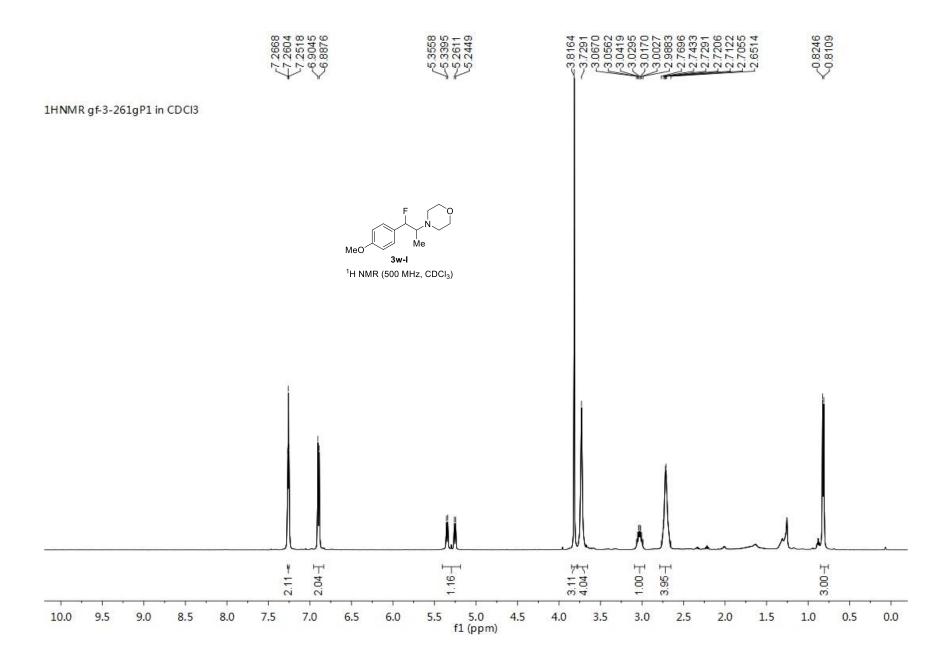


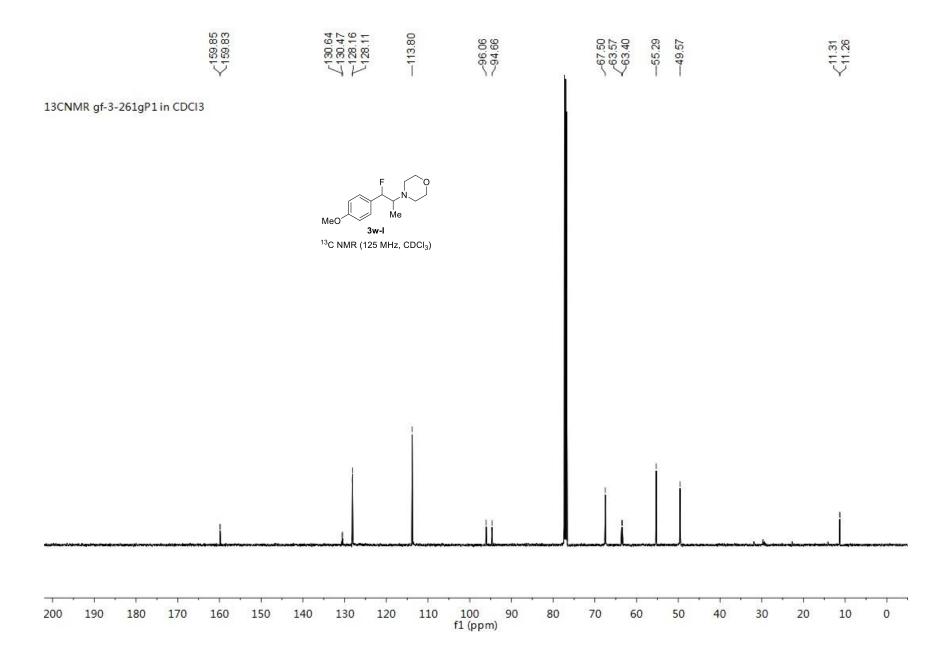

19FNMR gf-3-67aP1 in CDCI3 Ńе 3v-l ¹⁹F NMR (471 MHz, CDCl₃) major diastereomer and the state of t --60 50 40 30 20 10 0 -20 -40 -60

-80 f1 (ppm) -100 -120 -140 -160 -180 -200 -220



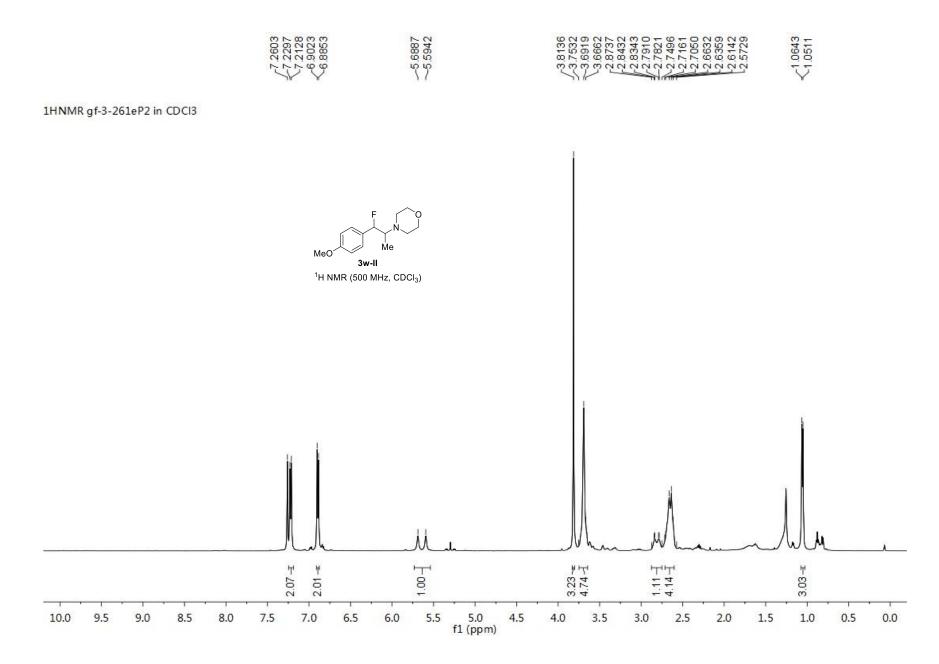
1HNMR gf-4-66cP2 in CDCl3

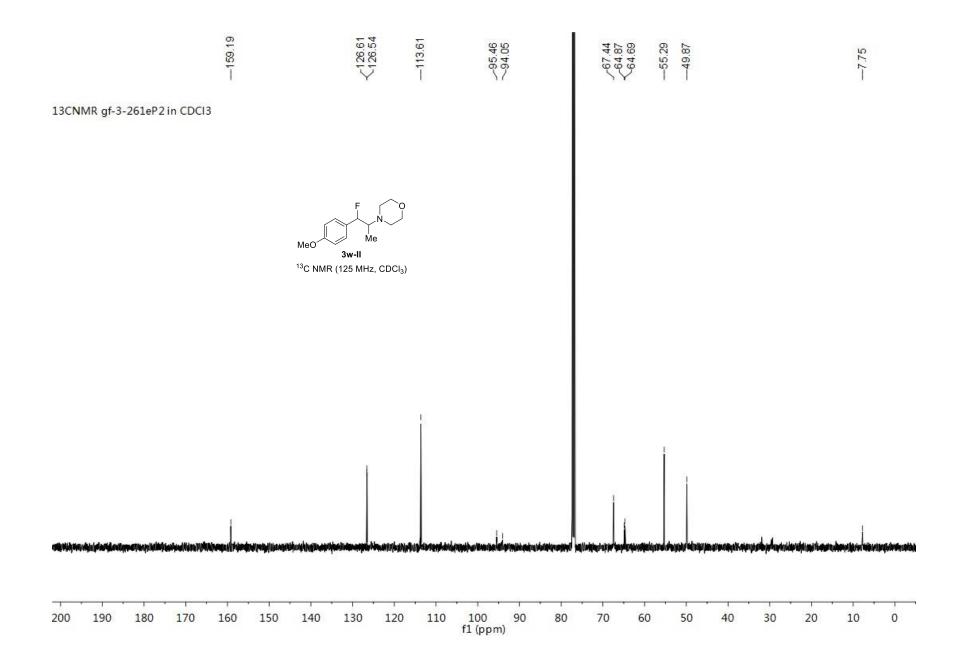




19FNMR gf-4-66cP2 in CDCI3

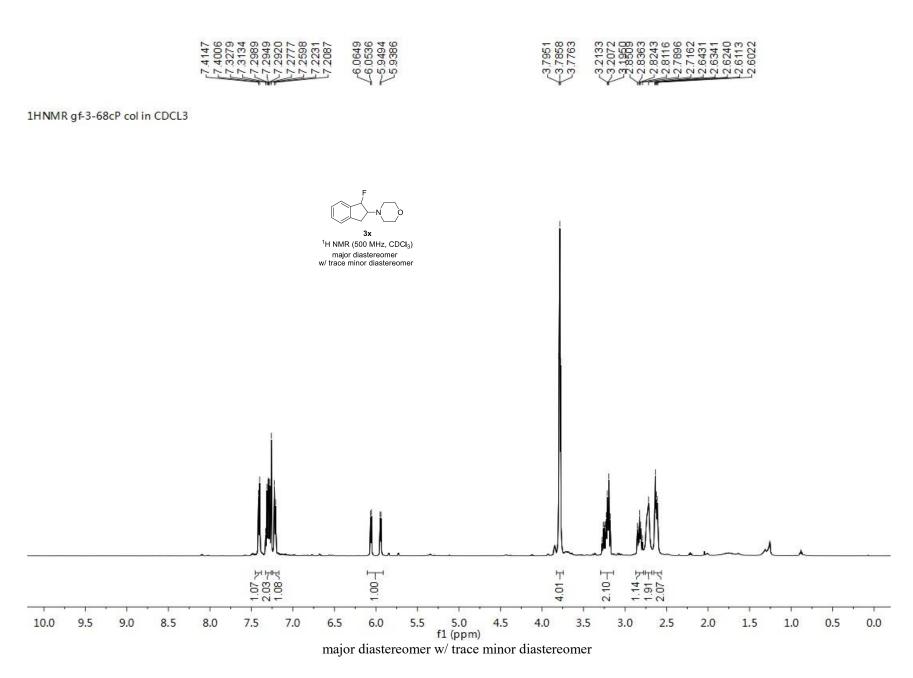
60 50 40 30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 f1 (ppm)

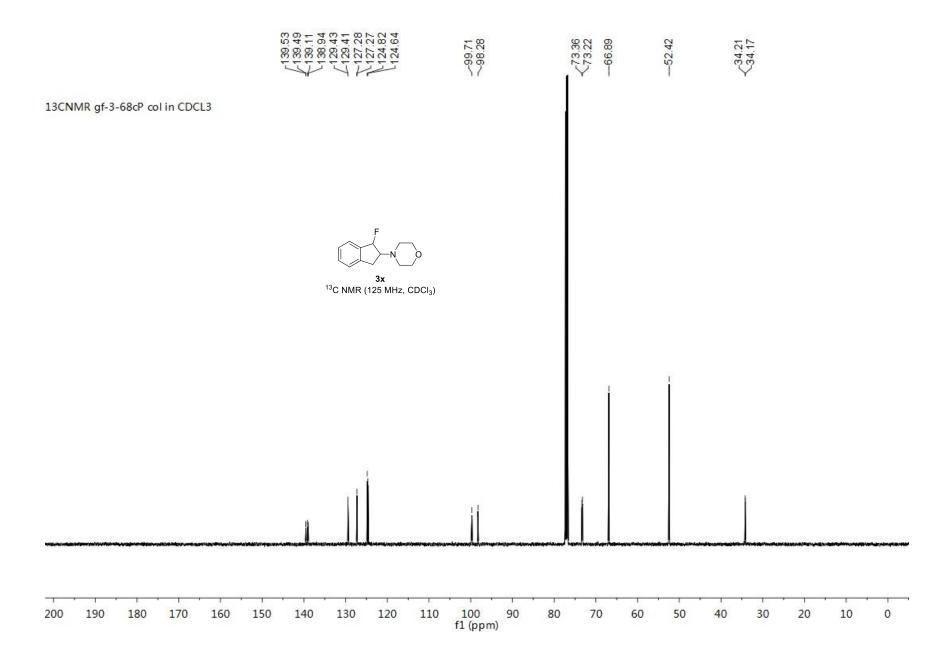


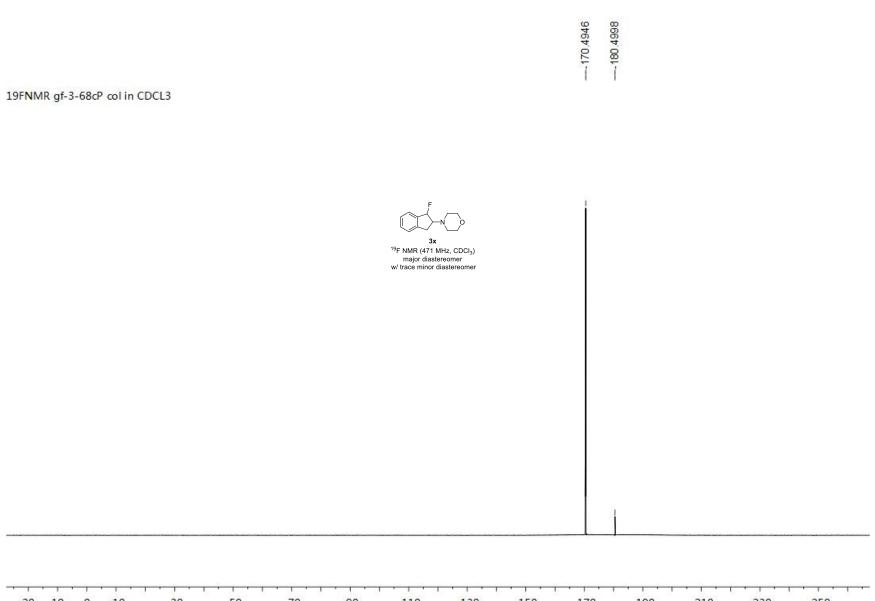


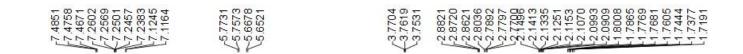
19FNMR gf-3-261gP1 in CDCI3

Мe MeO 3w-l ¹⁹F NMR (471 MHz, CDCl₃)

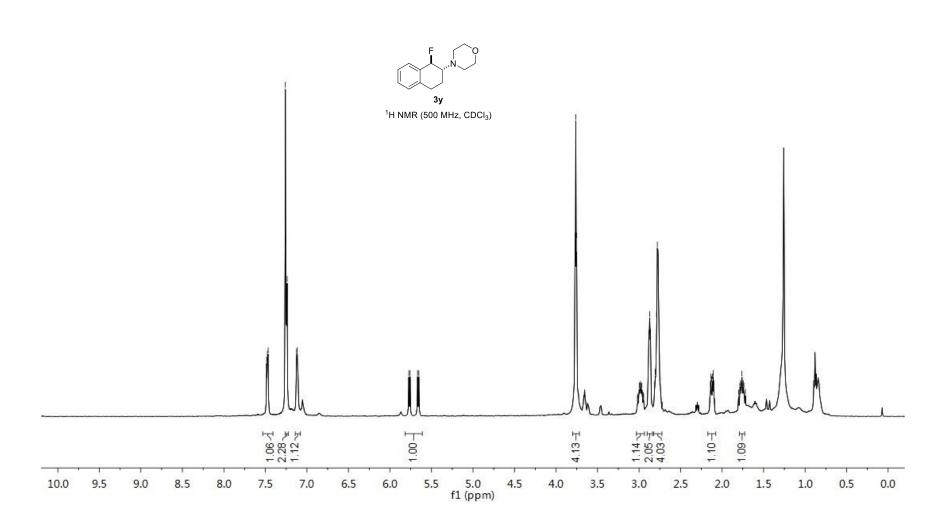

40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)



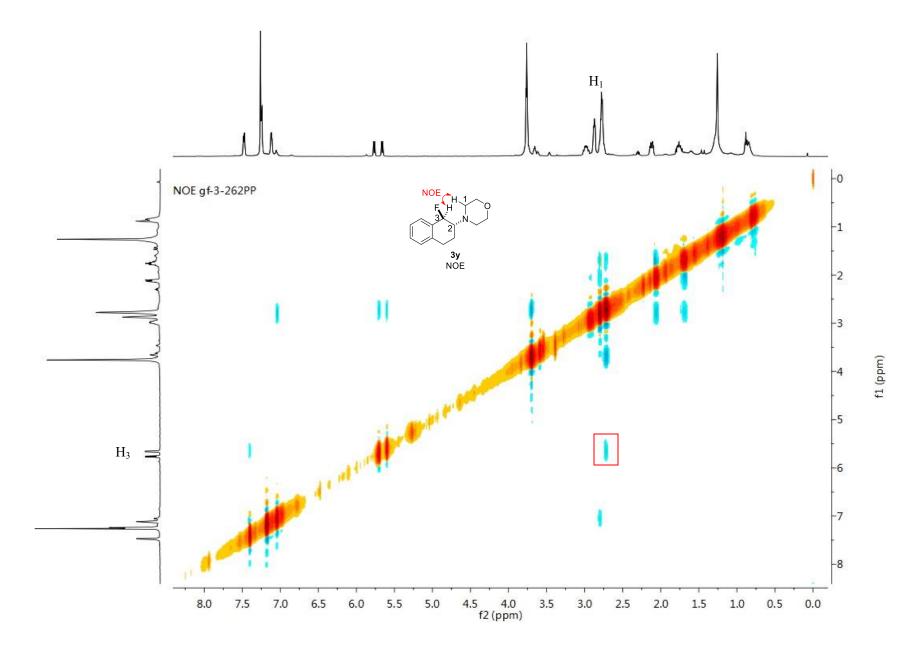


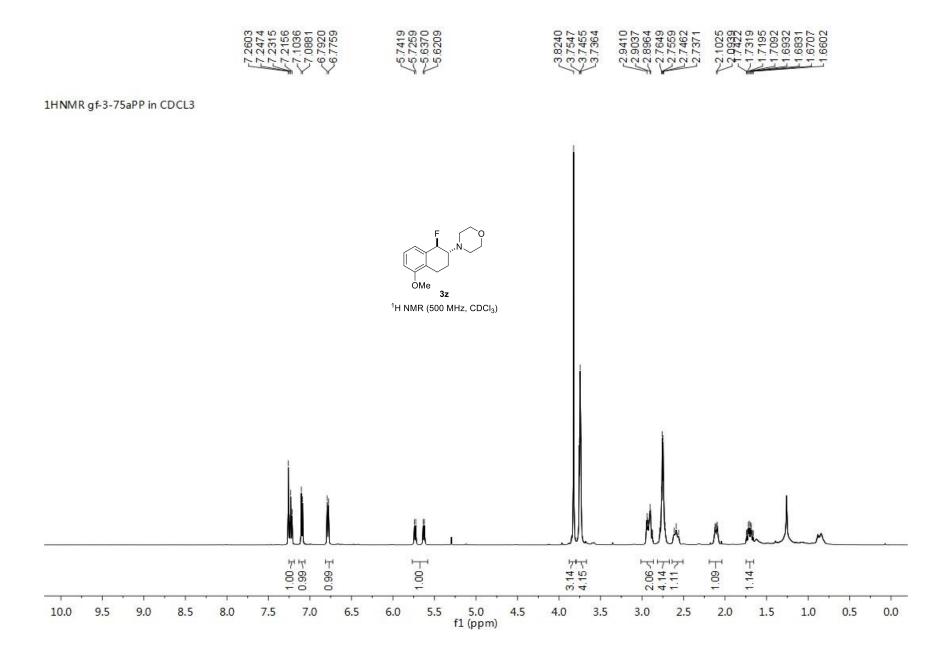

19FNMR gf-3-261aP in CDCI3

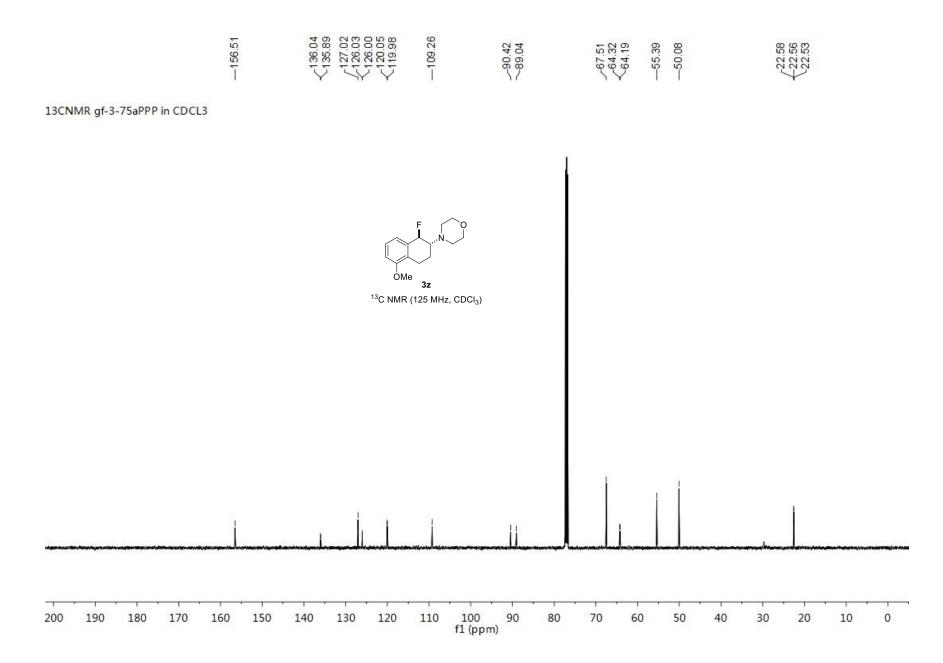
Мe MeO 3w-ll ¹⁹F NMR (471 MHz, CDCl₃)

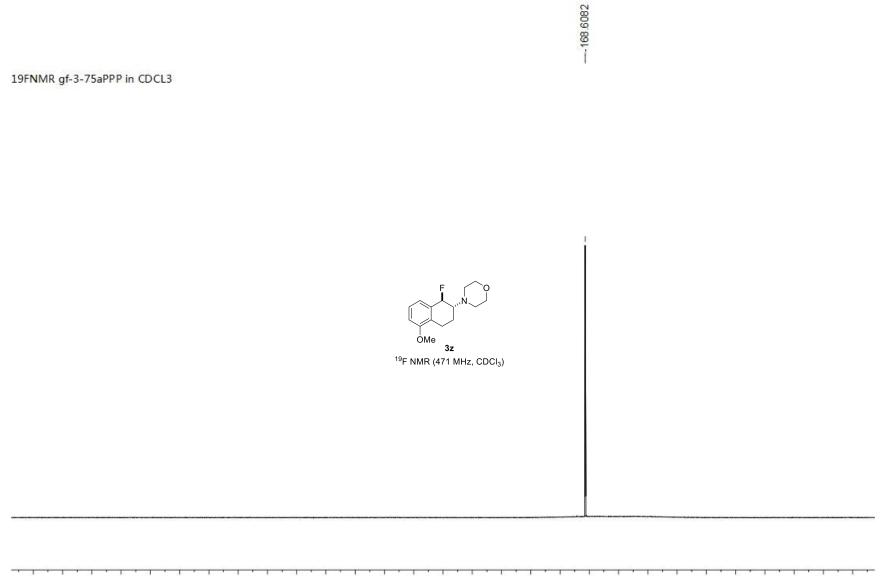


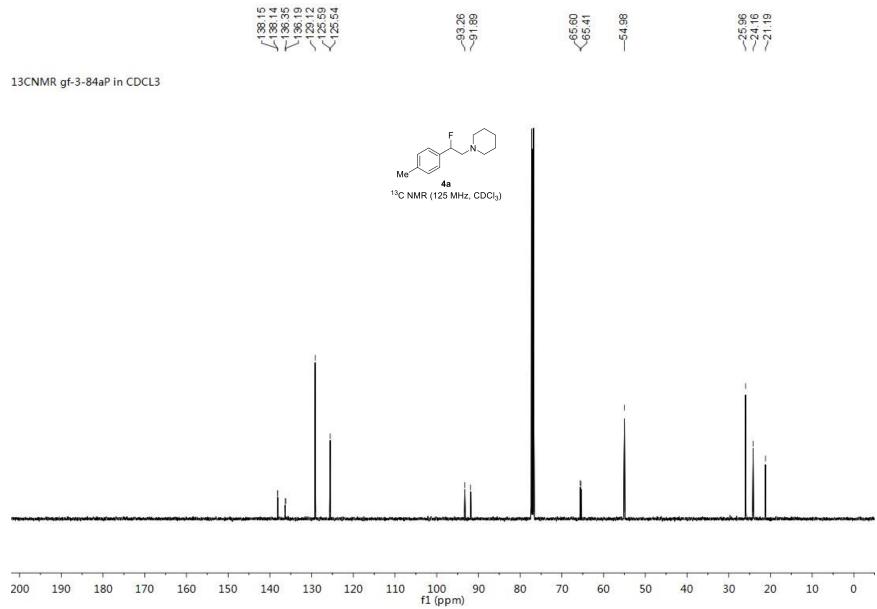


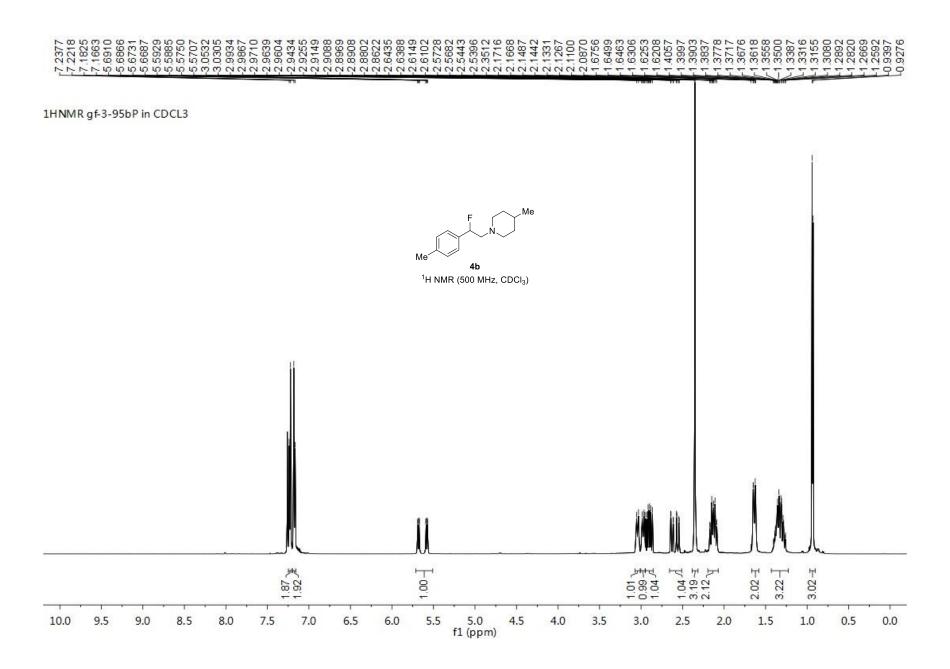

1HNMR gf-3-262P in CDCI3

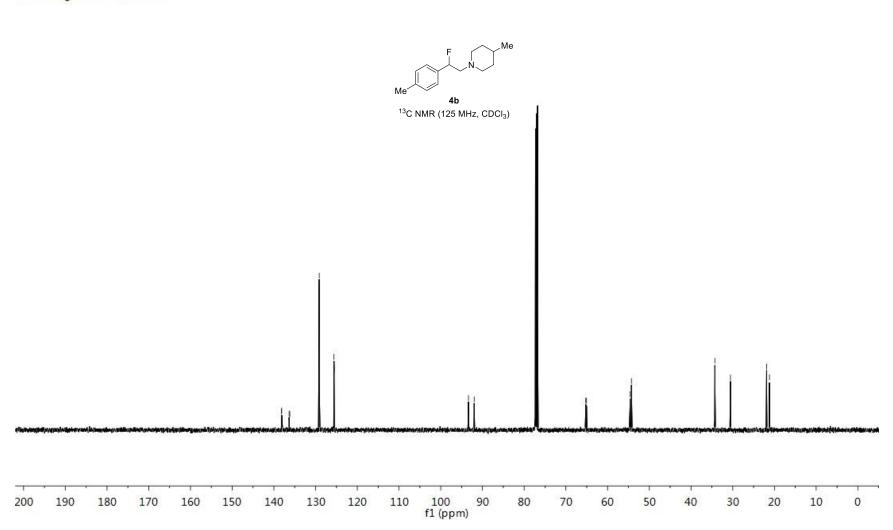


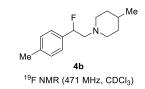


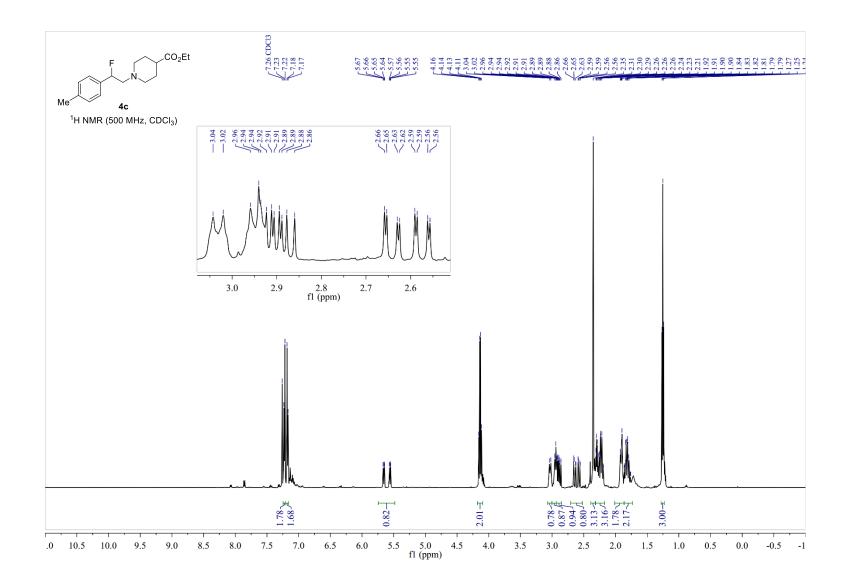

19FNMR gf-3-262aP in CDCI3

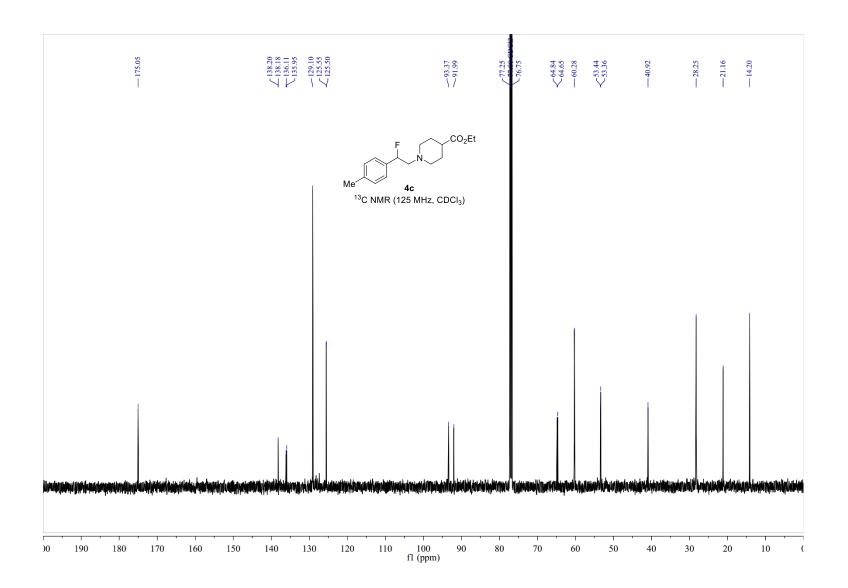


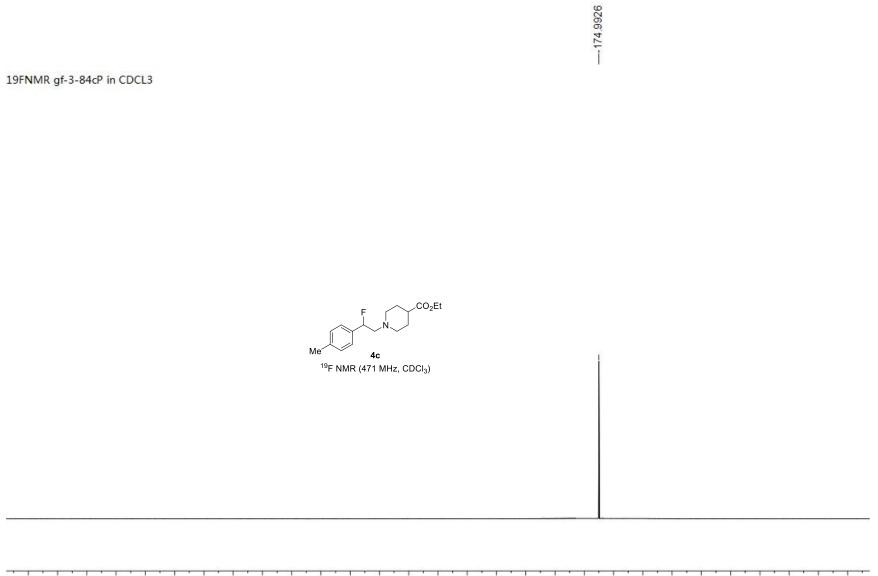

1HNMR gf-3-84aP in CDCI3

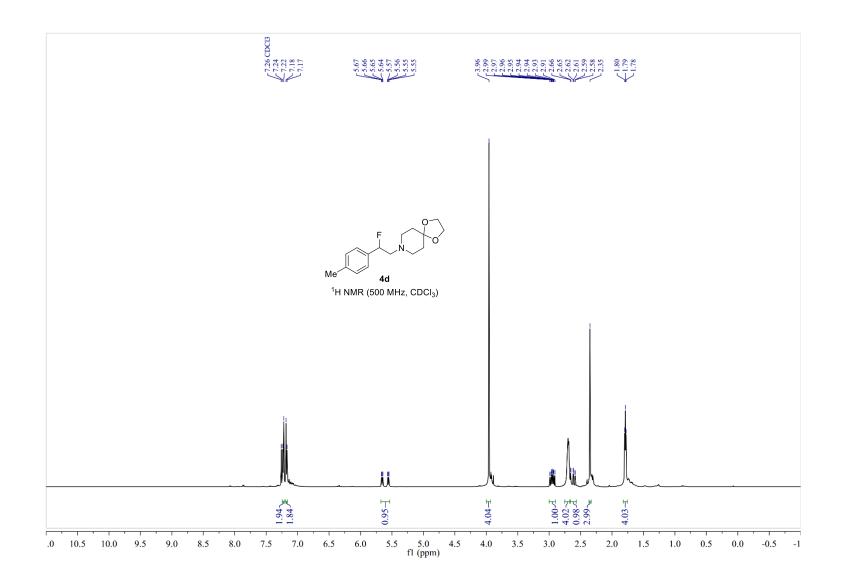


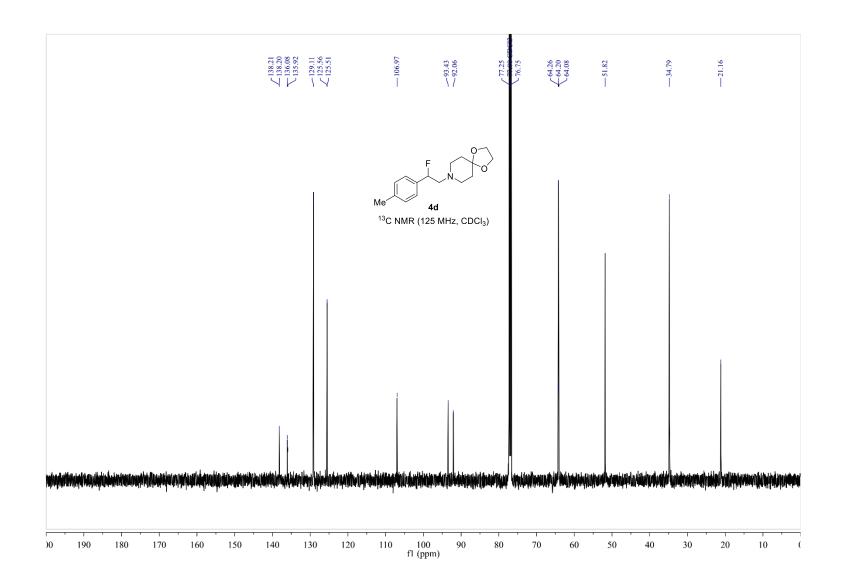


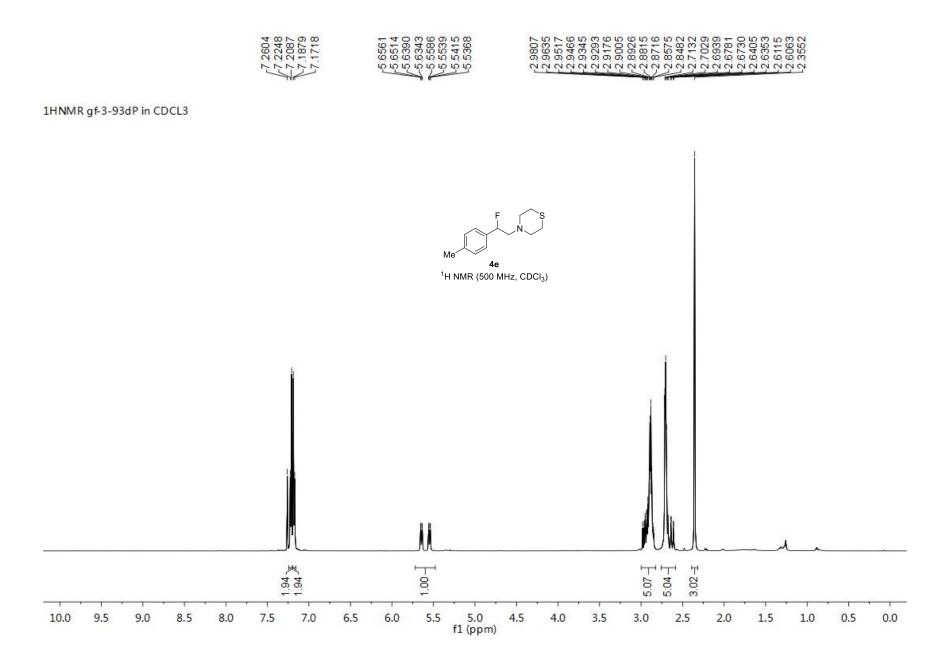

13CNMR gf-3-95bP in CDCL3

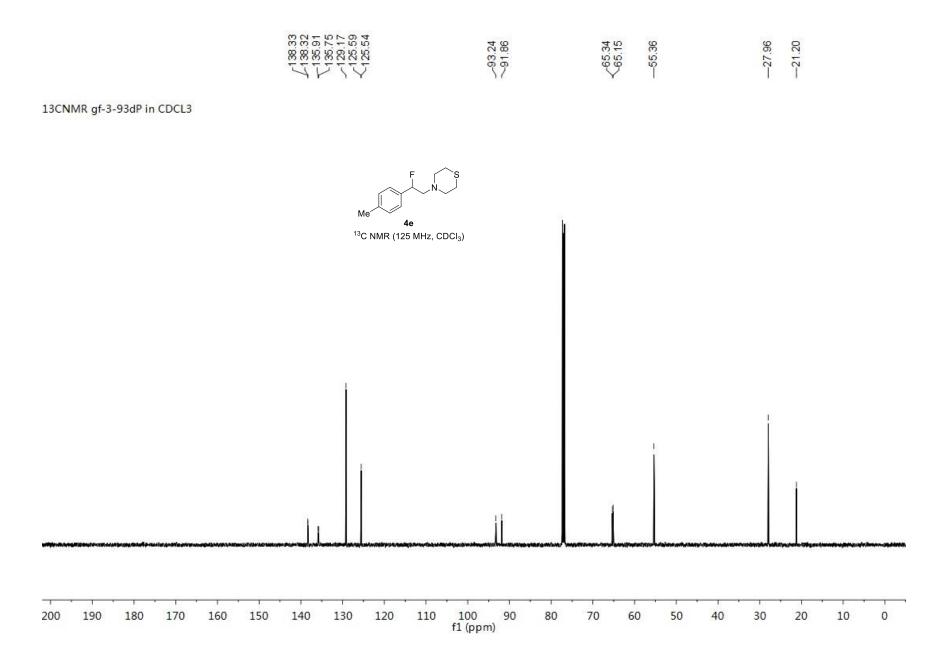


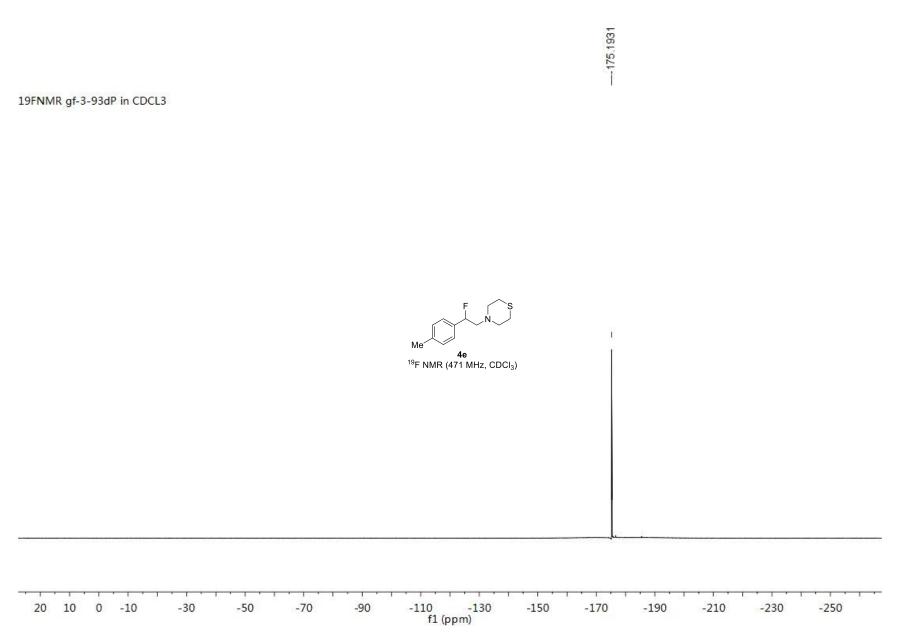

19FNMR gf-3-95bP in CDCL3



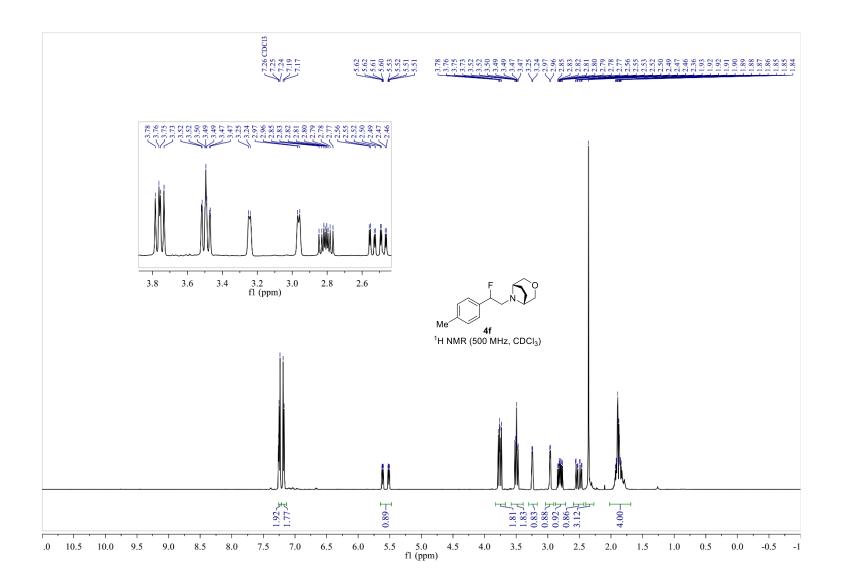

30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

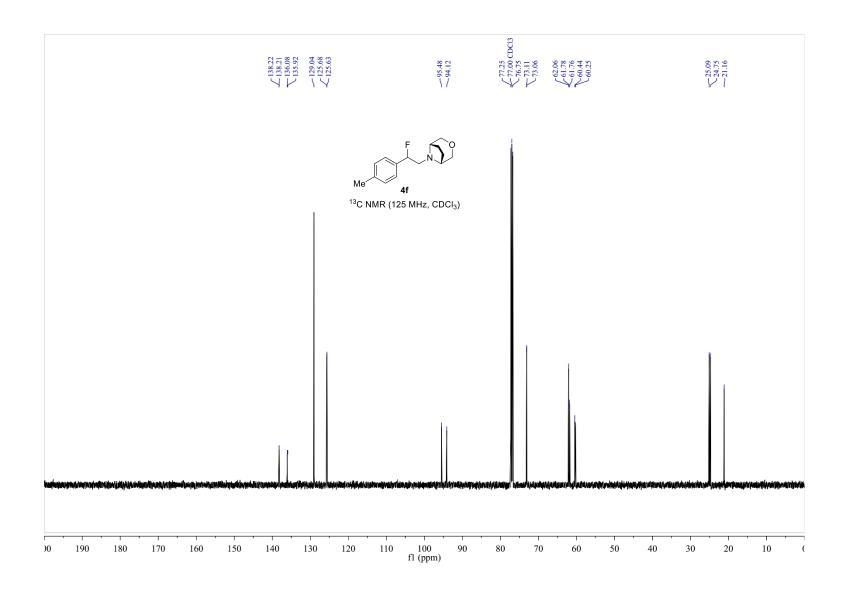


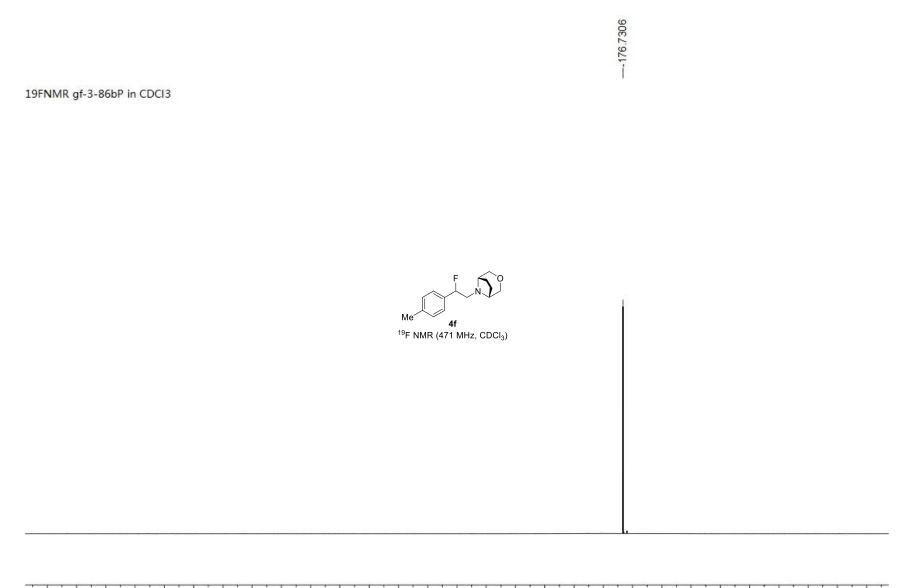


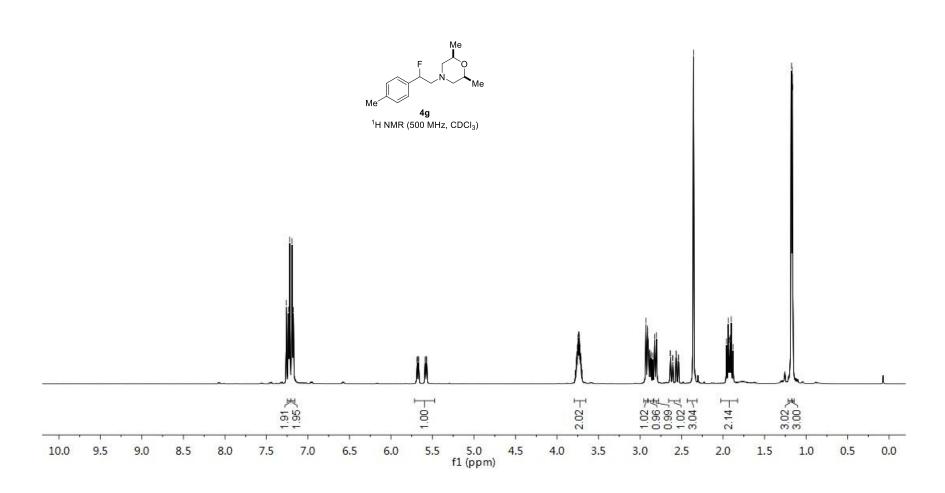

19NMR gf-3-96cP in CDL3

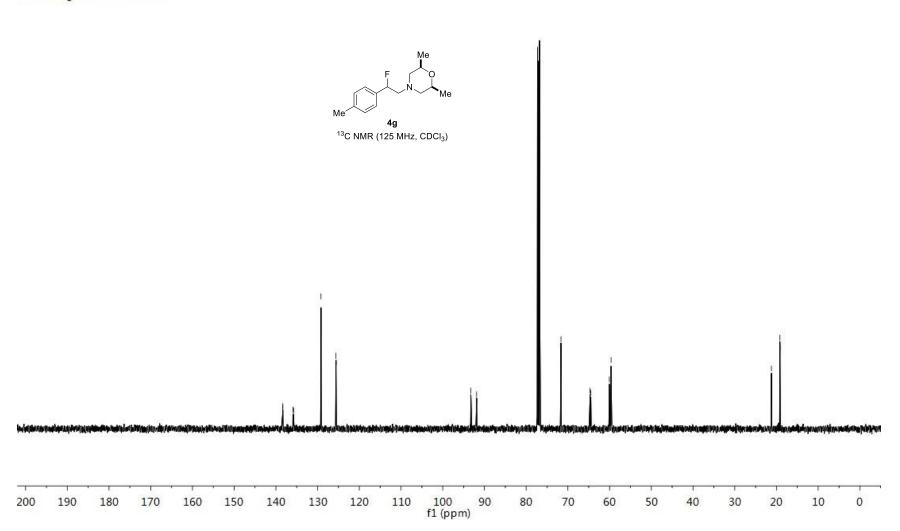
0~ Me Me **4d** ¹⁹F NMR (471 MHz, CDCl₃)

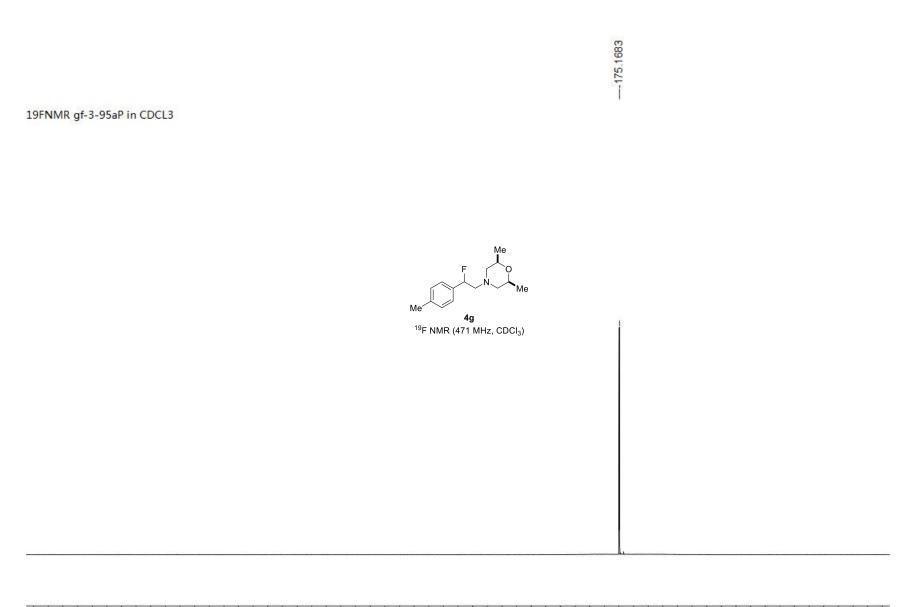

	· • •			9 . F. F. F.		<u></u>				S 35 5						
20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-250	
20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)																

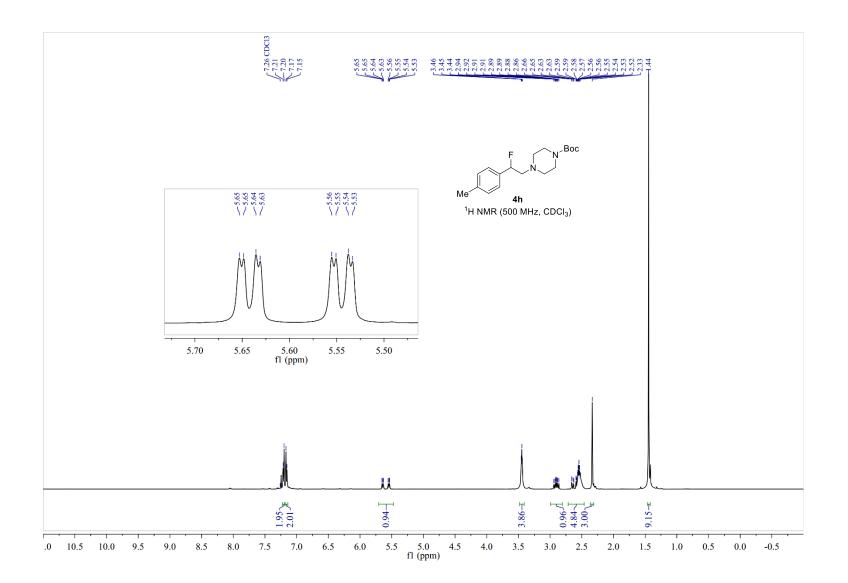


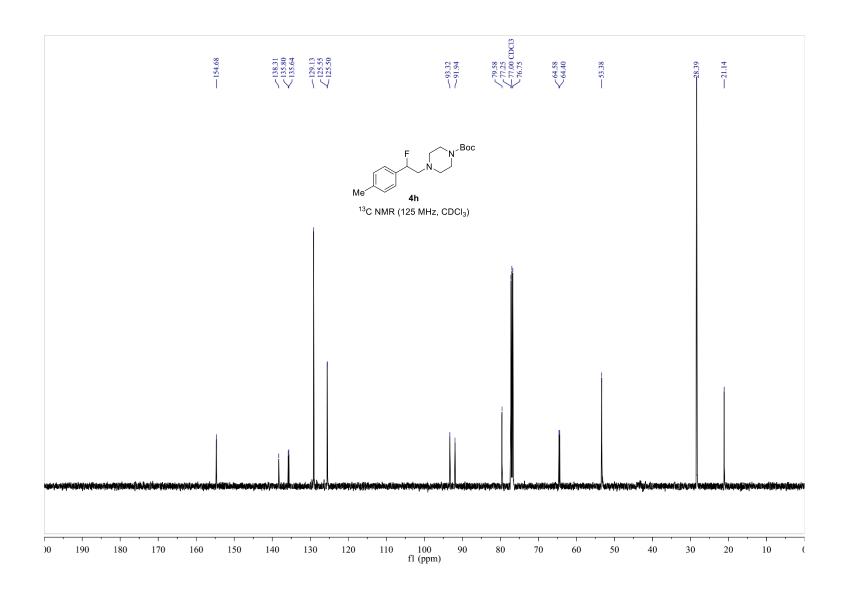


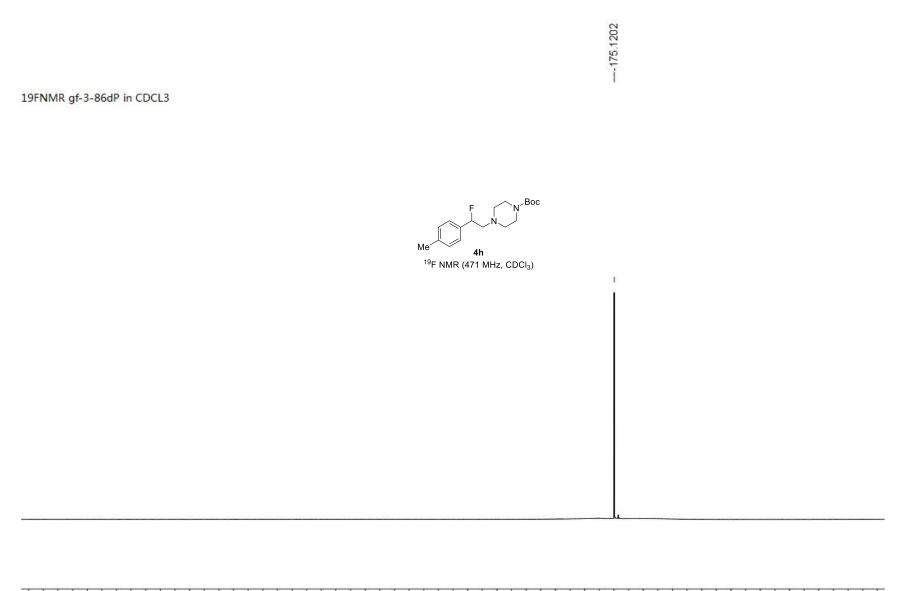


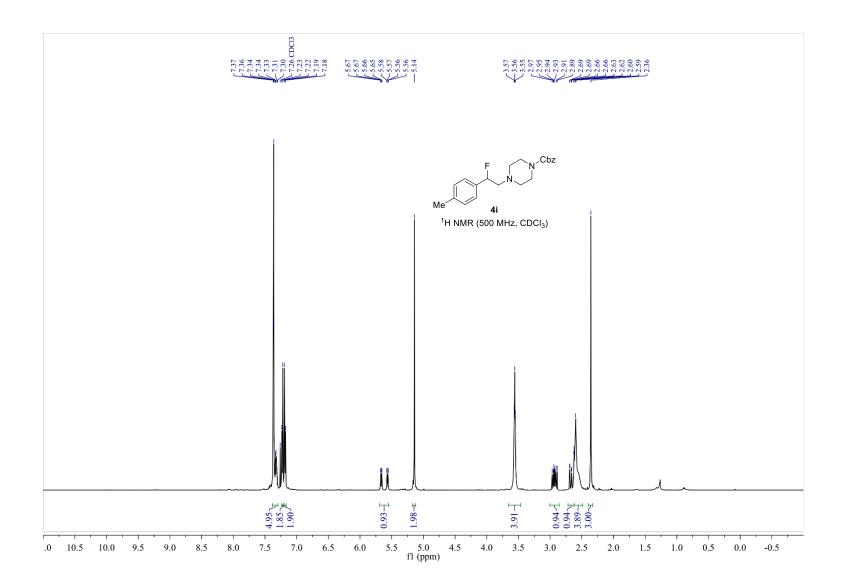


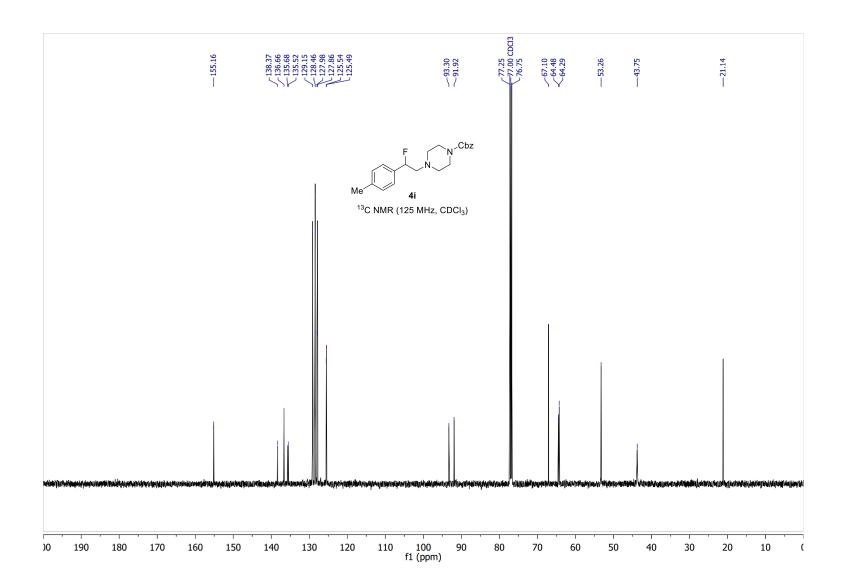

1HNMR gf-3-95aP in CDCL3

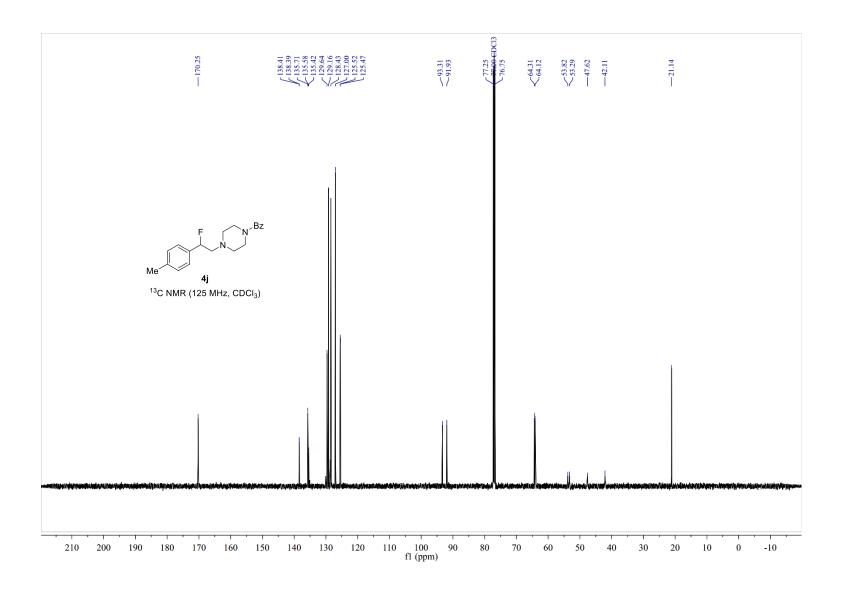


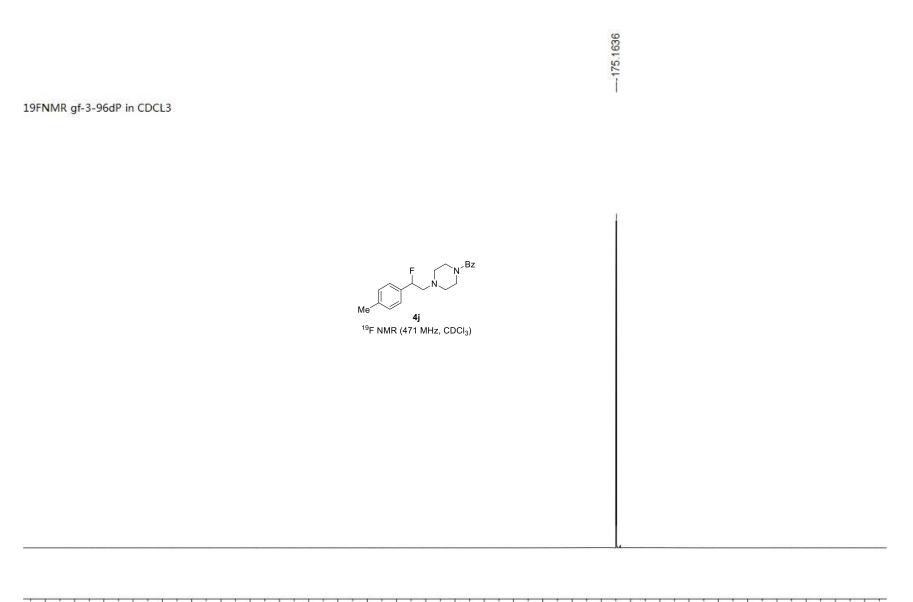



13CNMR gf-3-95aP in CDCL3

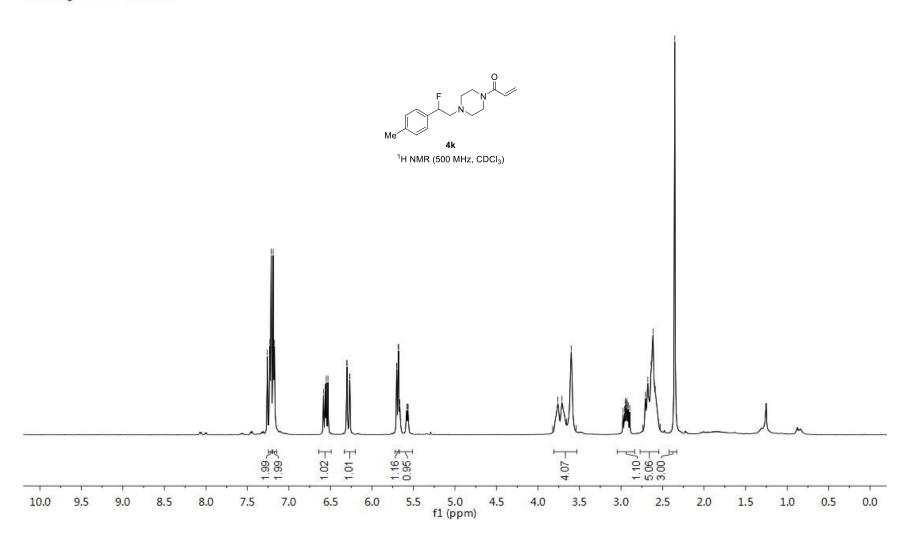


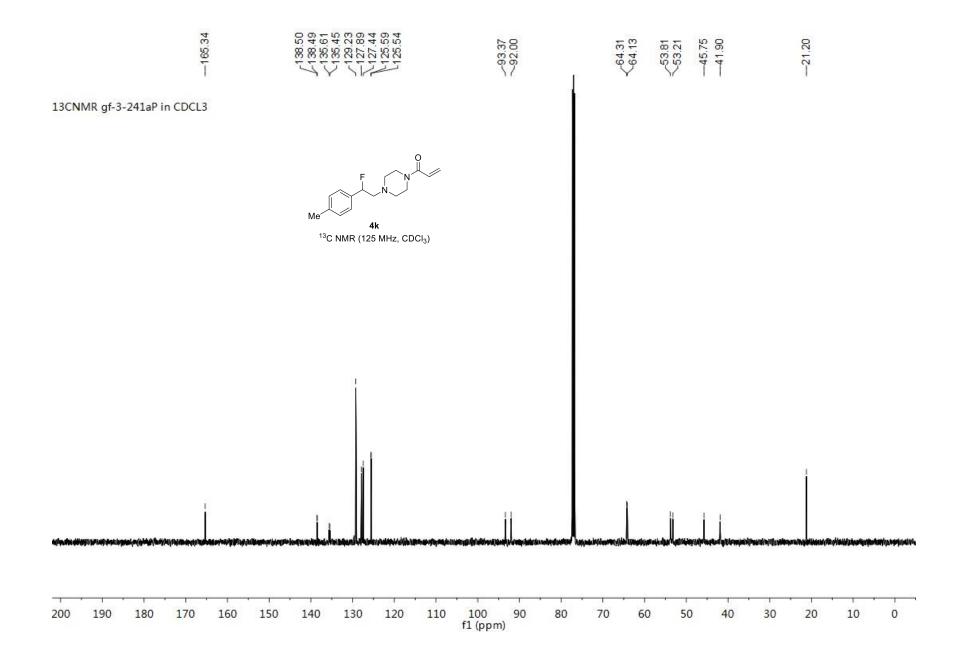


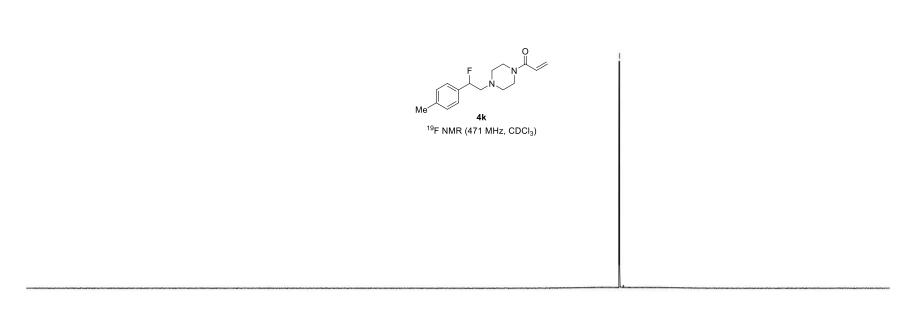


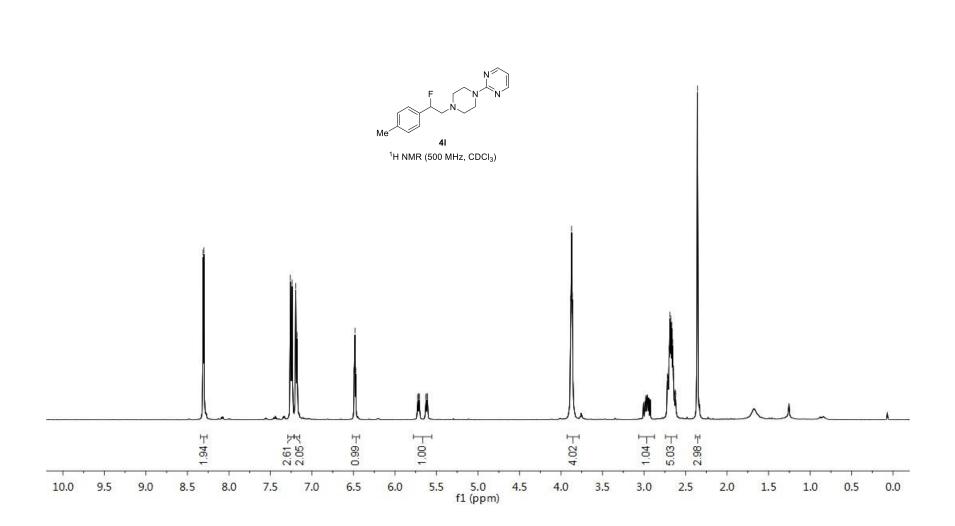


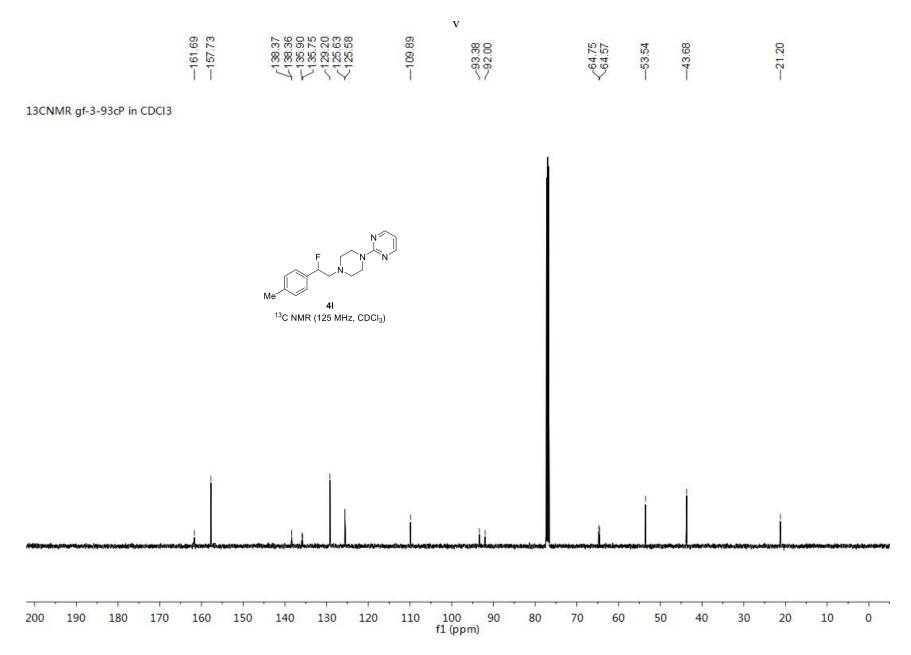
19FNRM gf-3-84bPP in CDCL3 ∼_N_Cbz Me ^{Me} **4i** ¹⁹F NMR (471 MHz, CDCl₃)

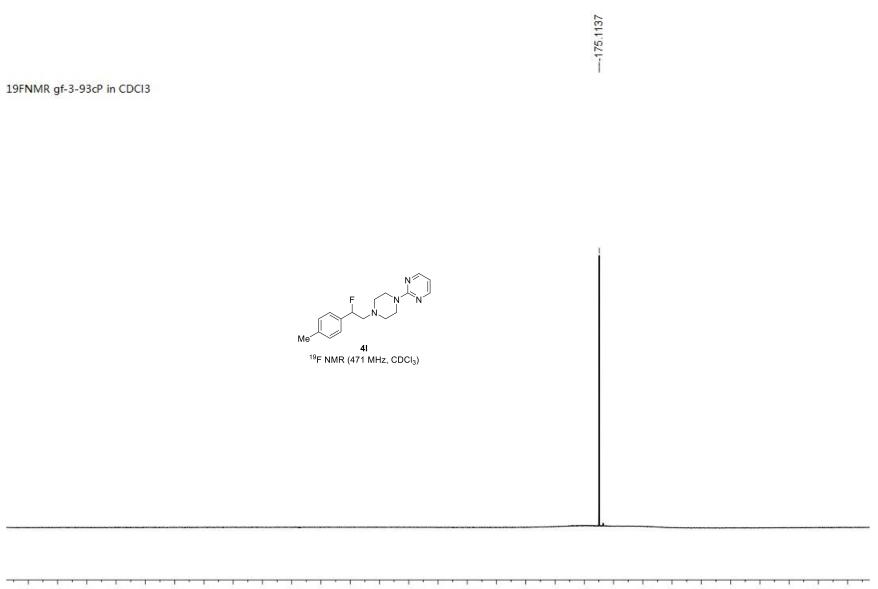




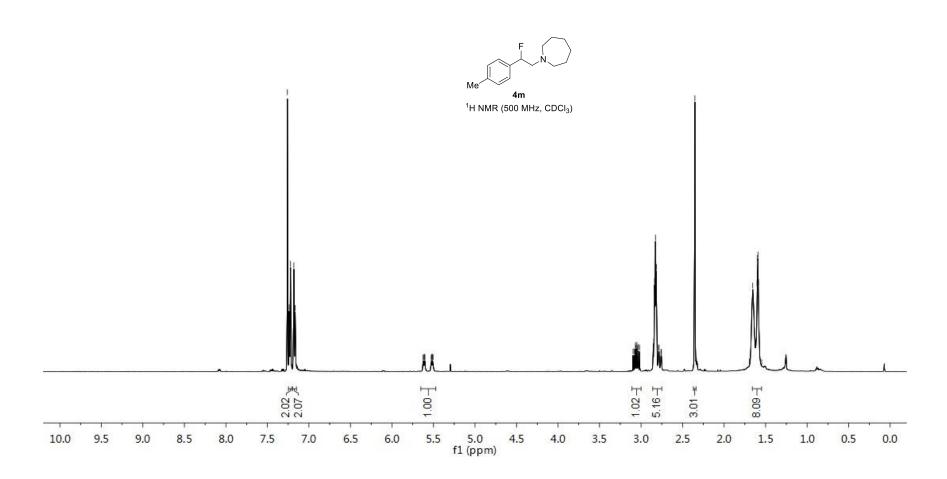

1HNMR gf-3-241aP in CDCL3

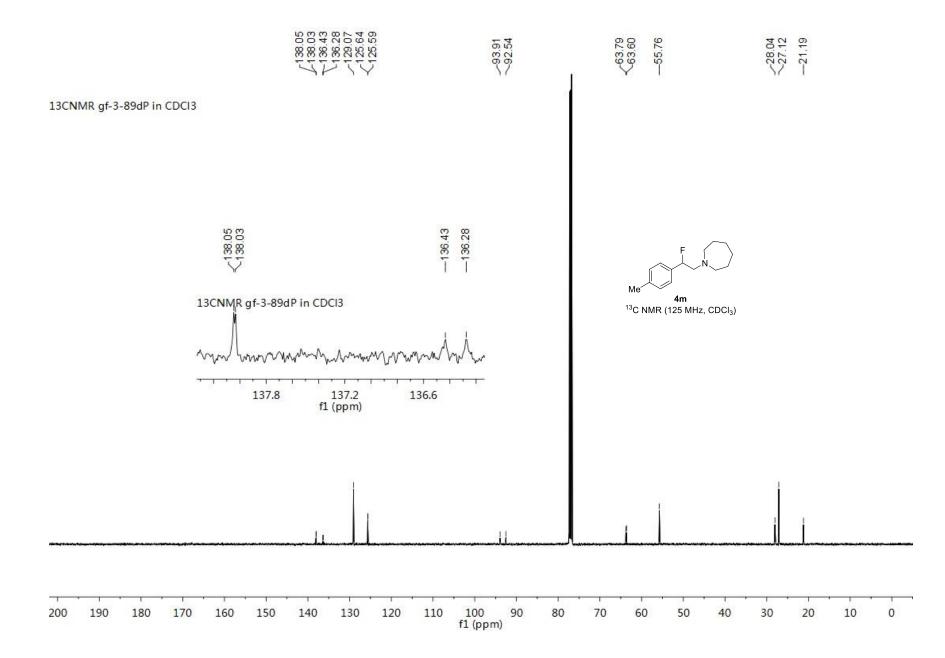

19FNMR gf-3-241aP in CDCI3

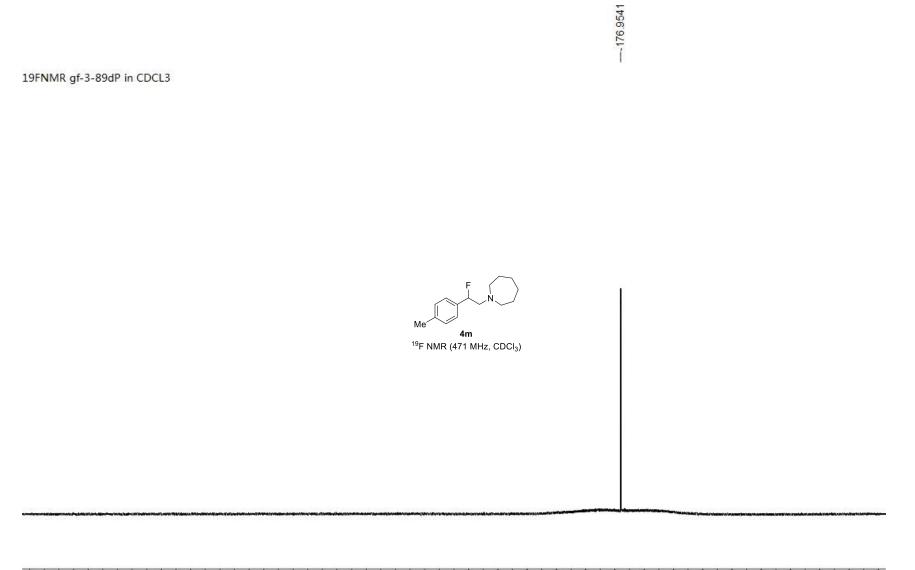


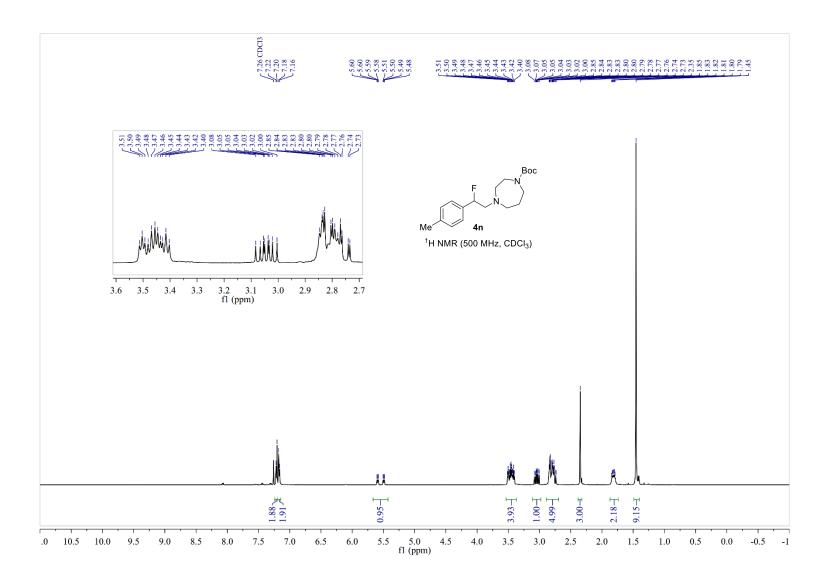

						1 . 1 . 1	- 10 T 8			5 · 3 · 1				· · · · ·	
20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210	-230	-250
f1 (ppm)															

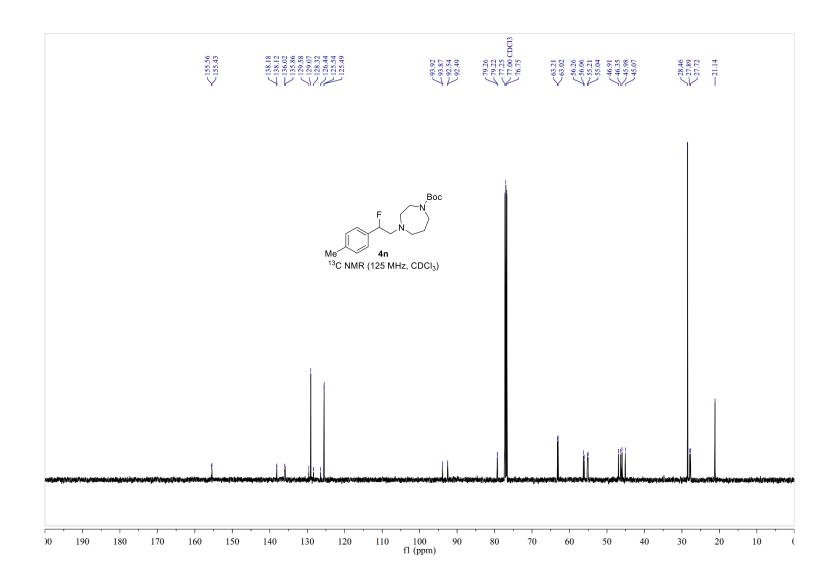
1HNMR gf-3-93cP in CDCl3

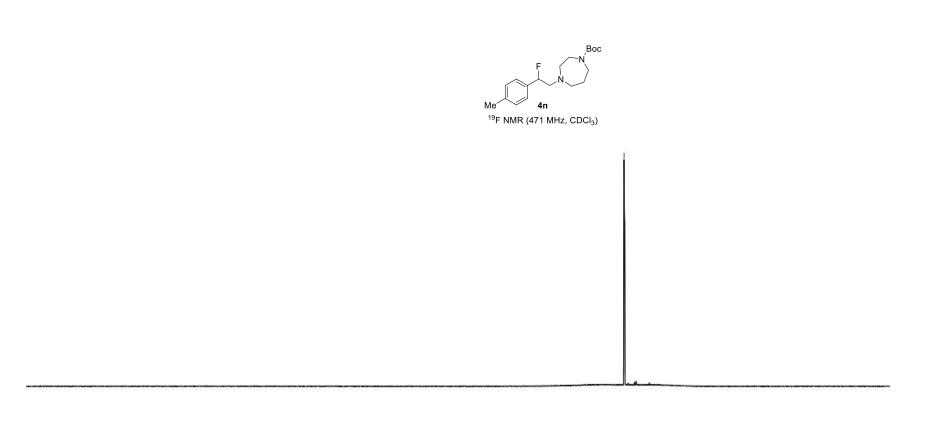


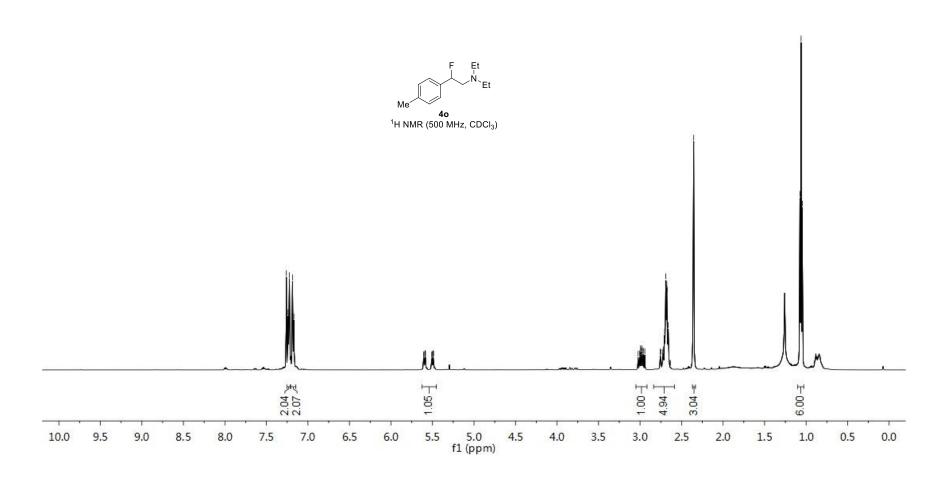


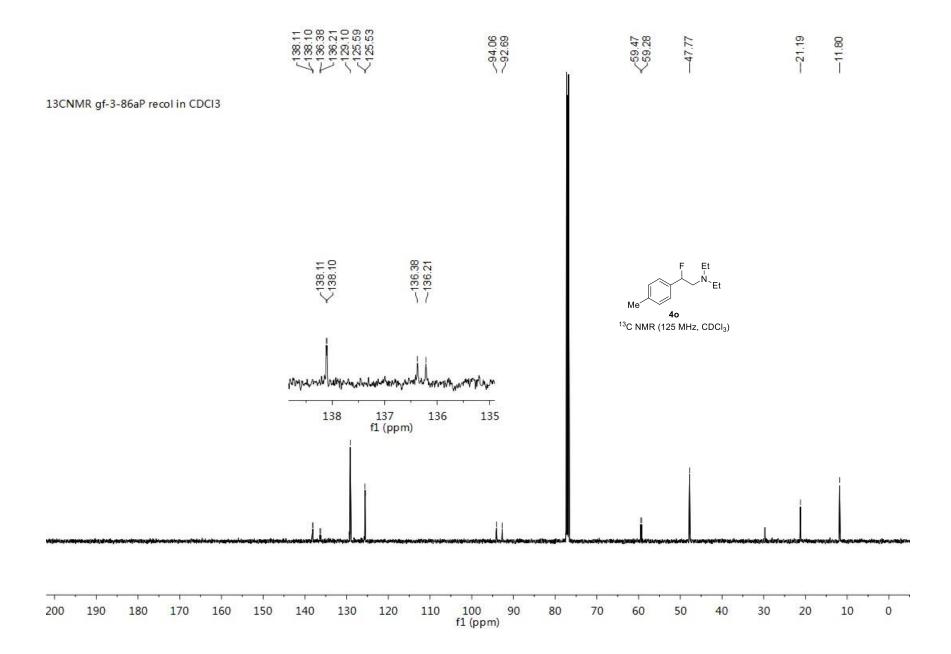


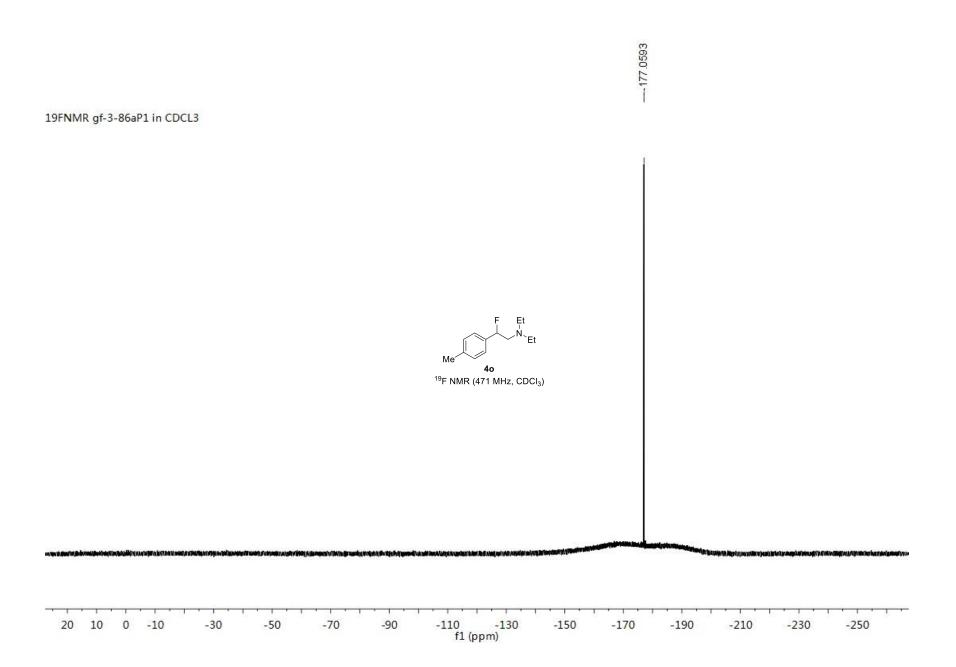

NONON	0000000	000000000000000000000000000000000000000	40-4-040
83333	408022000	002004000000000000000000000000000000000	400020000
11222		000000000000000000000000000000000000000	
NNNN	ດີດດີດດີດ	<i>ииииииииииииииииииииииииииииииииииии</i>	
10.0			11001


1HNMR gf-3-89dP in CDCI3

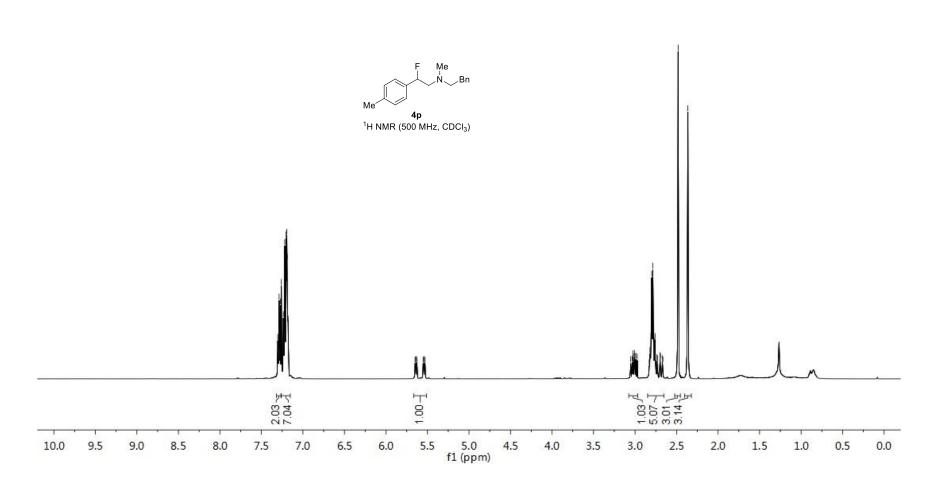


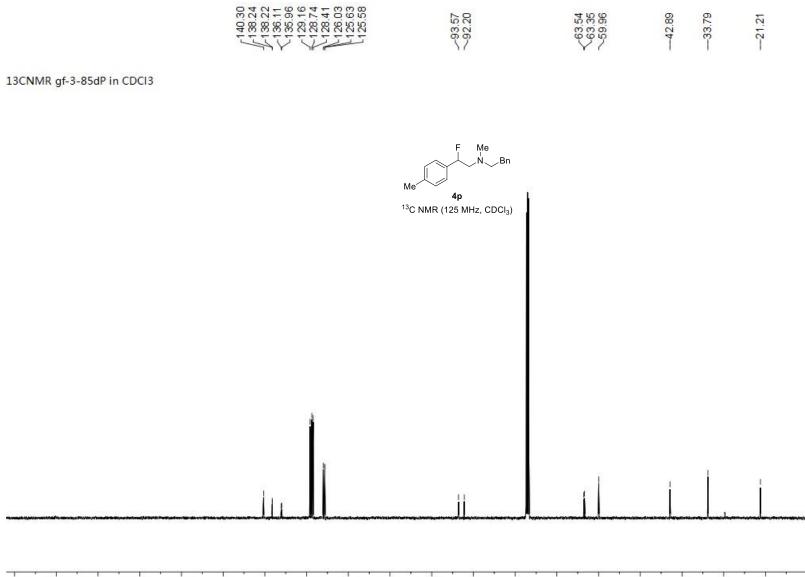


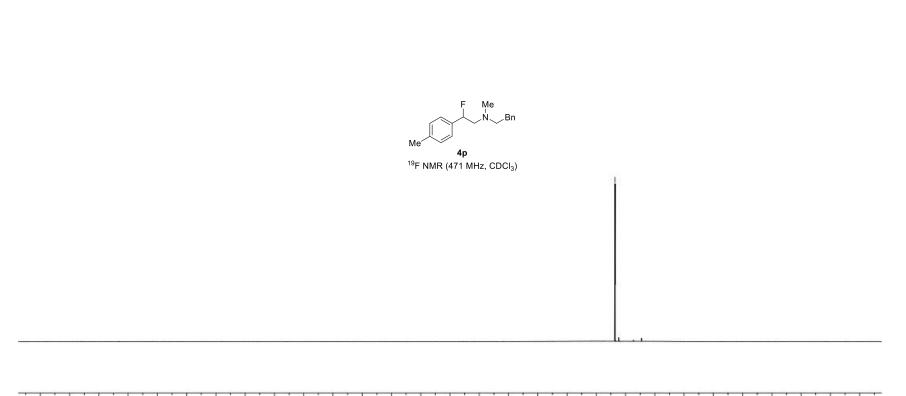

19FNMR gf-ck-II-96dP in CDCI3



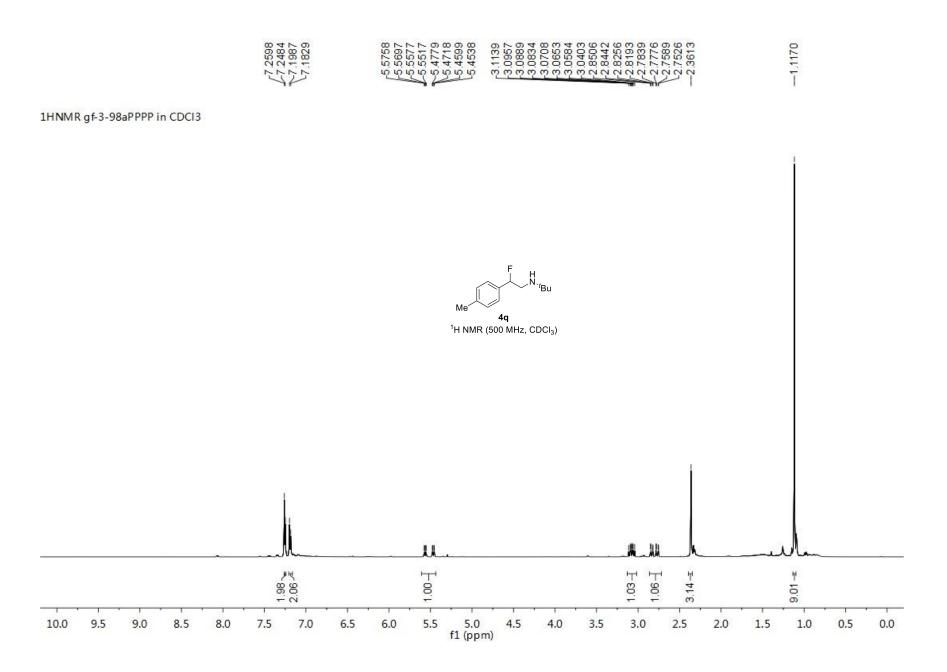
1HNMR gf-3-86aP recol in CDCL3



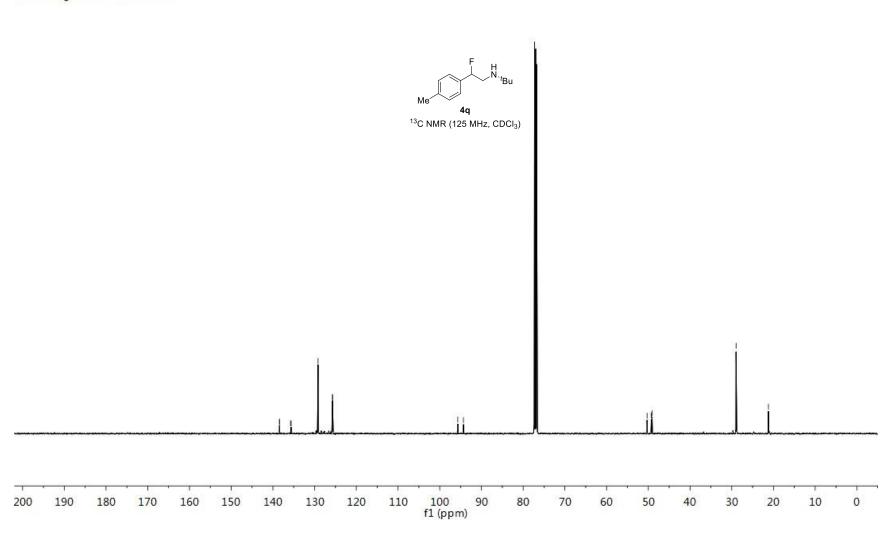




1HNMR gf-3-85dP in CDCL3



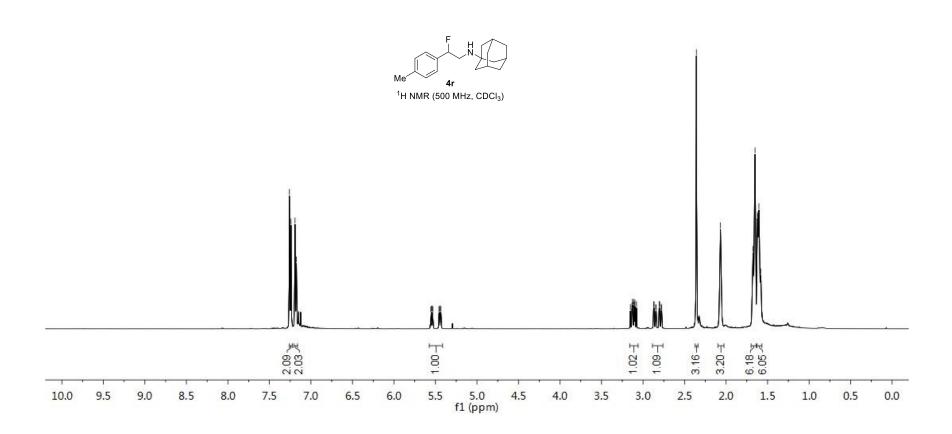
-f1 (ppm)

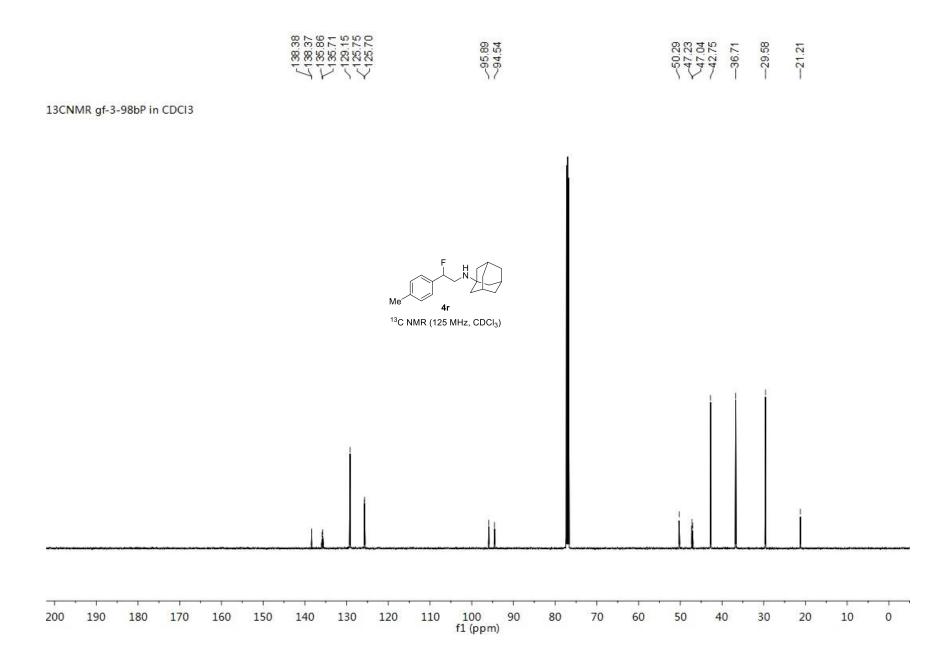


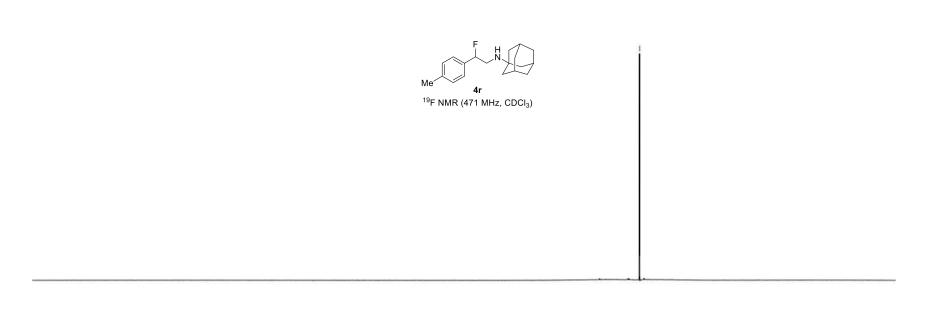
19FNMR gf-3-85dP in CDCI3



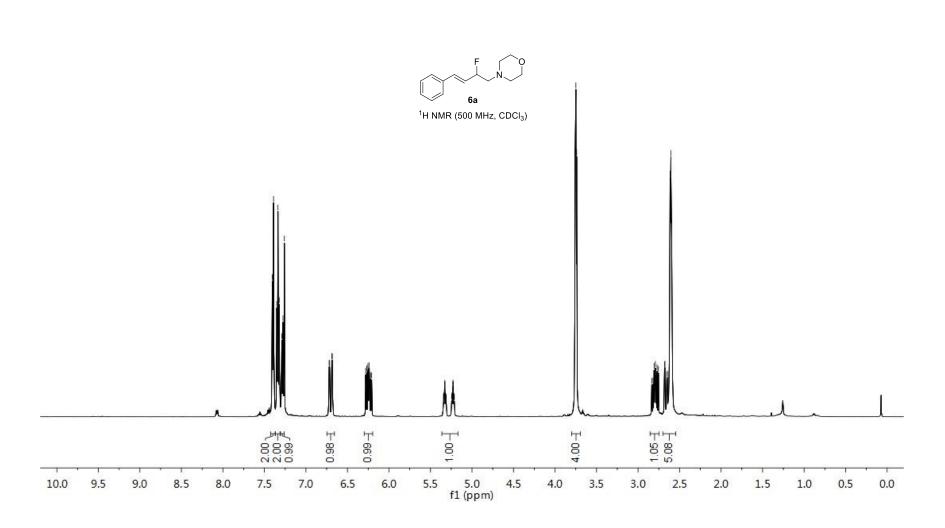
13CNMR gf-3-98aPPPP in CDCl3

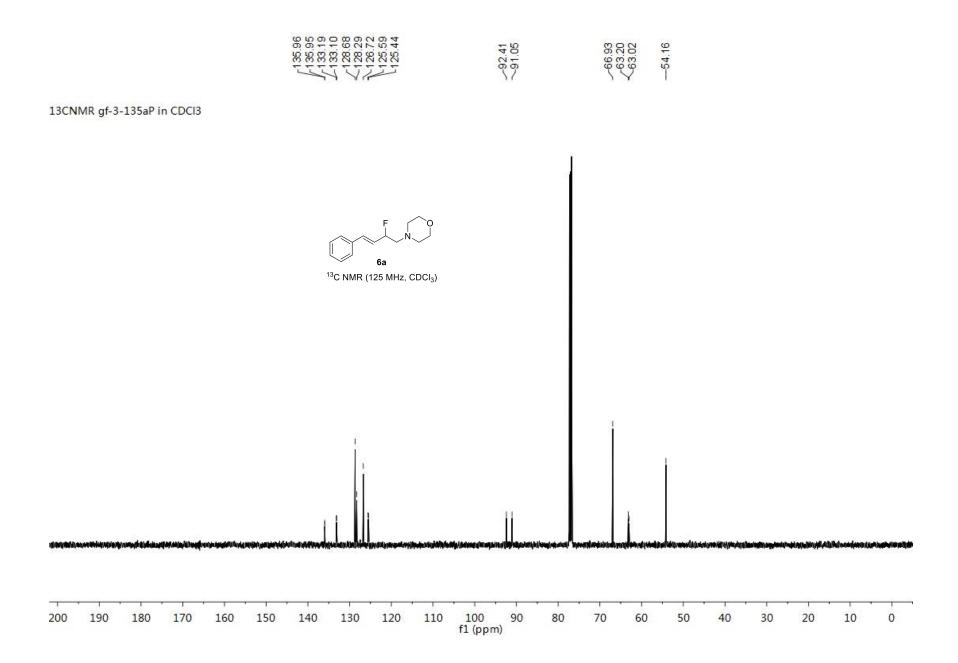


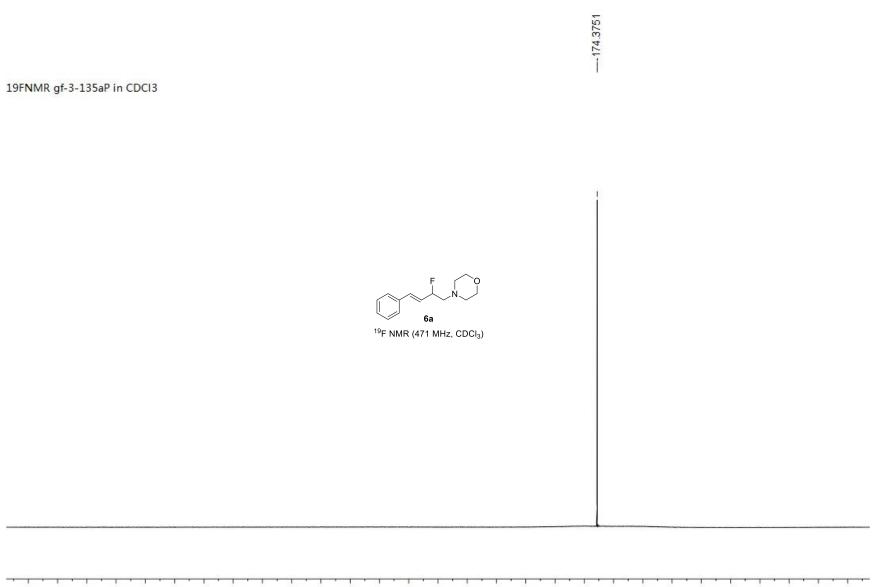

19FNMR gf-3-98aPPPP in CDCI3


596 557 396 914 754	558 558 378 336 336 336 336 336 336 336 336 57 57 57 57 57 57 57 57 57 57 57 57 57	5523 3423 2722 2723 574 566 566 566 574 574 574 574 574 574 574 574 574 574	953 515 515 220 129 129 829 829 829 829 829 829
000	00004444		αριαιαιαιαικικικ
			4

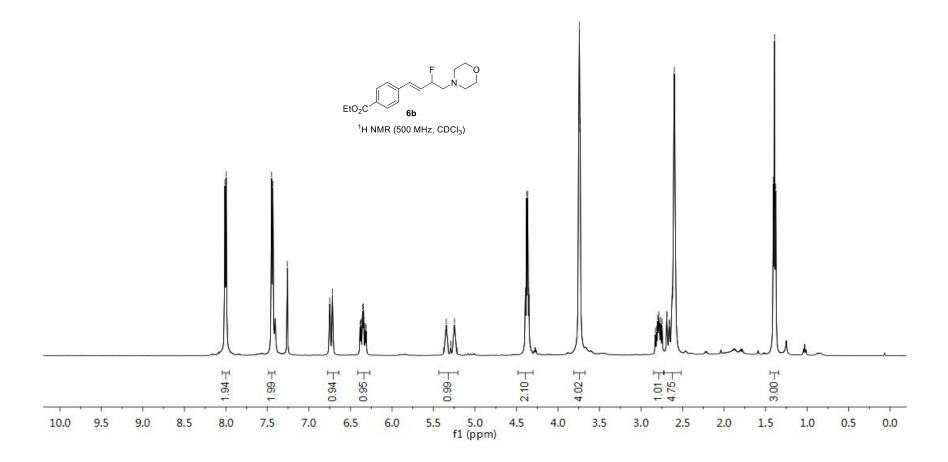
1HNMR gf-3-98bP in CDCI3

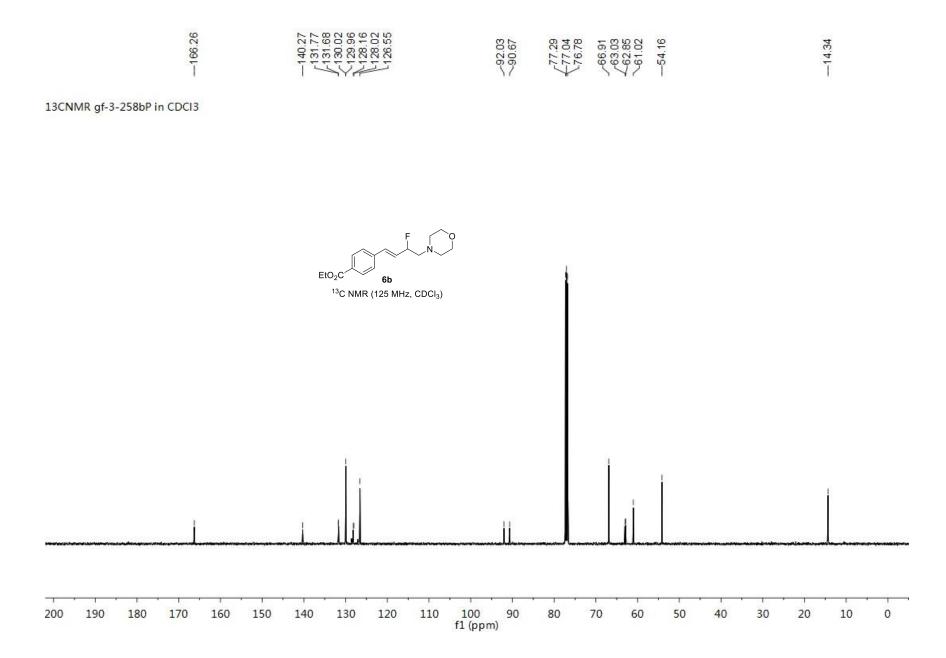


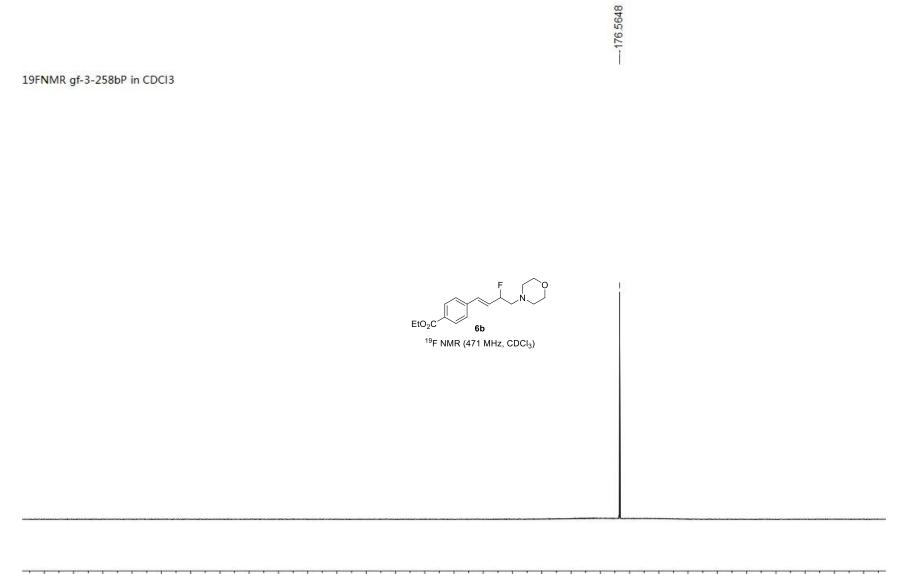

19FNMR gf-3-98bP in CDCL3



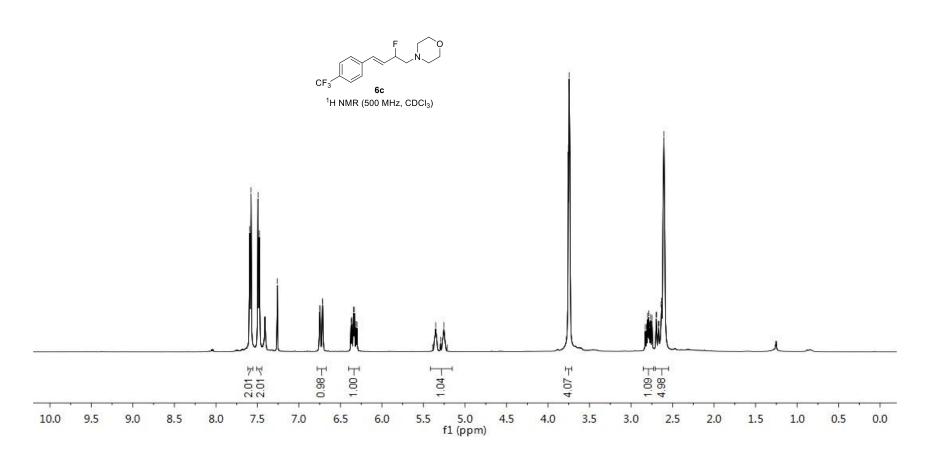
1HNMR gf-3-135aP in CDCL3

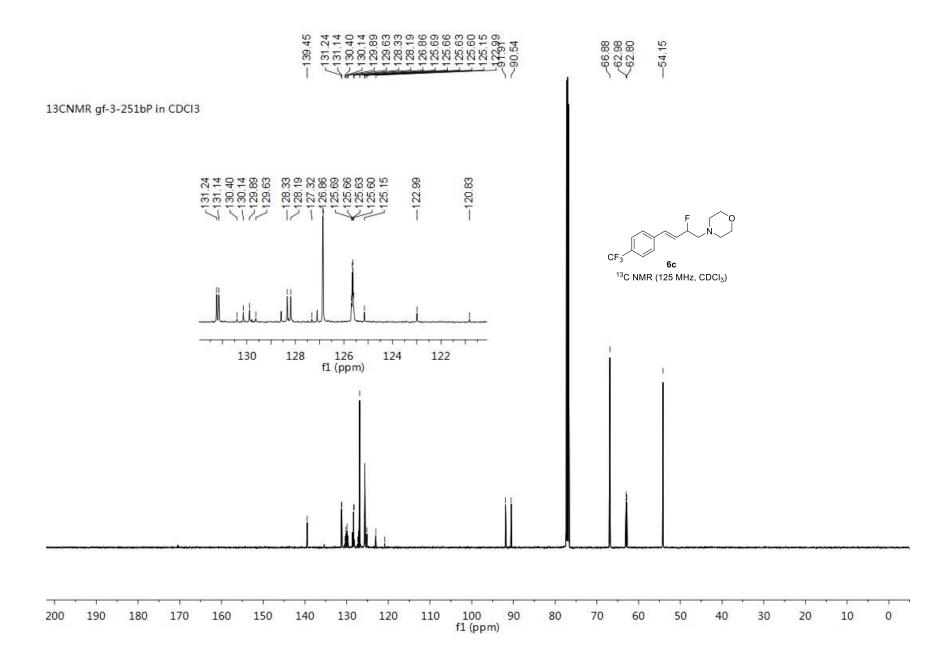


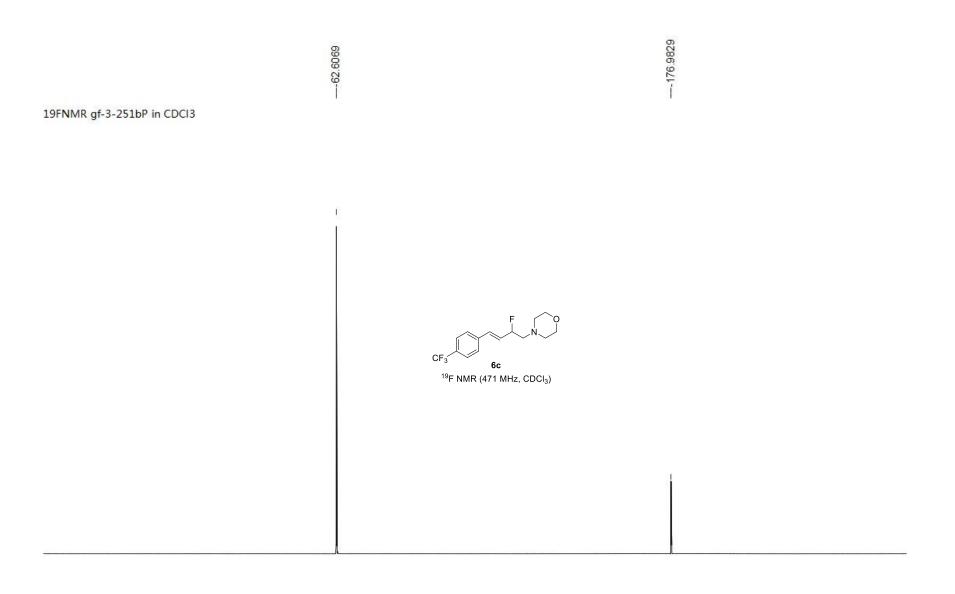




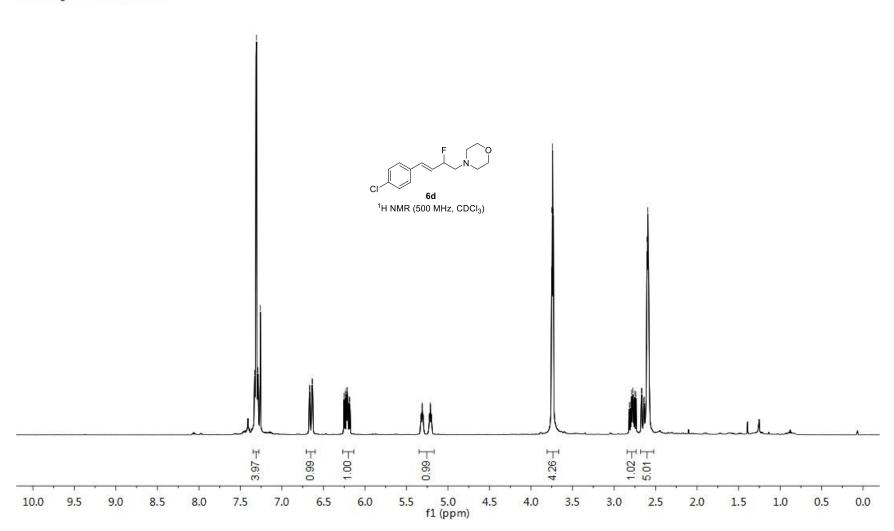
1NMR gf-3-258bP in CDCI3

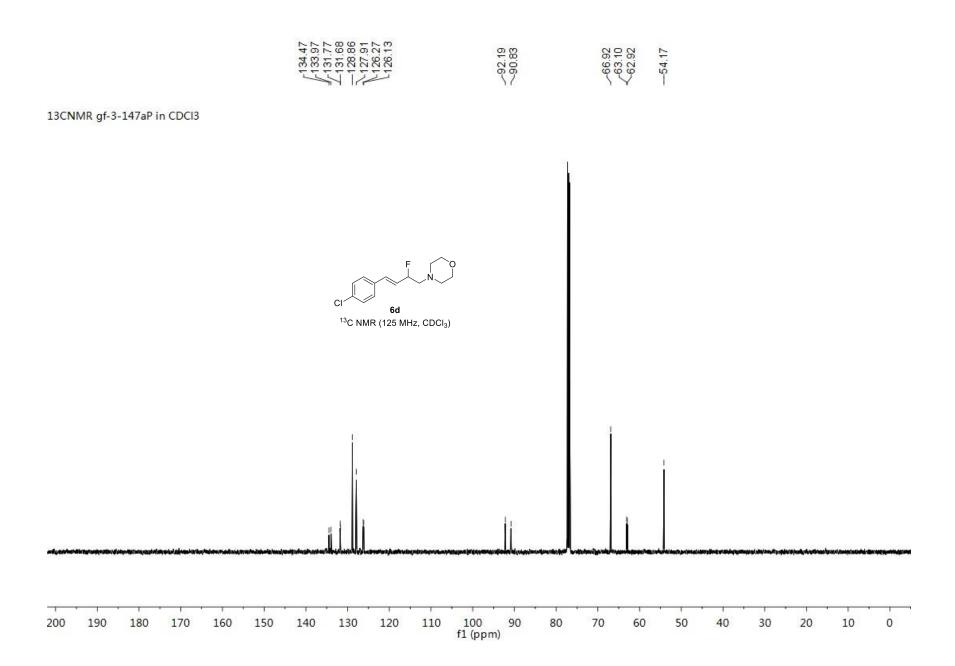




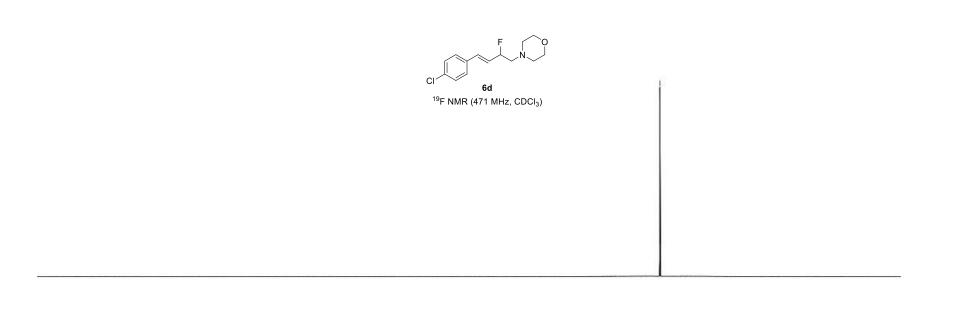


1HNMR gf-3-251bP in CDCI3

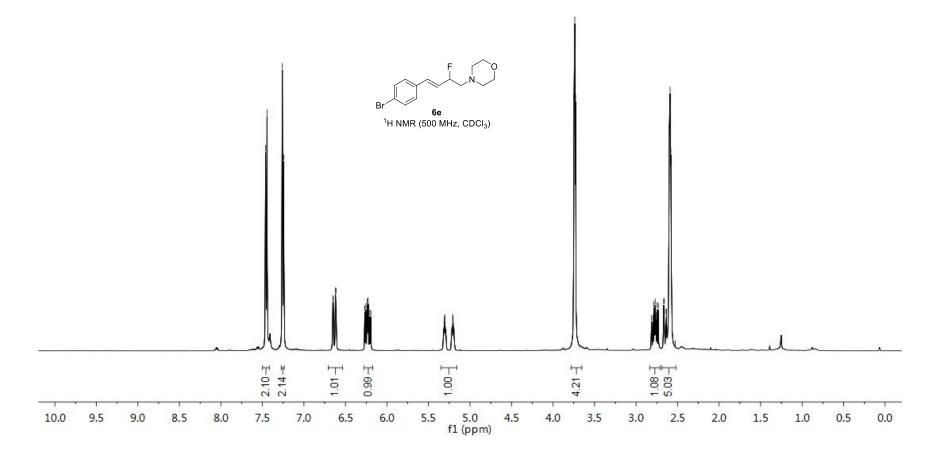




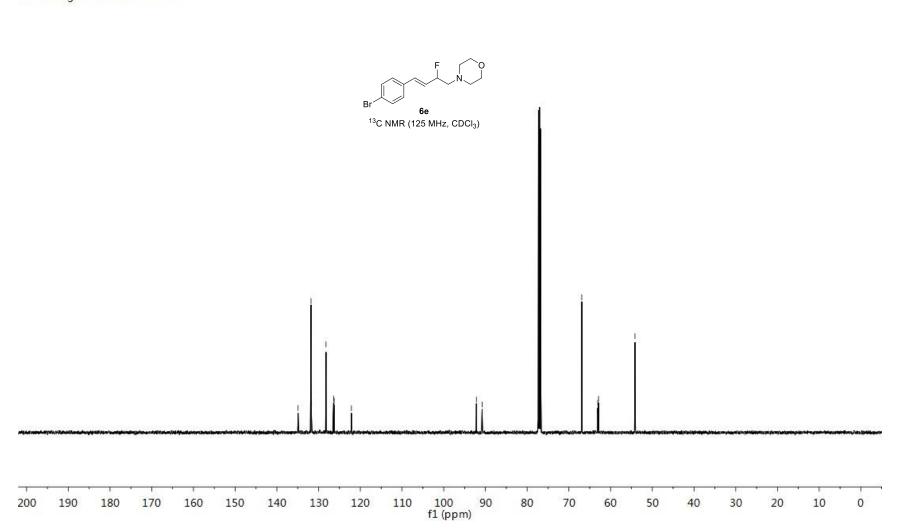
30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)



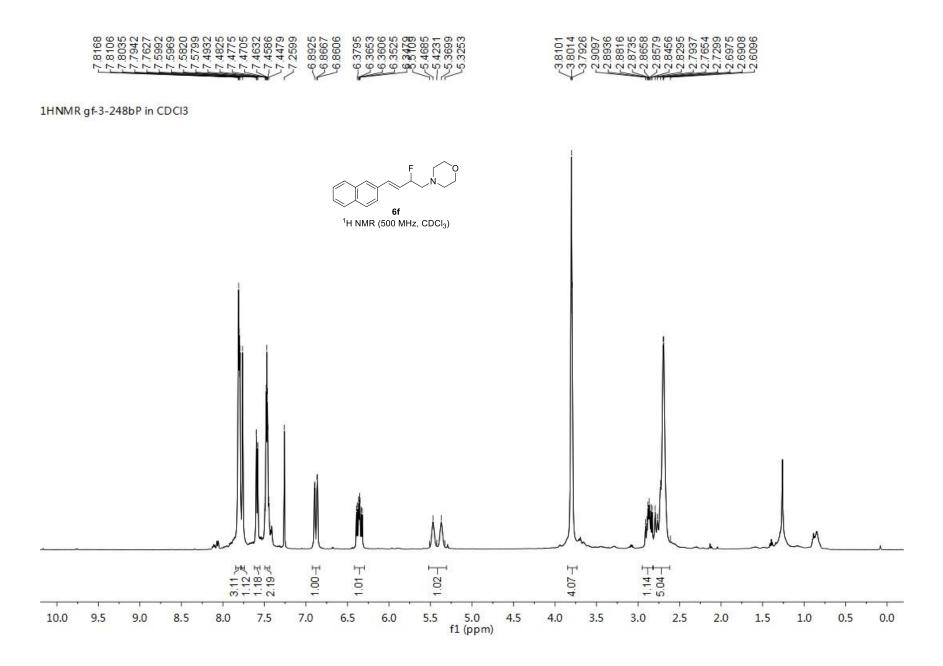
1HNMR gf-3-147aP in CDCI3


19FNMR gf-3-147aP in CDCI3

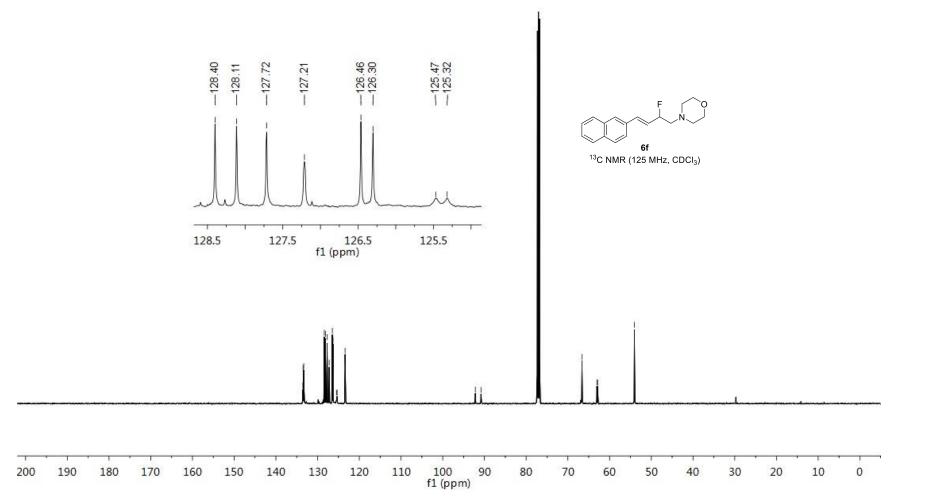
30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 fl (ppm)



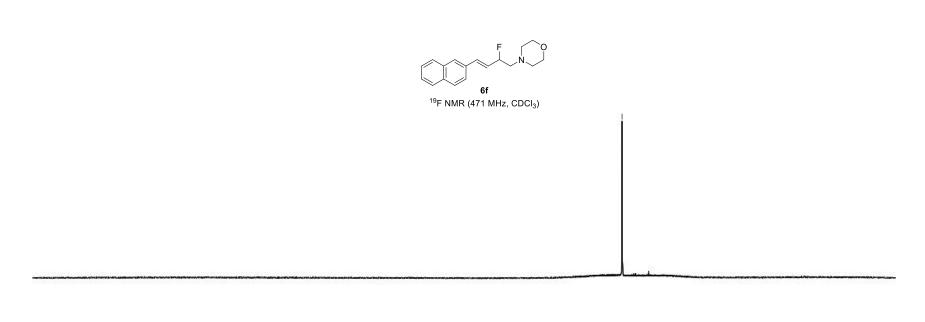
1HNMR gf-3-147bP in CDCI3

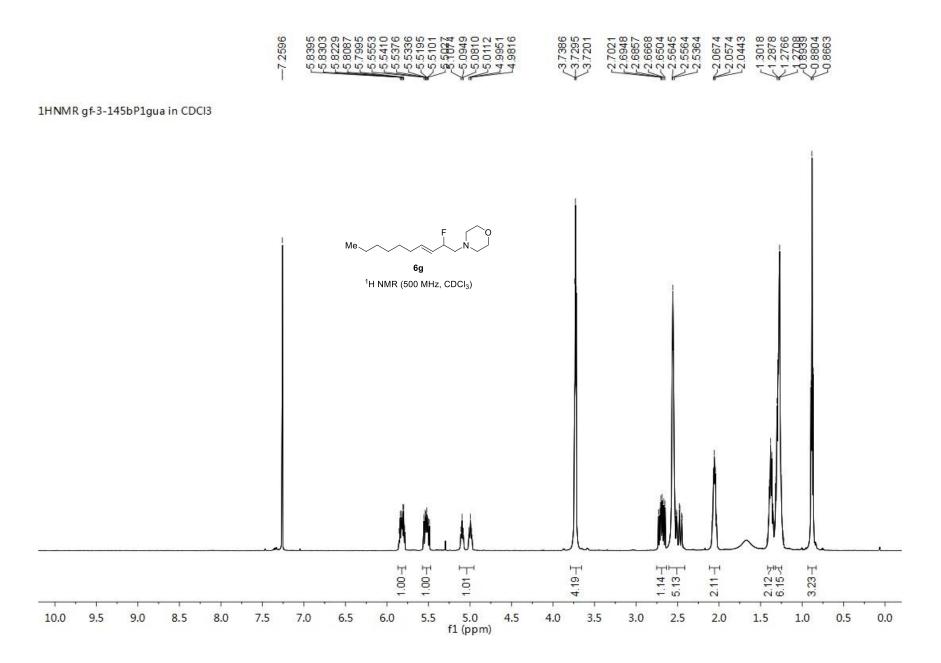


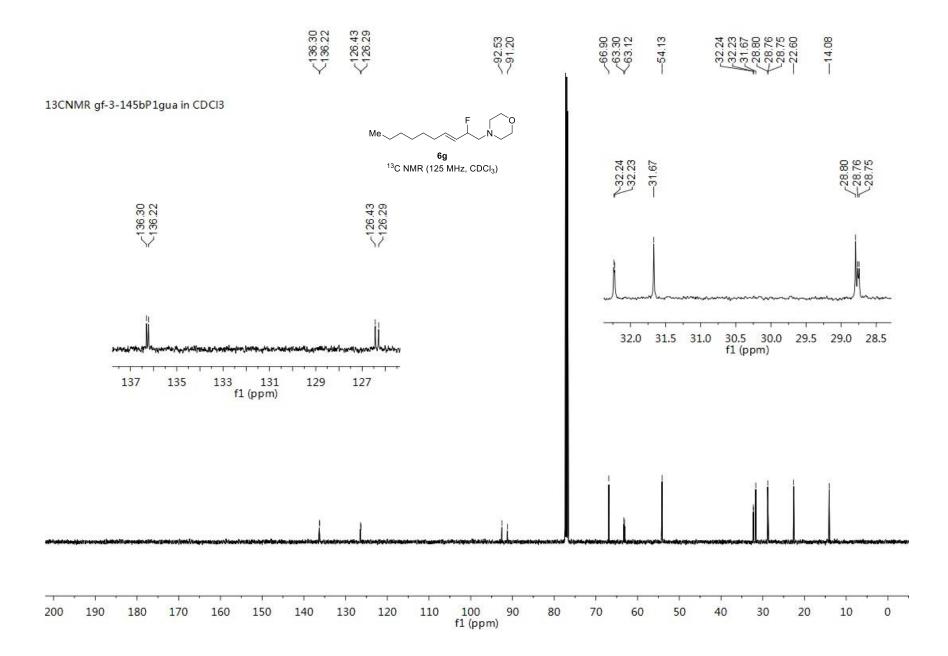
13CNMR gf-3-147bP in CDCI3


19FNMR gf-3-147bP in CDCI3 `Q Br ^{3r} **6e** ¹⁹F NMR (471 MHz, CDCl₃)

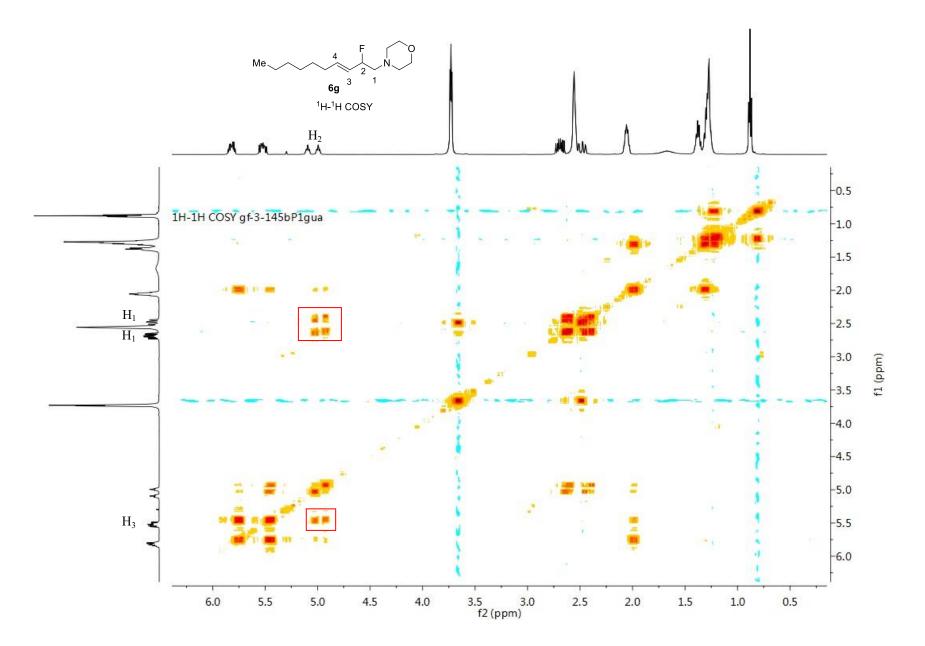
30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

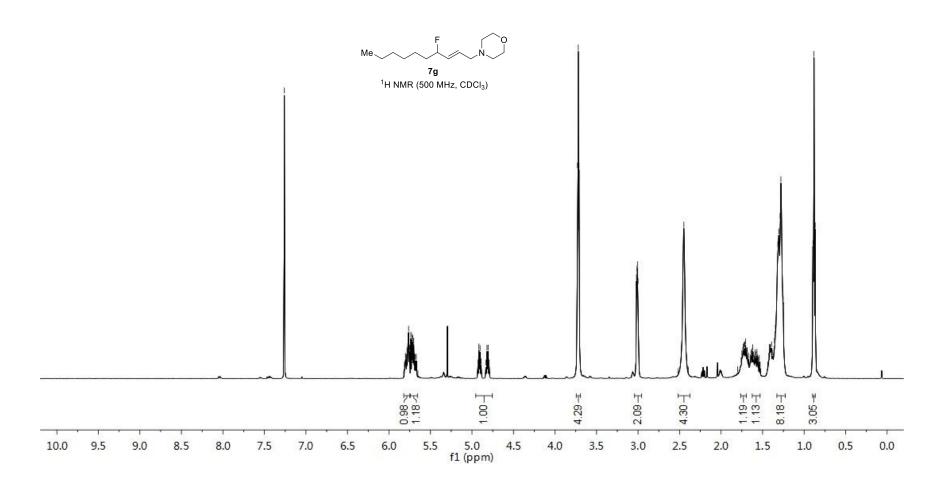


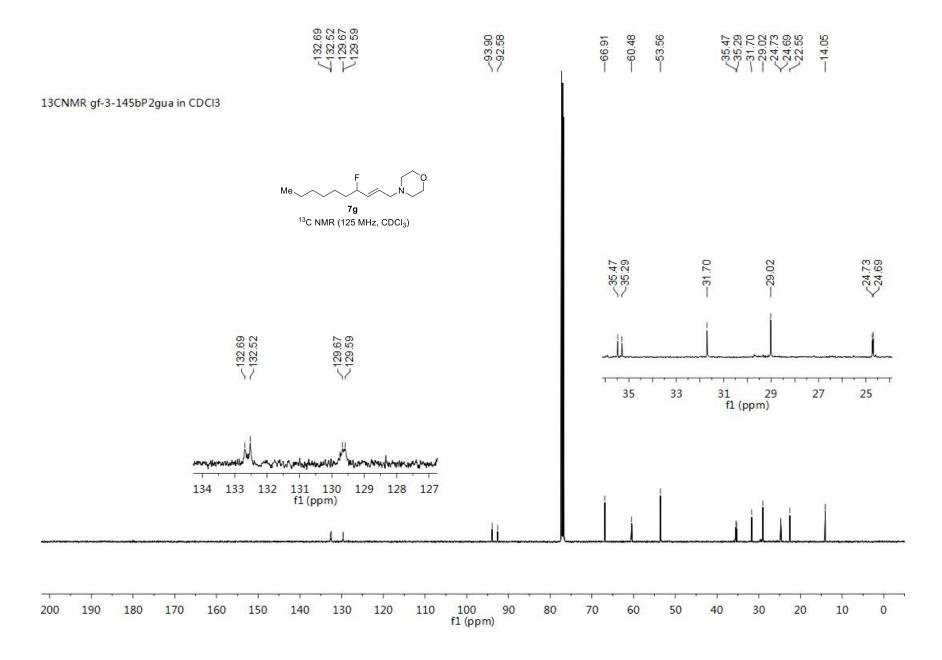



13CNMR gf-3-248bP in CDCI3

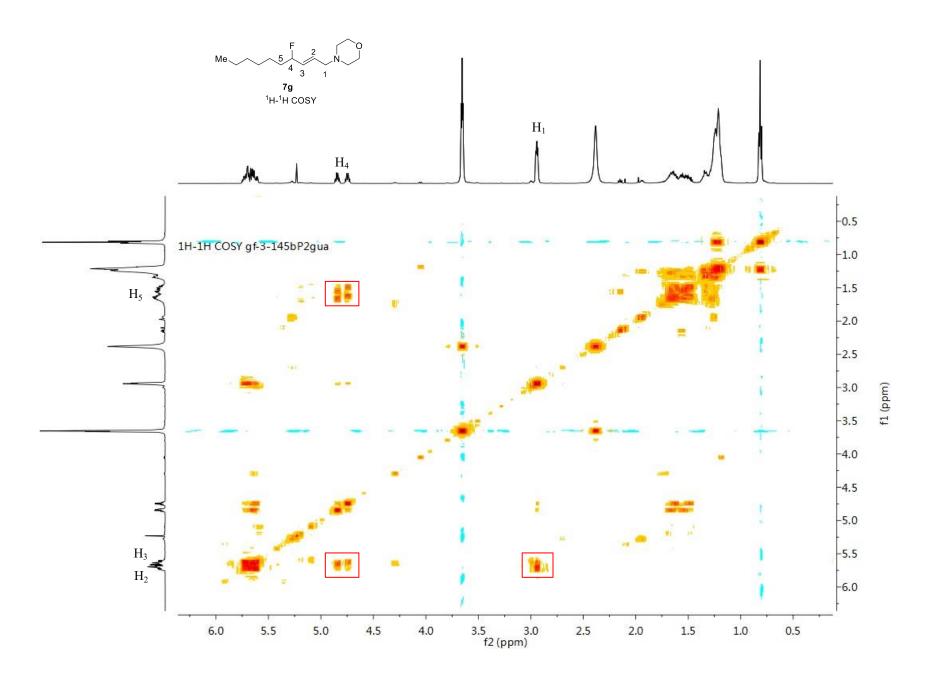
19FNMR gf-3-248bP in CDCI3




19FNMR gf-3-145bPgua in CDCI3 `ọ Me **6g** ¹⁹F NMR (471 MHz, CDCl₃)

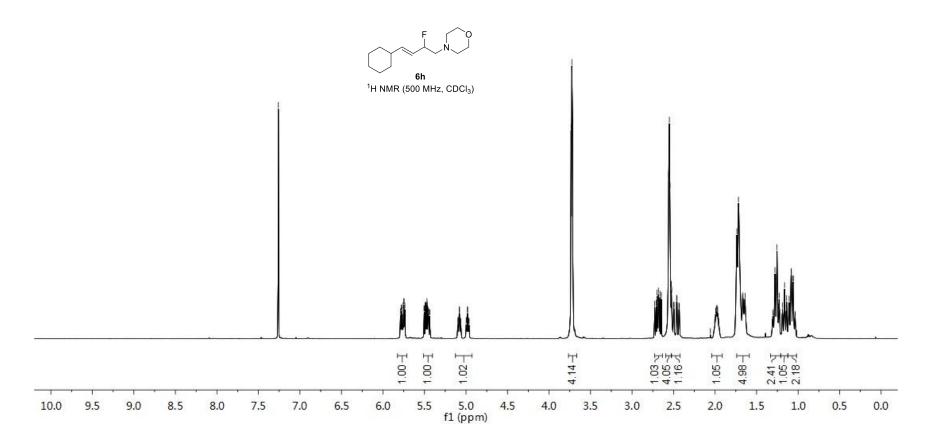

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)

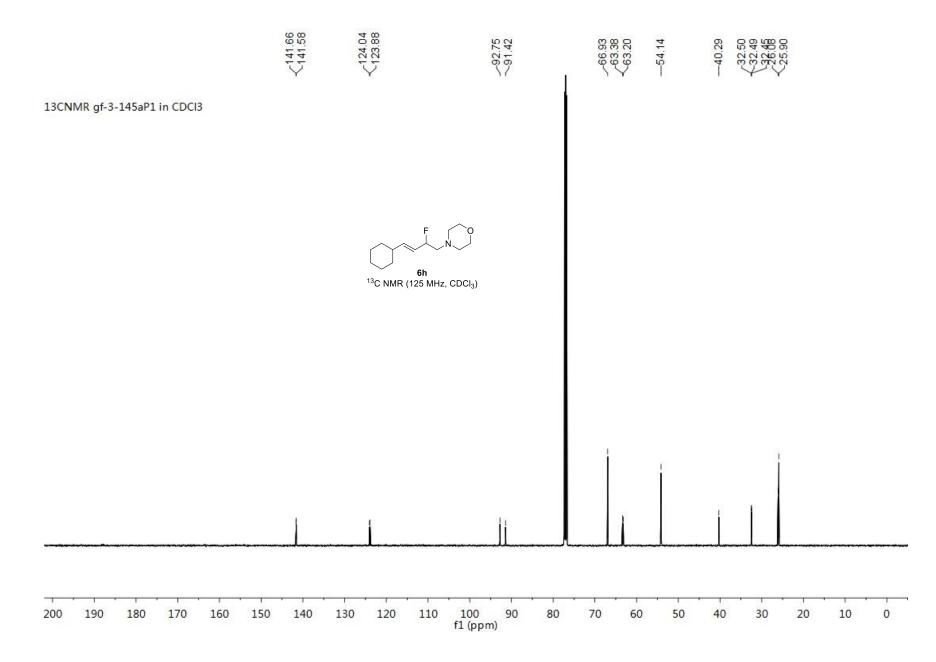
1HNMR gf-3-145bP2 in CDCI3



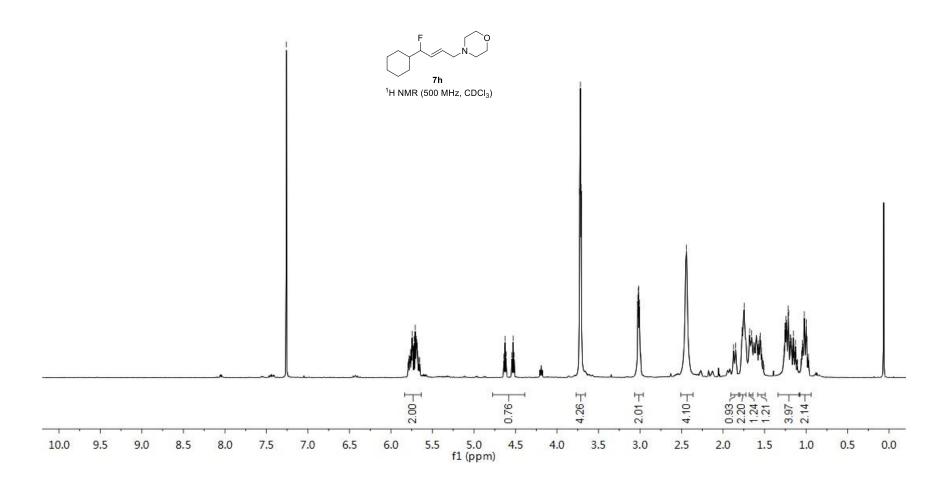
19FNMR gf-3-145bP2gua in CDCL3

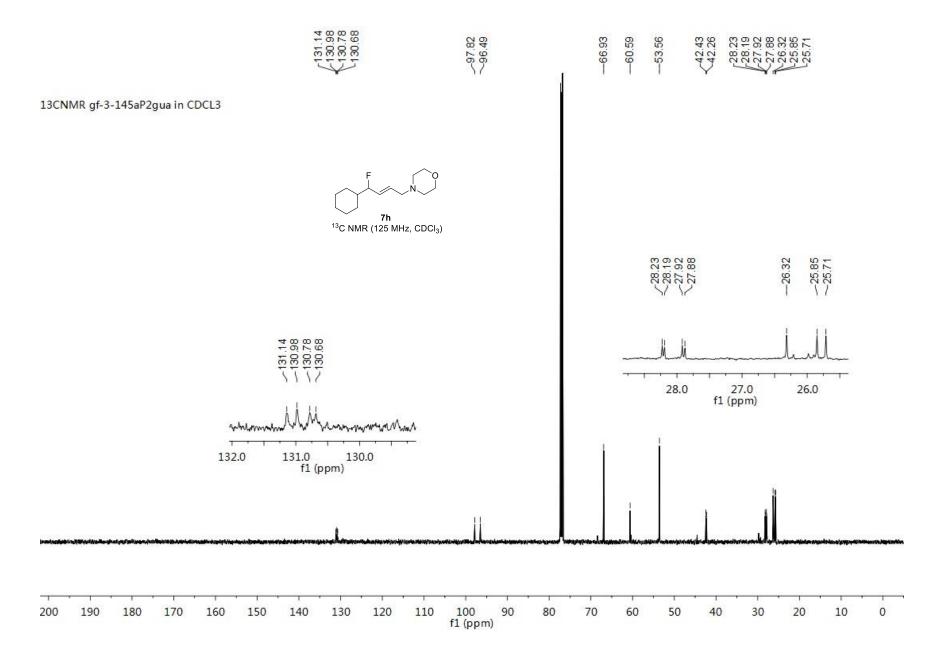
Me 7g

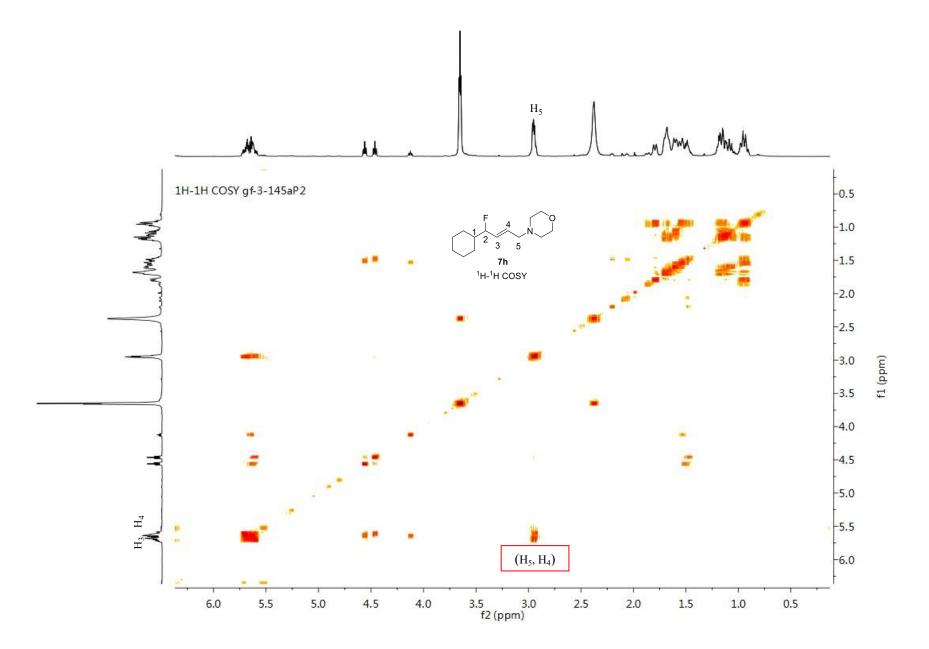

¹⁹F NMR (471 MHz, CDCl₃)

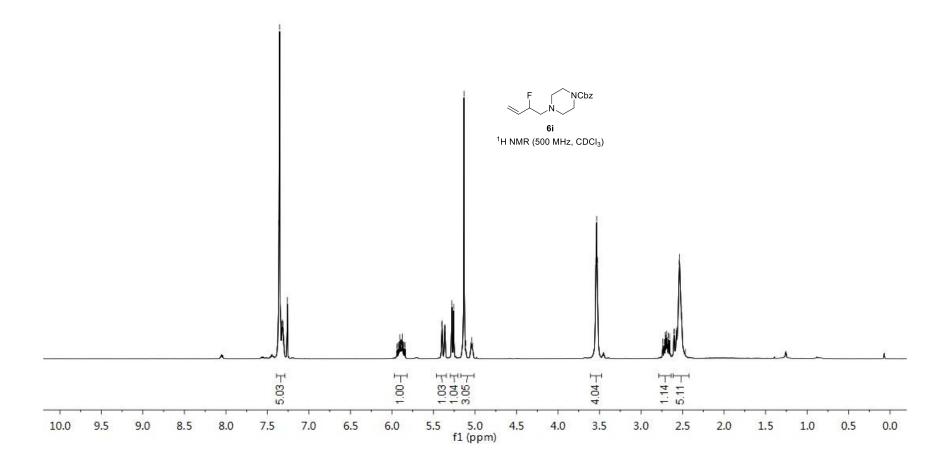

40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 f1 (ppm)

1HNMR gf-3-145aP1 in CDCI3

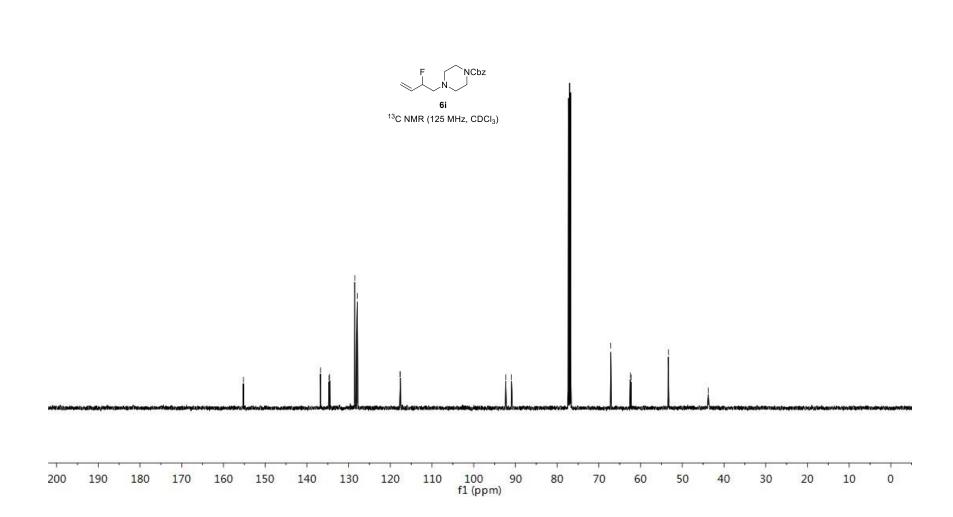




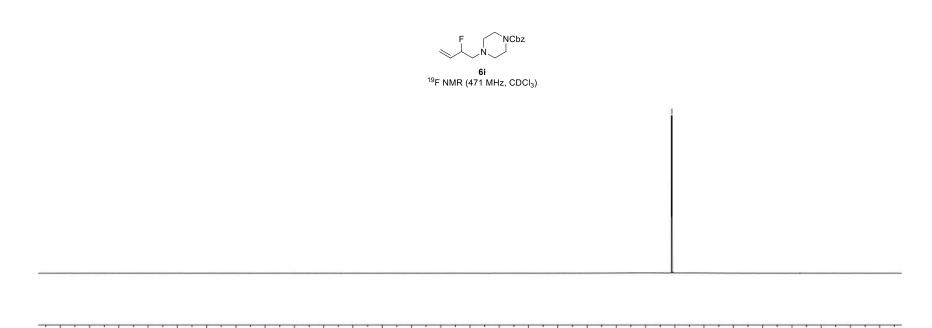

1HNMR gf-3-145aP2 in CDCI3


19FNMR gf-3-145aP2 in CDCI3

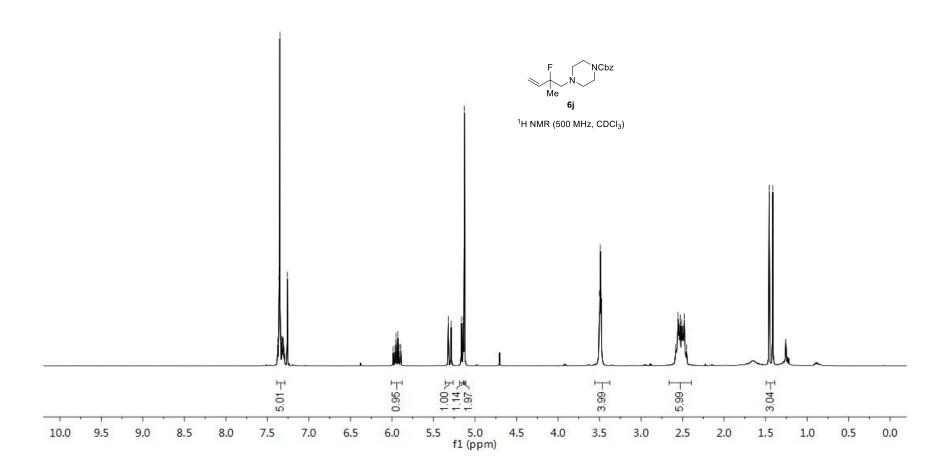
Ò 7h ¹⁹F NMR (471 MHz, CDCl₃)

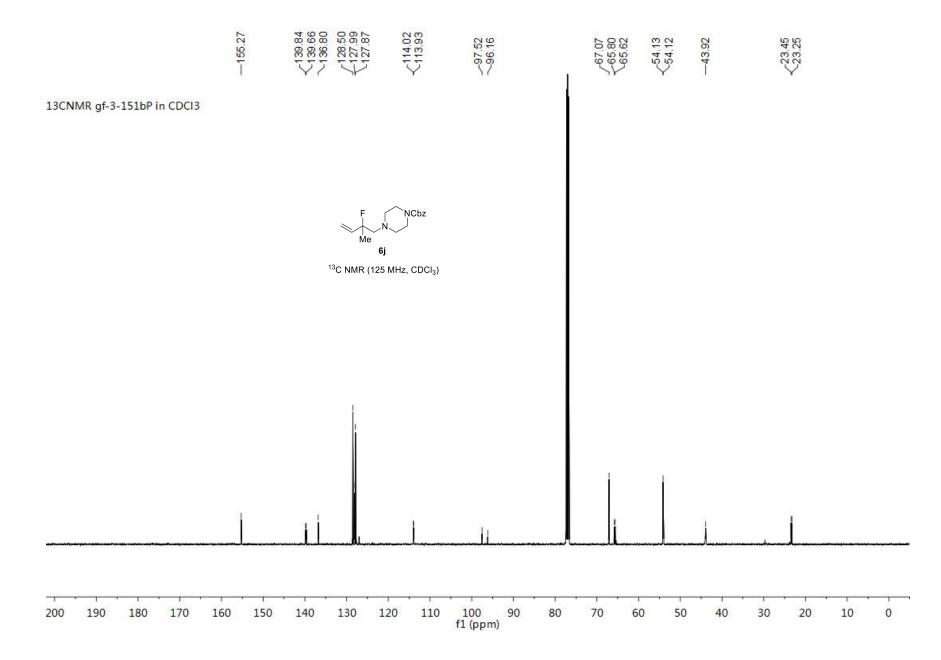

0000000000	0400-N	00000000000000000000000000000000000000
0000-00-000	0 N 0 N 0 4	0 / 4 / 0 0 0 / 0 0 0 0 4 4 / 0 0 0 0 0
000-10mm000	000000	000000000000000000000000000000000000000
<u>, , , , , , , , , , , , , , , , , , , </u>	0,00,00,00,00	4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NNNNNNNNN	ບບບບບບ	//////////////////////////////////////

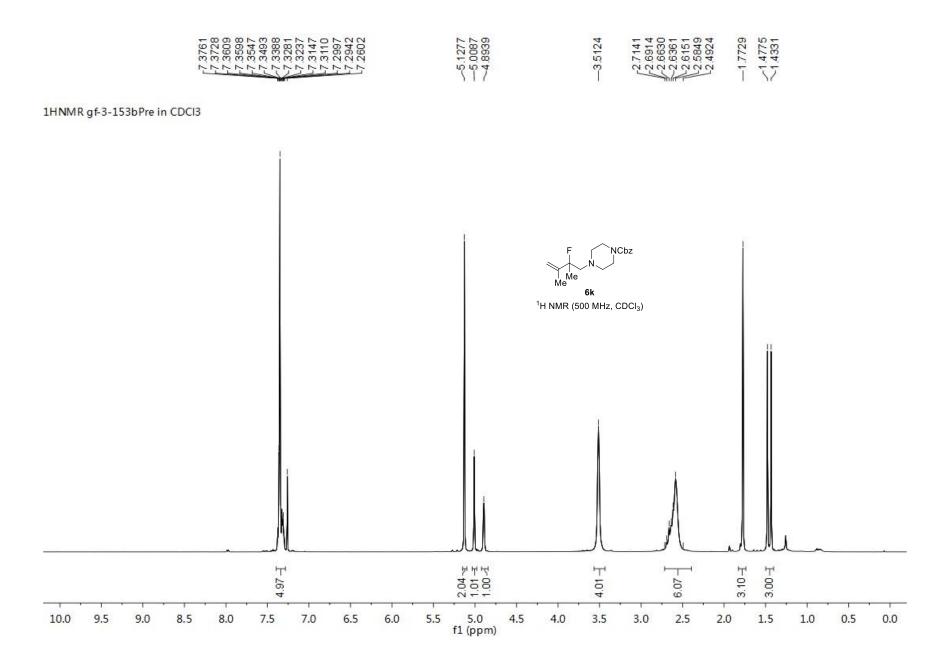
1HNMR gf-3-258P3 in CDCl3

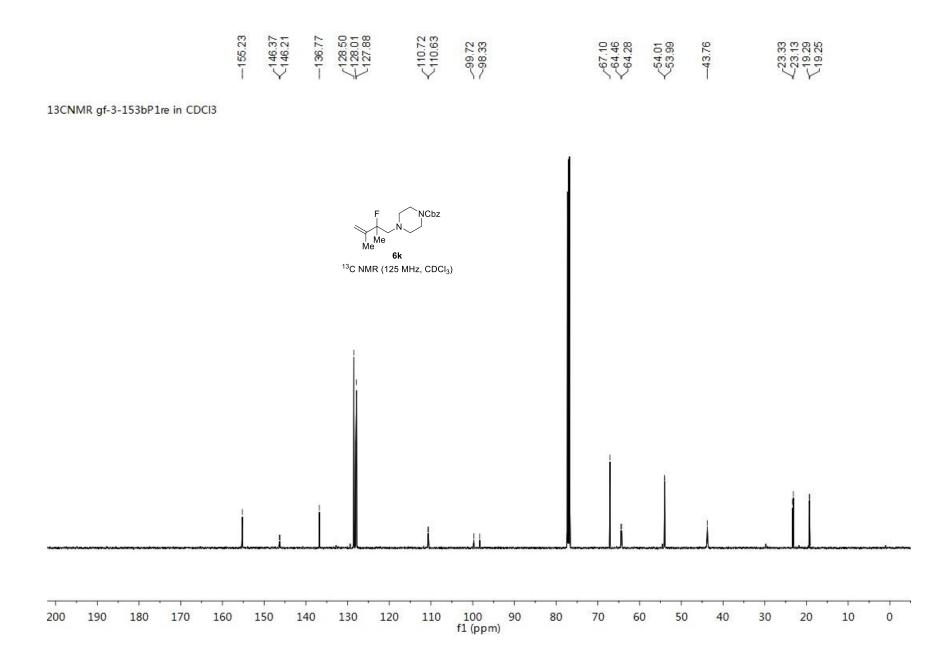


13CNMR gf-3-158aP3 in CDCl3



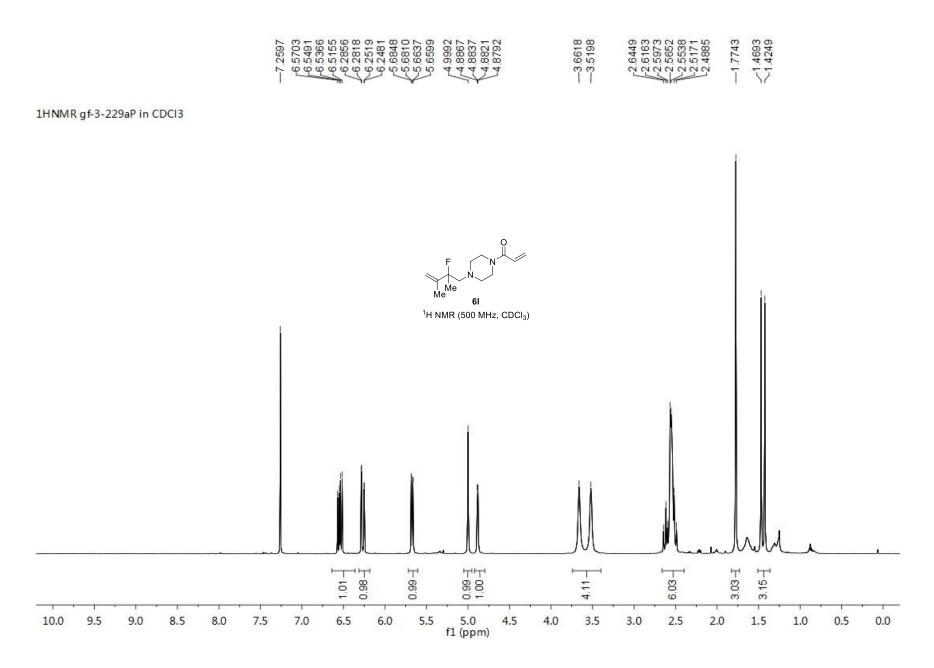

19FNMR gf-3-158aP3 in CDCI3

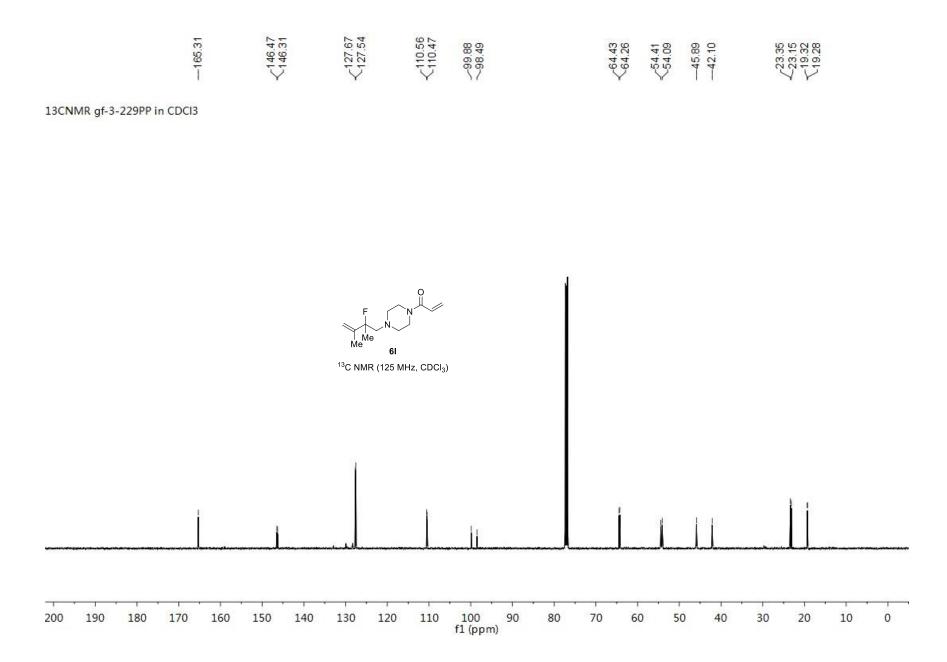

1HNMR gf-3-151bP in CDCI3



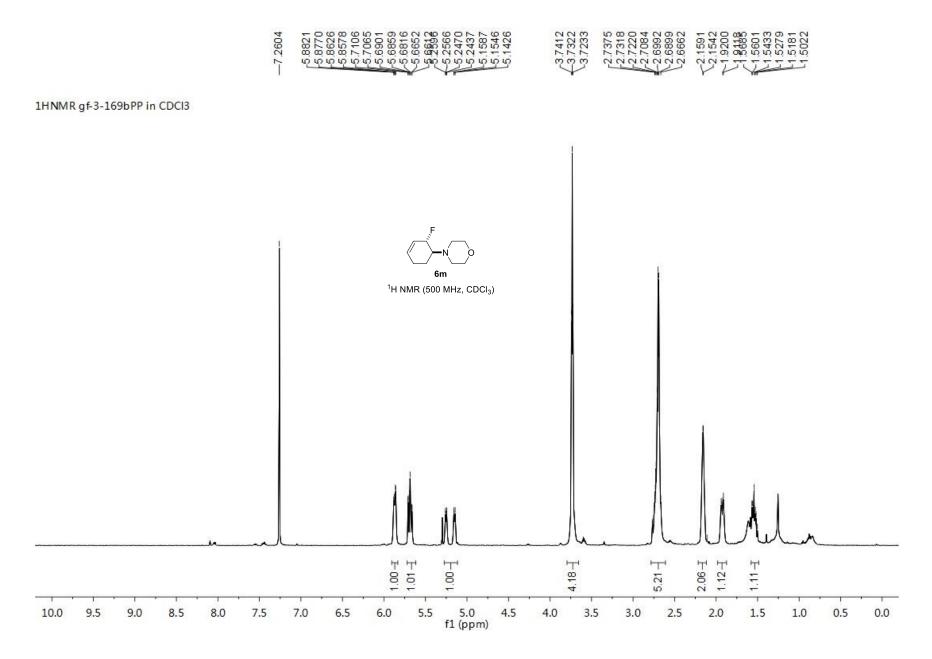
19FNMR gf-3-151bP1 in CDCI3

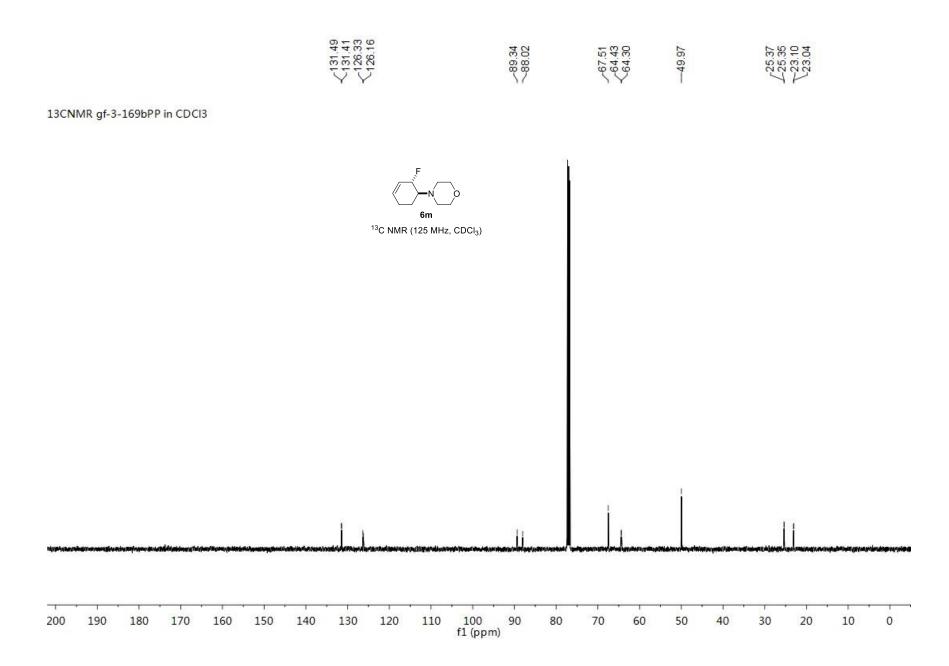
`NCbz Мe 6j ¹⁹F NMR (471 MHz, CDCl₃)

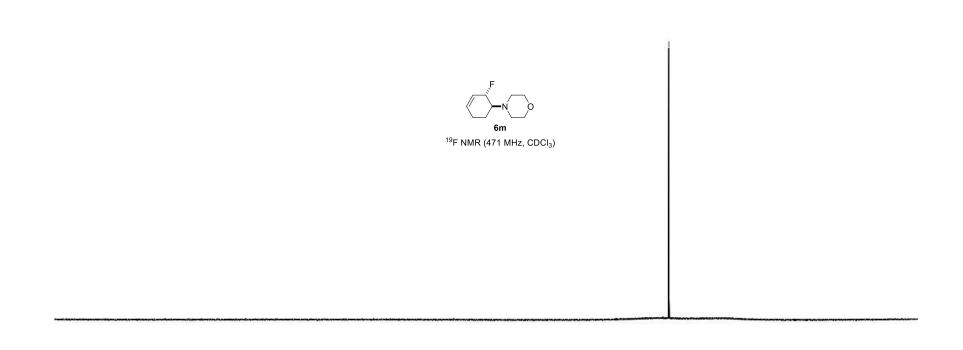


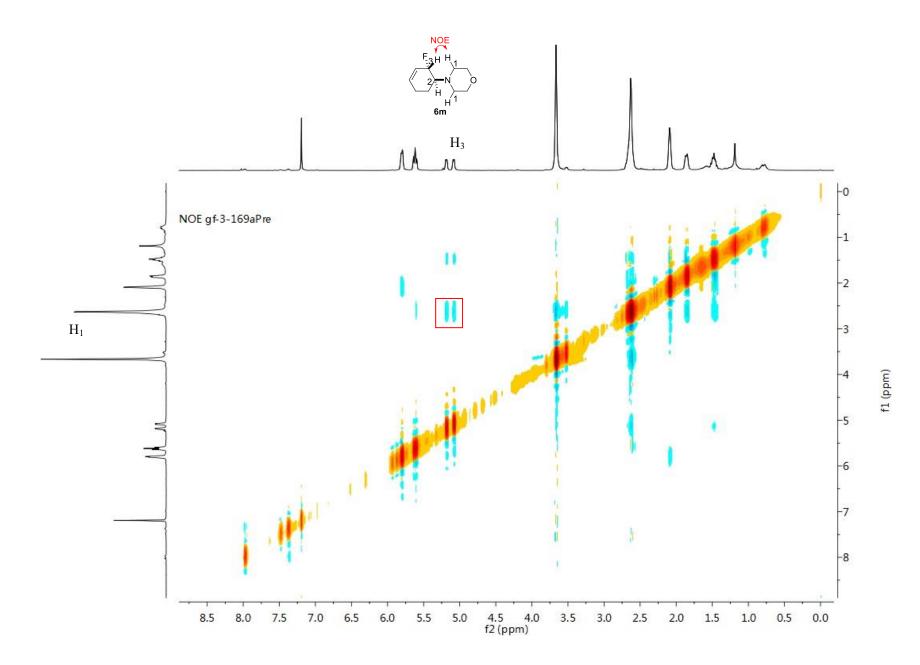


19FNMR gf-3-153bP1 in CDCI3

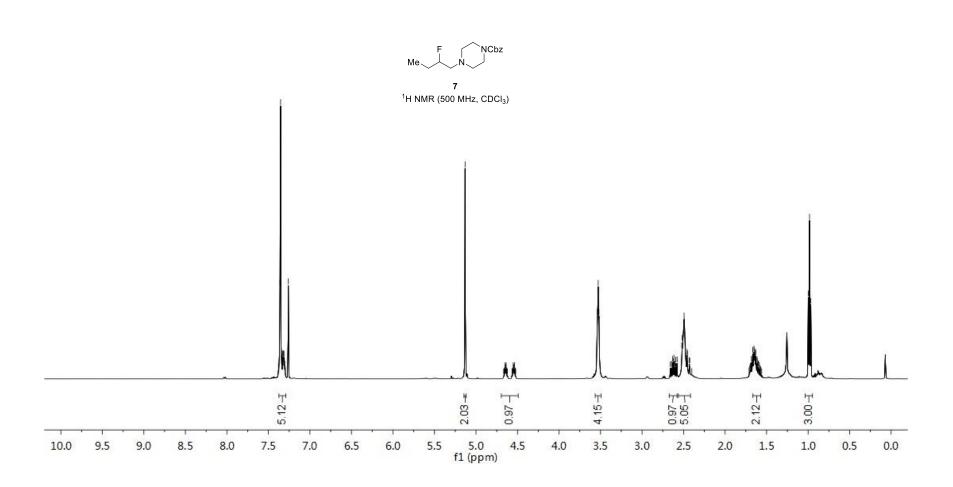

F NCbz Me 6k ¹⁹F NMR (471 MHz, CDCl₃)

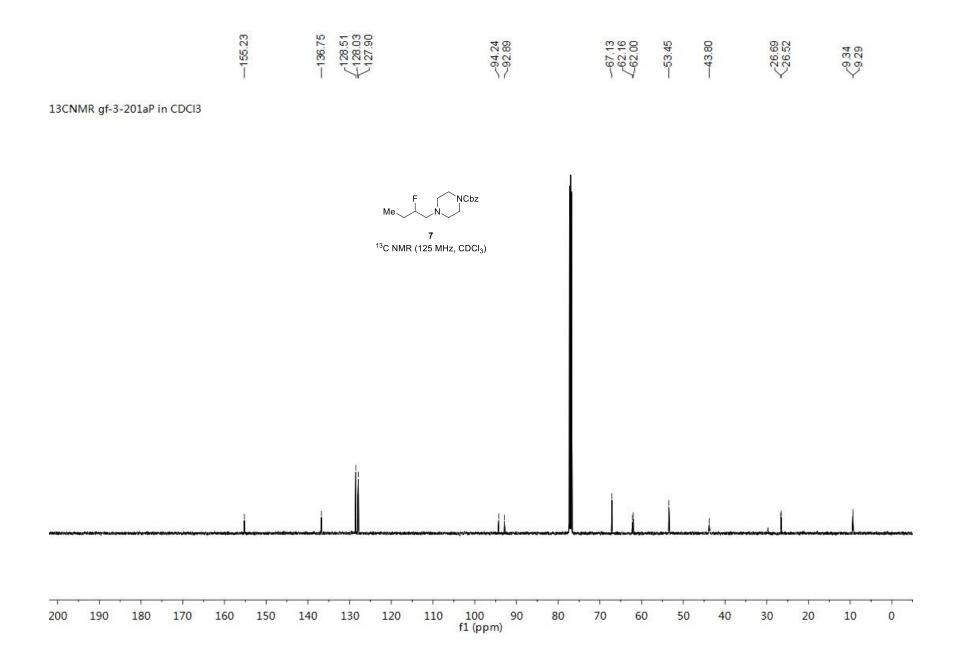



19FNMR gf-3-229aP in CDCI3 0 L Ì Me Me 61 ¹⁹F NMR (471 MHz, CDCl₃)

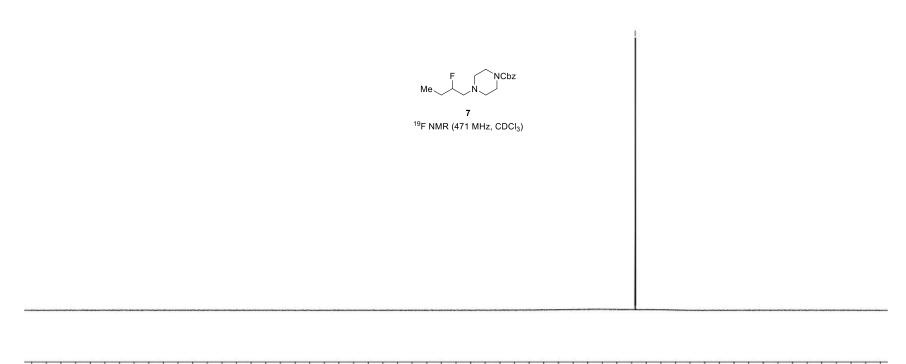

20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)

19FNMR gf-3-169bPP in CDCI3

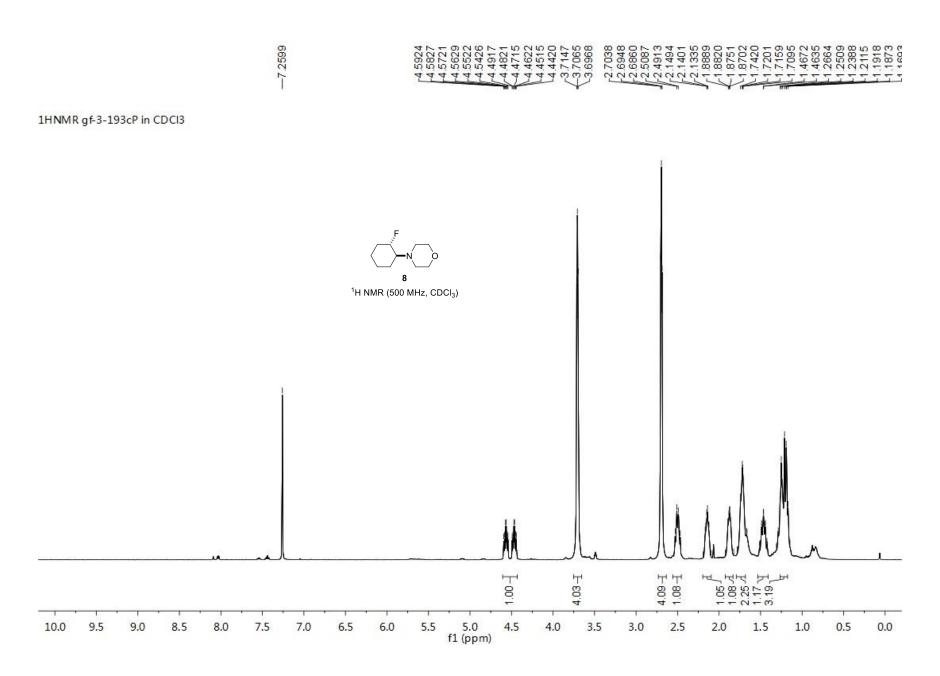


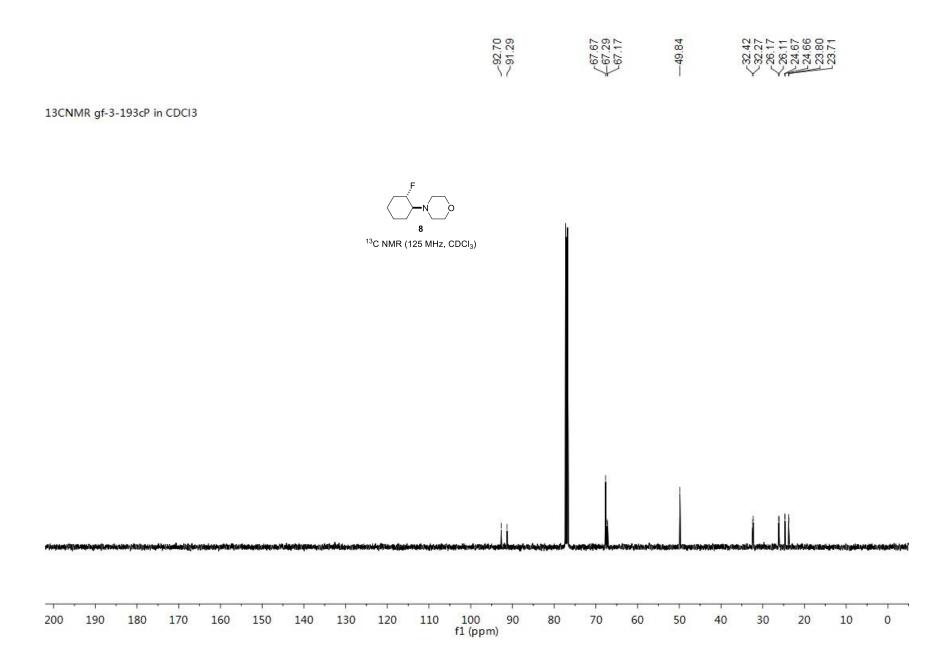


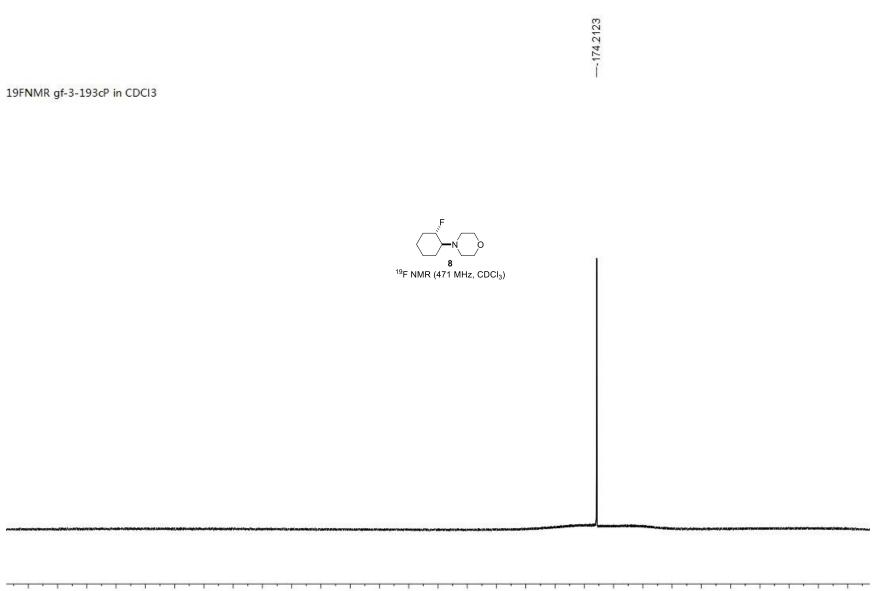
S246

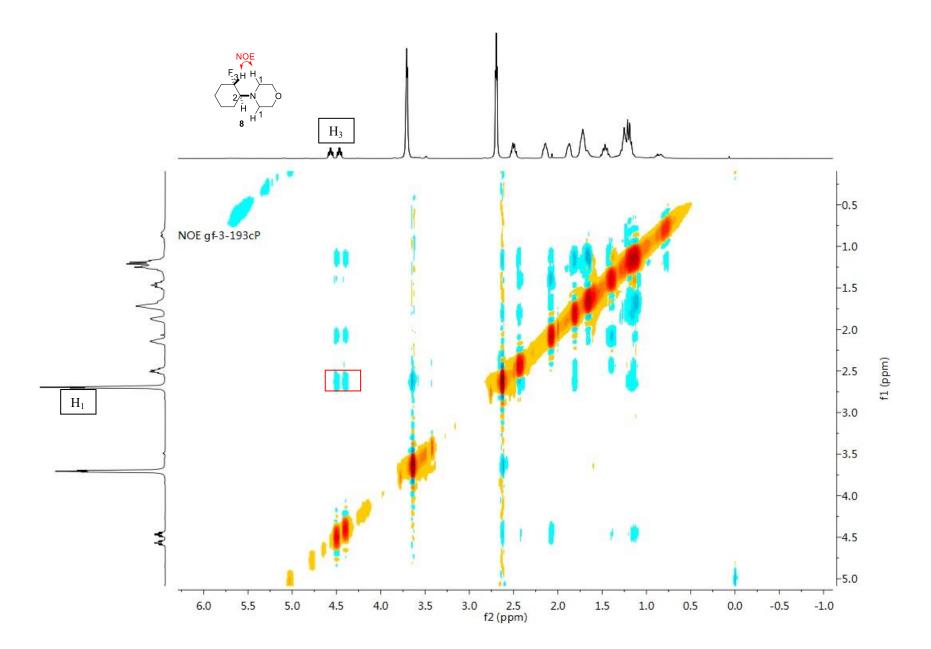

002000000000000000000000000000000000000	
82822223888822288882227888822278888228788888282888888	2002202

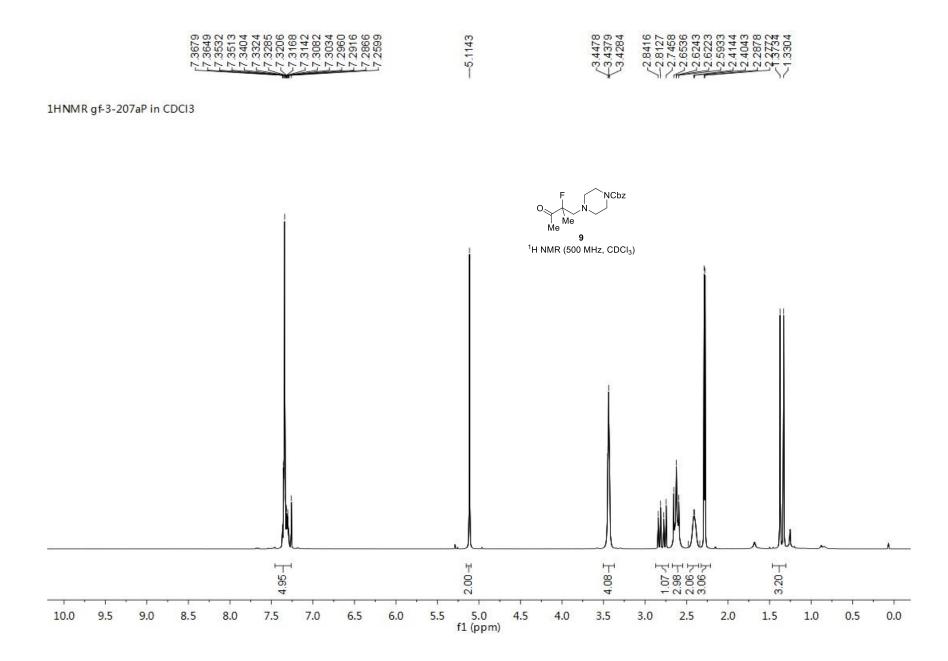
1HNMR gf-3-201aP in CDCI3

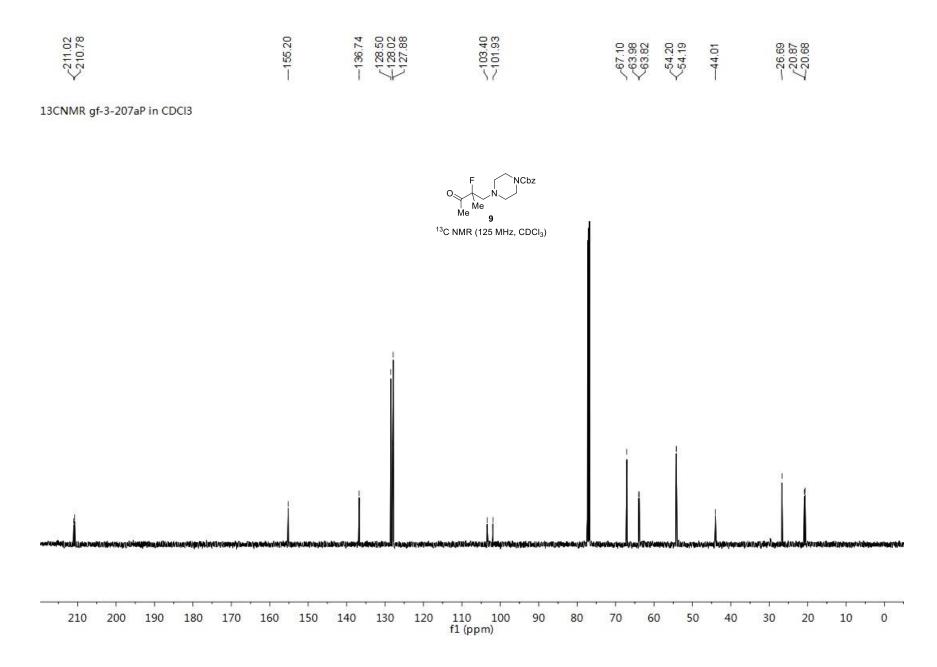


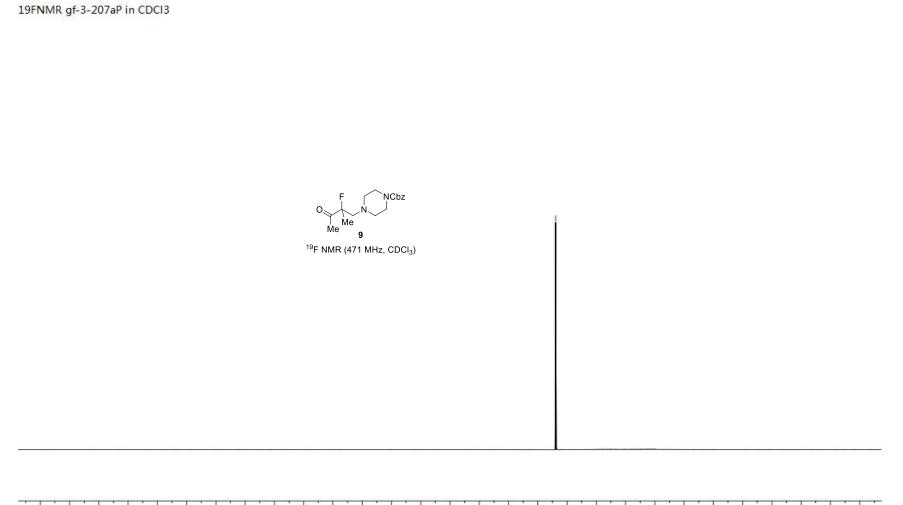


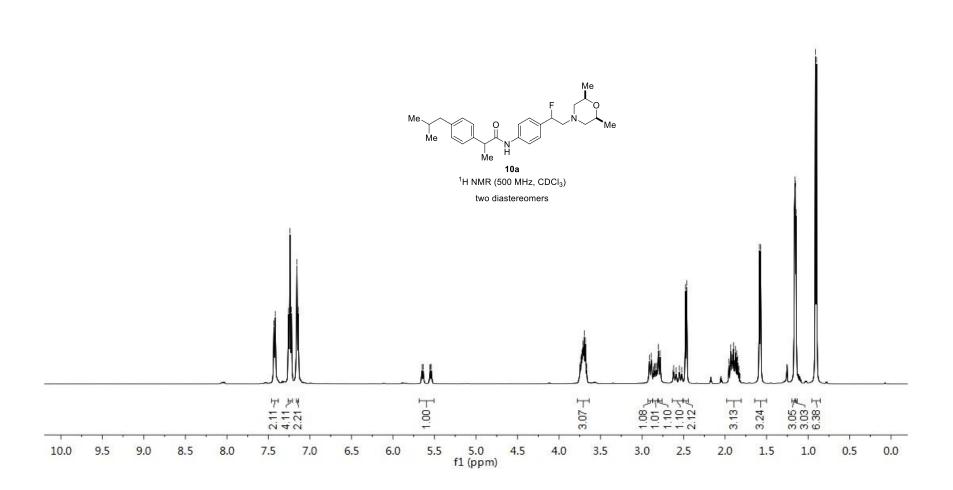

19FNMR gf-3-201aP in CDCI3

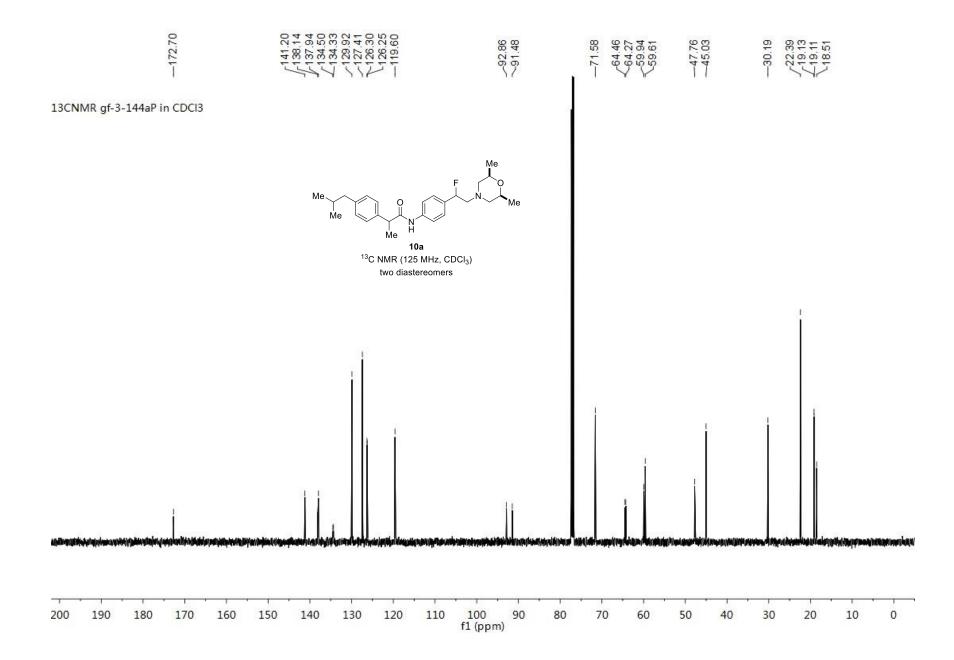



20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 f1 (ppm)

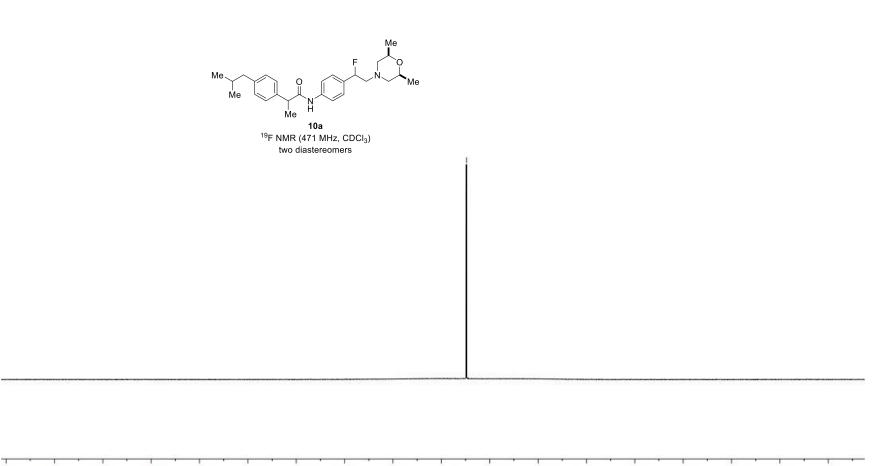




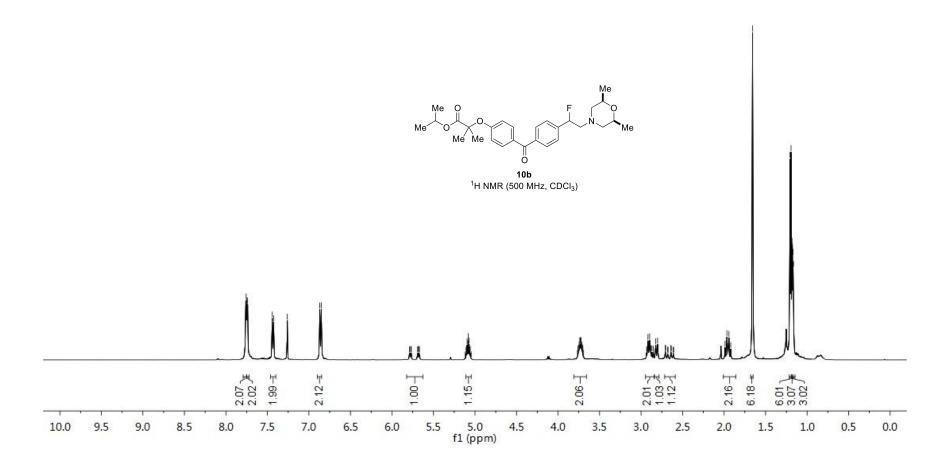


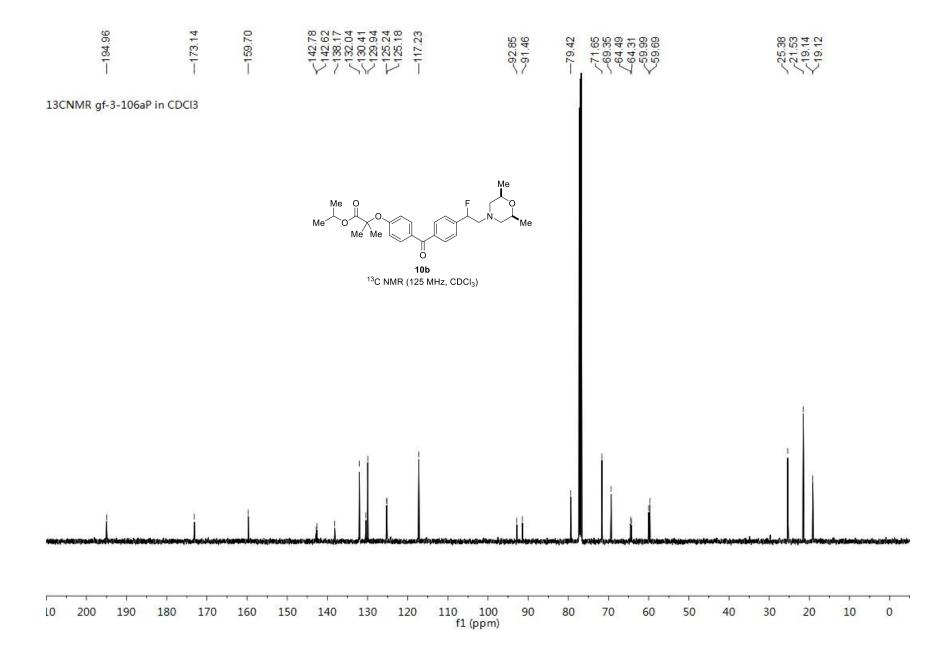


4341 4175 2562 2567 22400 1568 1408	6490 6353 5551 5517 5380	7488 7477361 7361 7315 7315 7315 7315 7315 7170 7170 7170 7032 6958 6958 6958 6673	9118 8892 8350 8029 7821 4763 4620	9322 8747 5523 5523 5533 1571 1571 1573 1573 1573 1573 157
			2222222	


1HNMR gf-3-144aP in CDCI3

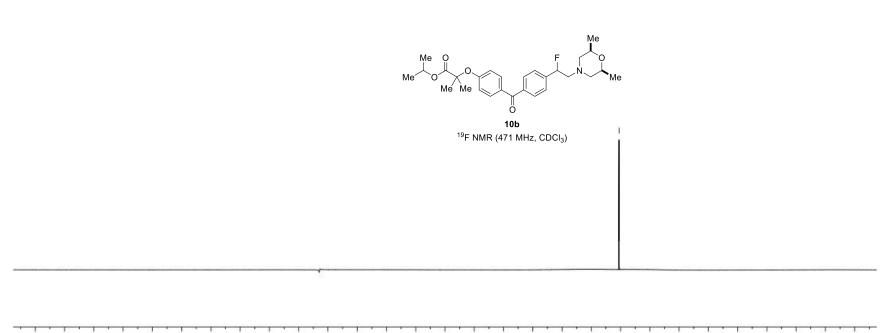
C-175.1791 C-175.2007

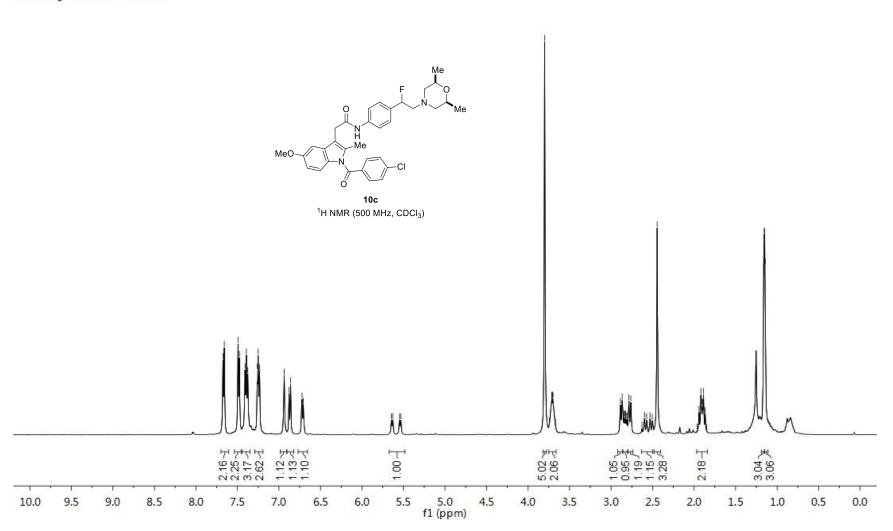

19FNMR gf-3-144aP in CDCI3

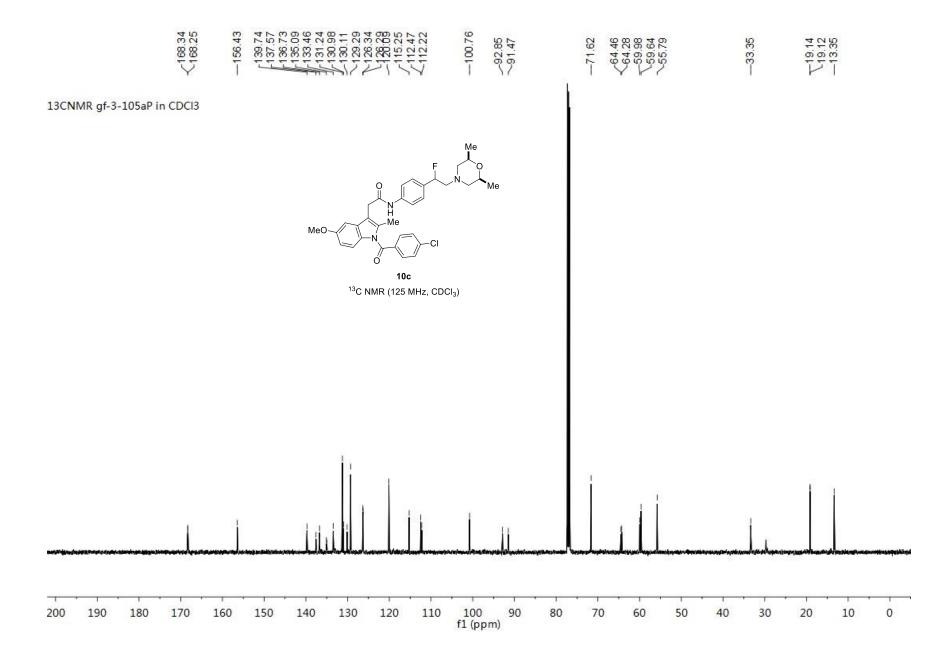


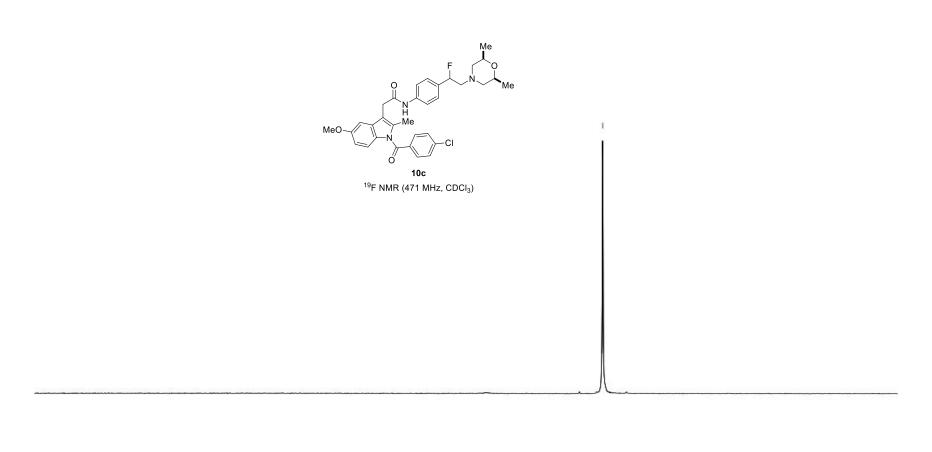
-170 f1 (ppm) 80 -90 -100 -110 -120 -130 -140 -150 -160 -180 -190 -200 -210 -220 -230 -240 -250

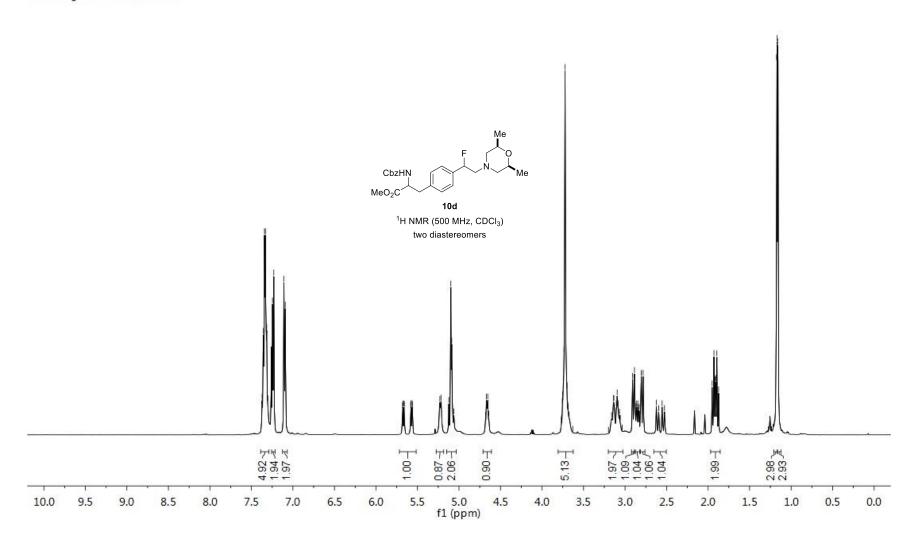
4-00-04	04	-00000404	404004	00-00000	NNVV0040000044000
60247 38 6 6 5 6 5	51	888 73 80 80 83 80 83 80 83 80 83 80 83 80 80 80 80 80 80 80 80 80 80 80 80 80	V400V0	400000-0	000020001410000000000000000000000000000
VVVV440	$\infty \infty$	NNNN0000	-00000	V V V V V V V	$\phi \phi \phi \phi \phi \phi \phi \phi$
NNNNNN	QQ	ດດດດດດດດດ	ດດດດດດດ	00000000	000000000000000000000000000000000000000
SVV/	V	LILL V	V		View Vier View
T Y Y	1				

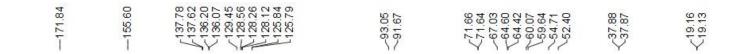

1HNMR gf-3-106aP in CDCI3



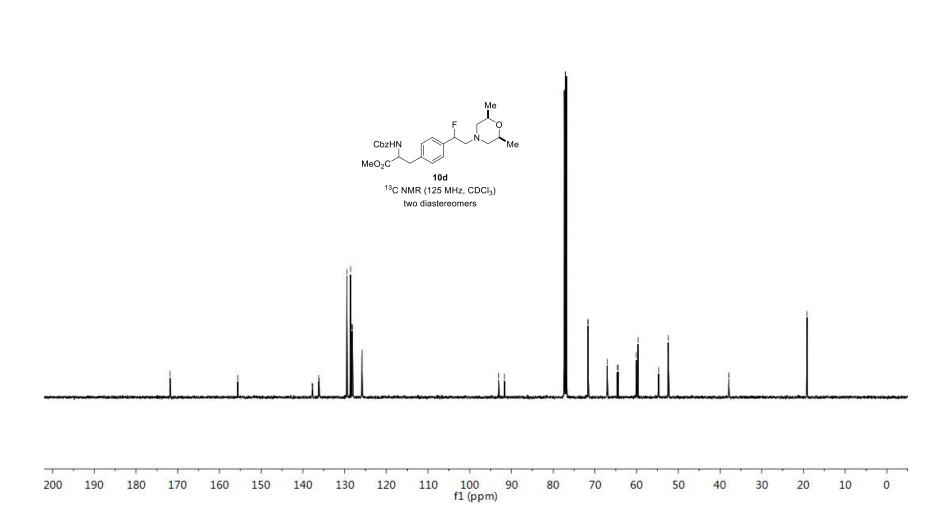

19FNMR gf-3-106aP in CDCI3

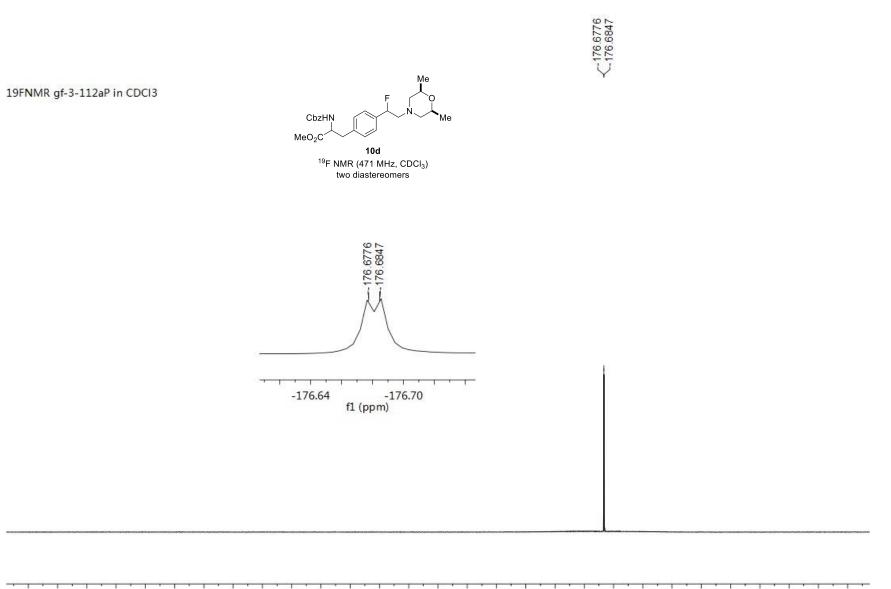

1HNMR gf-3-105aP in CDCI3

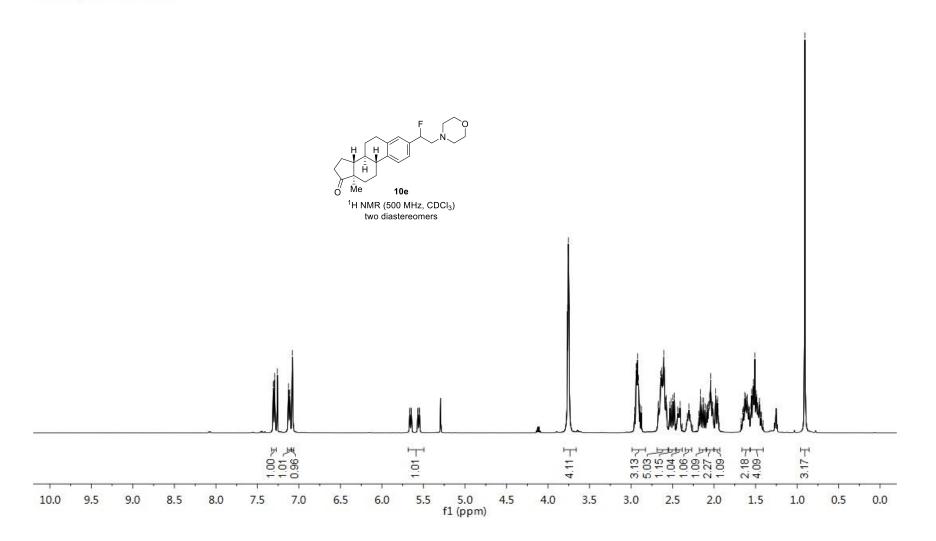

19FNMR gf-3-105aP in CDCI3

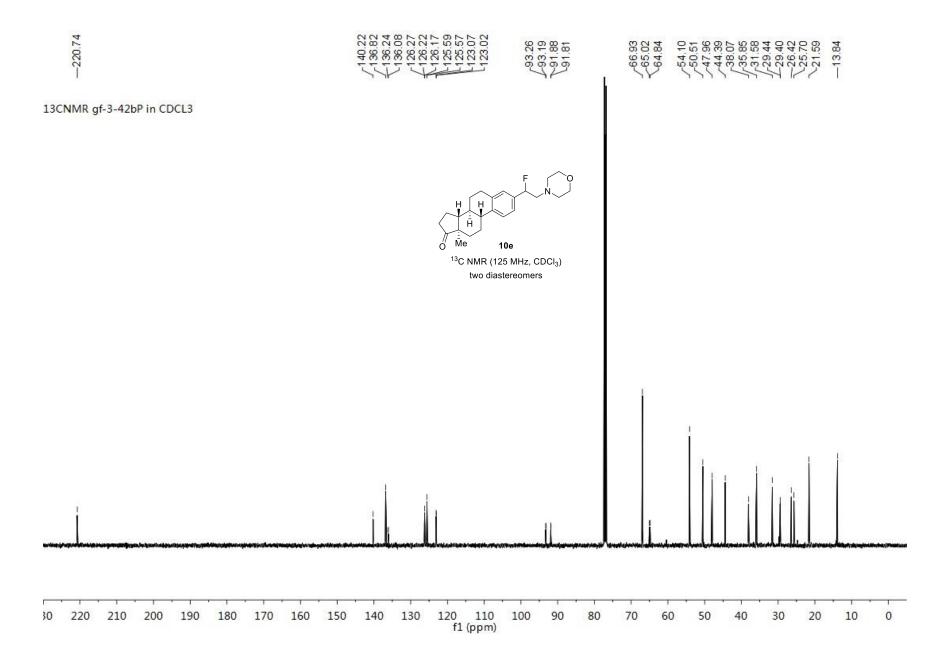


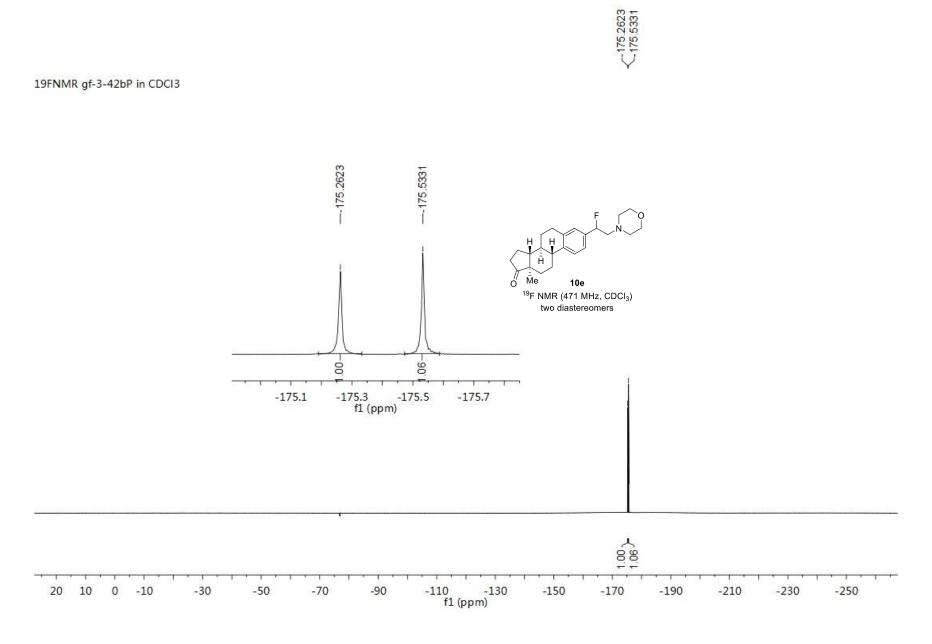
 		· · · · ·							
-169.5	-170.5	-171.5	-172.5	-173.5	-174.5	-175.5	-176.5	-177.5	-178.5
f1 (ppm)									

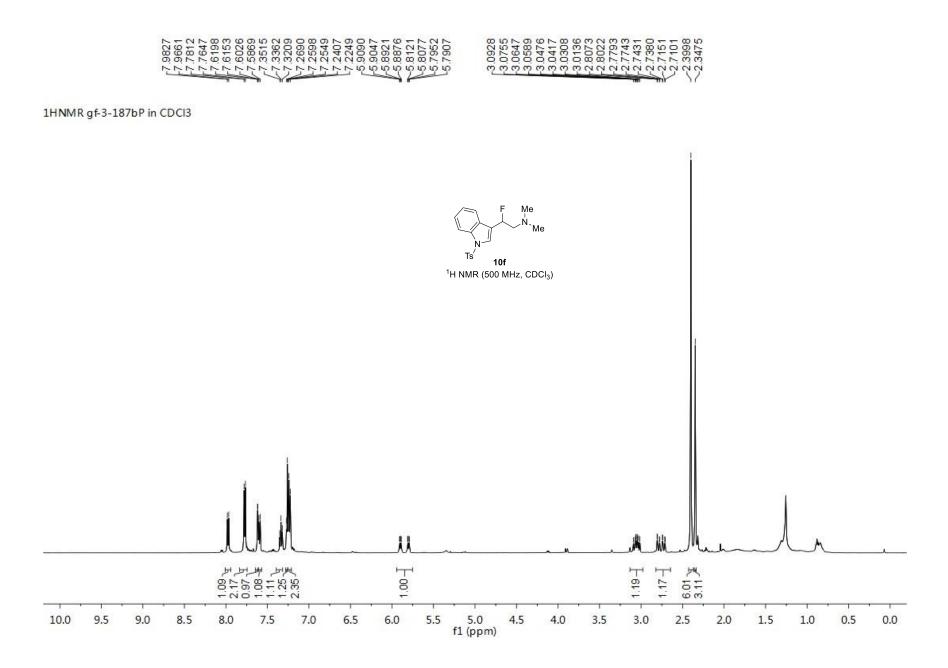


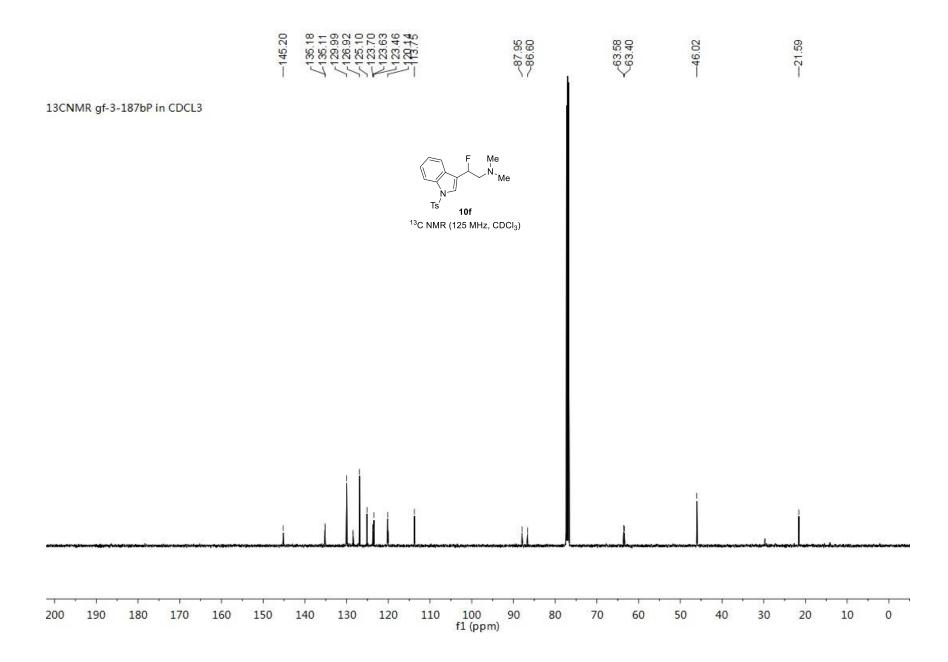

1HNMR gf-3-112aP in CDCI3

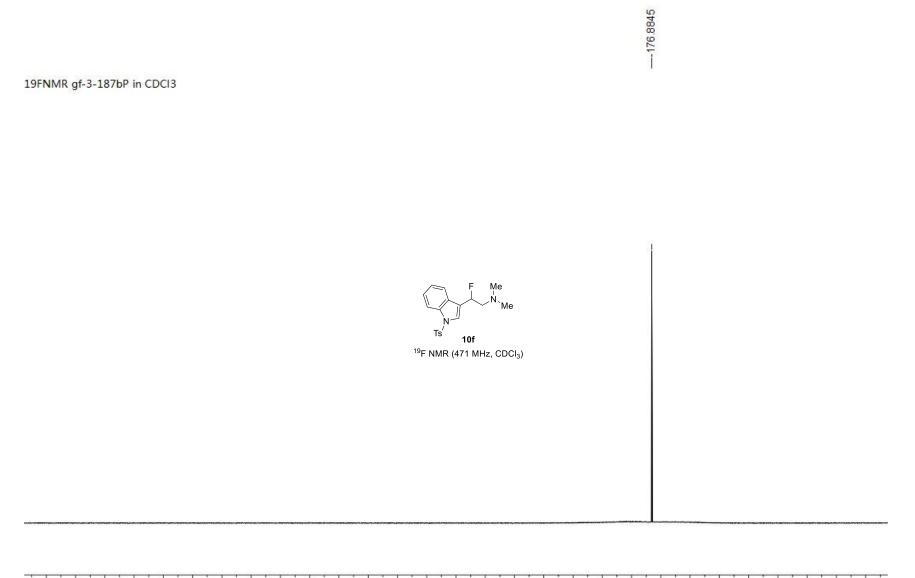

13CNMR gf-3-112aP in CDCl3



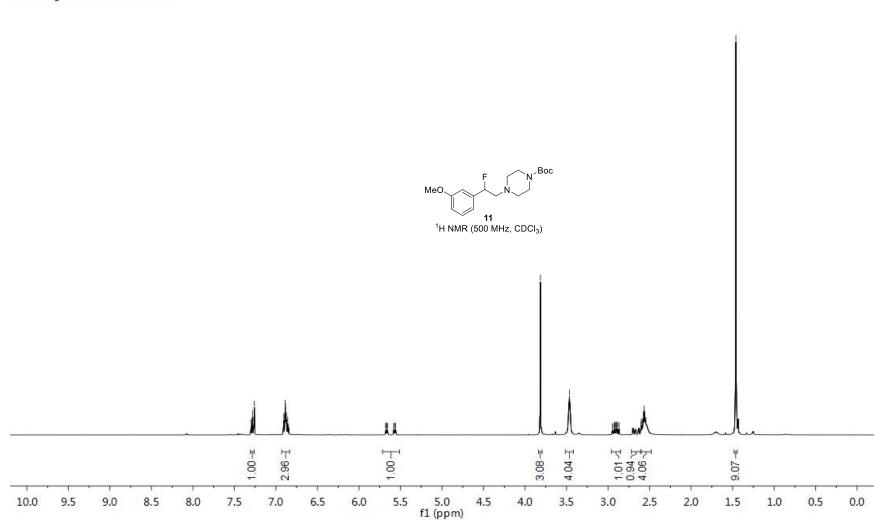


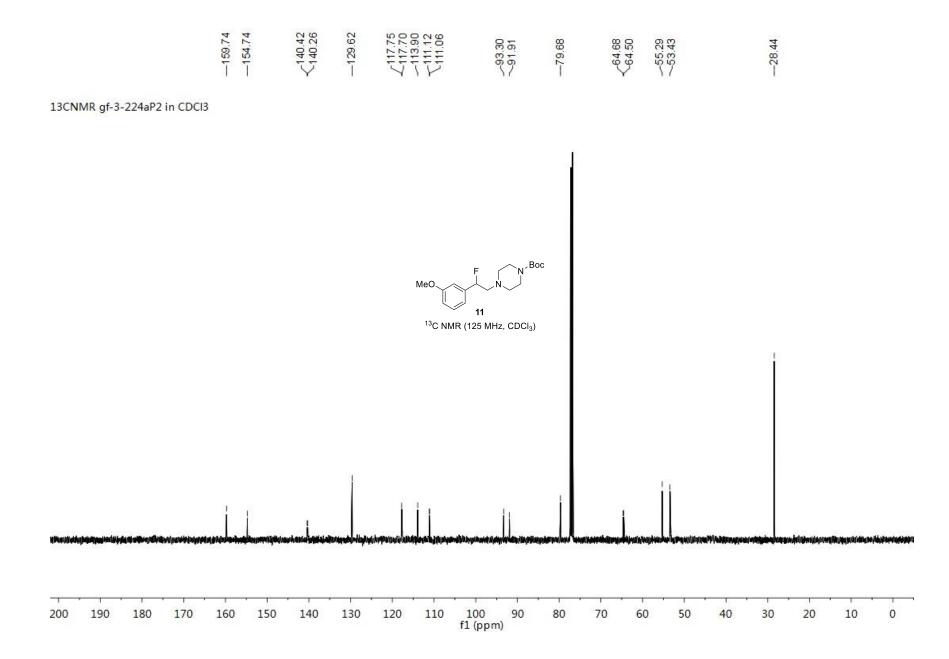

1HNMR gf-3-42bP in CDCl3

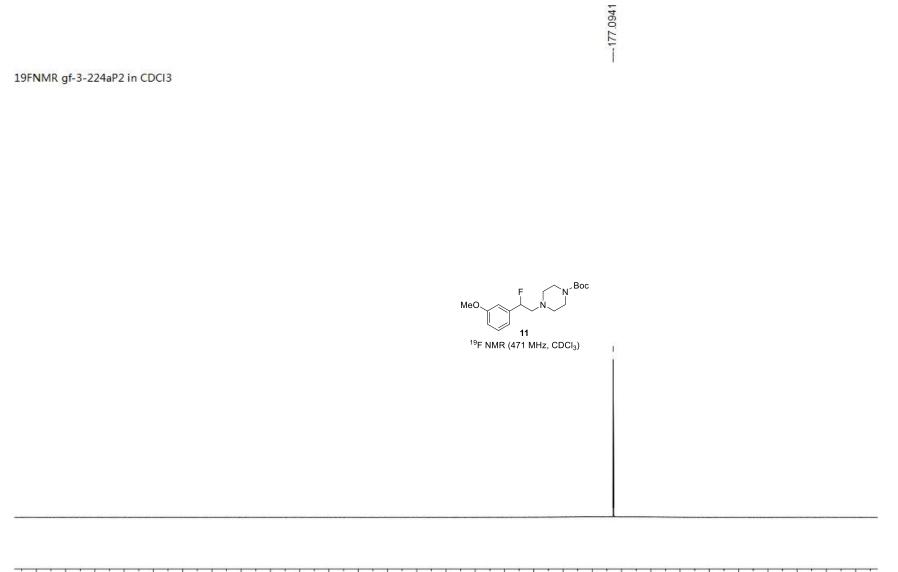


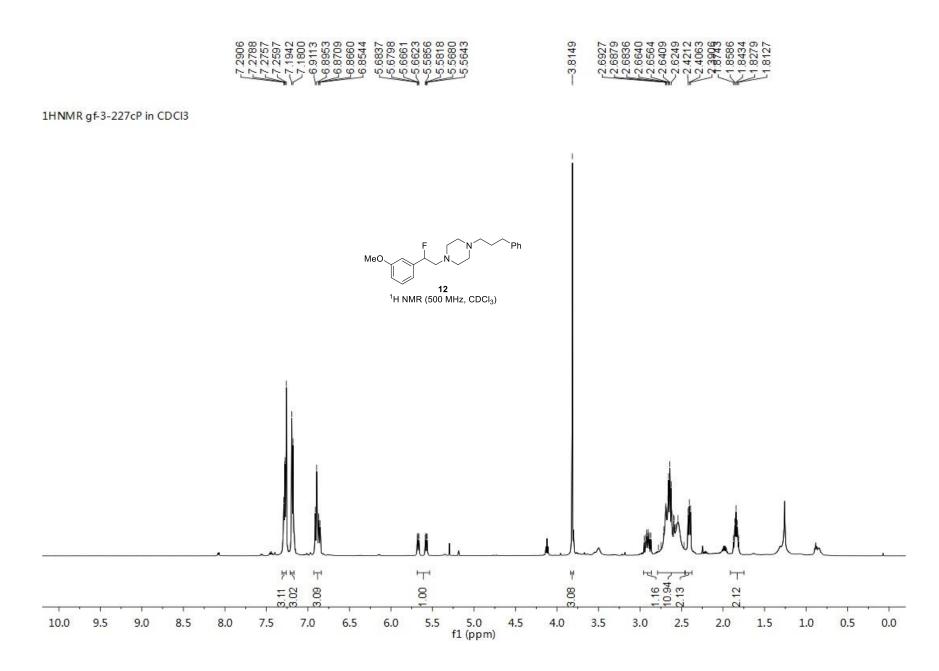


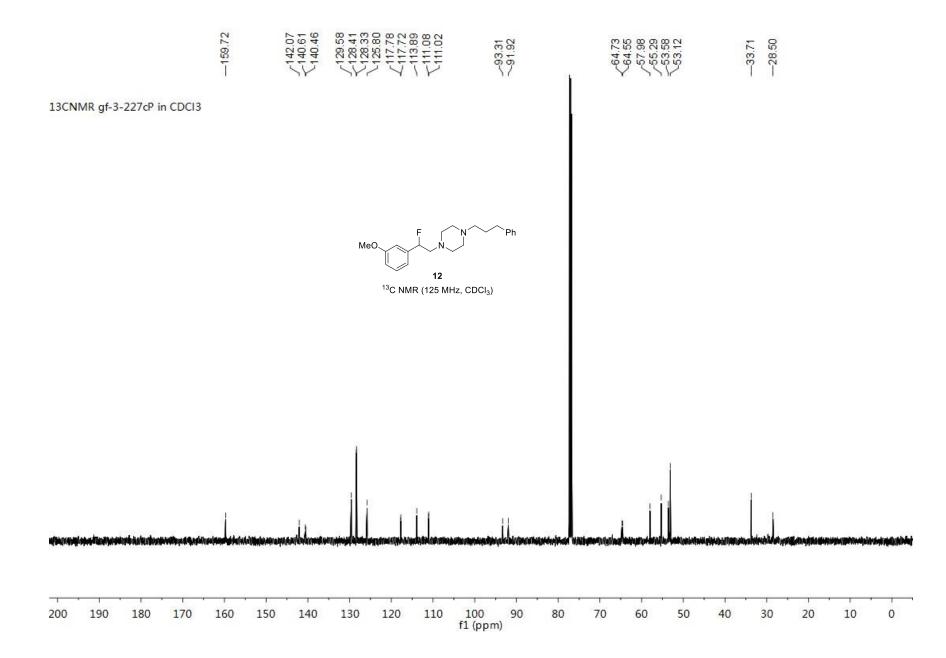
S271

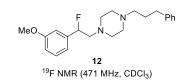


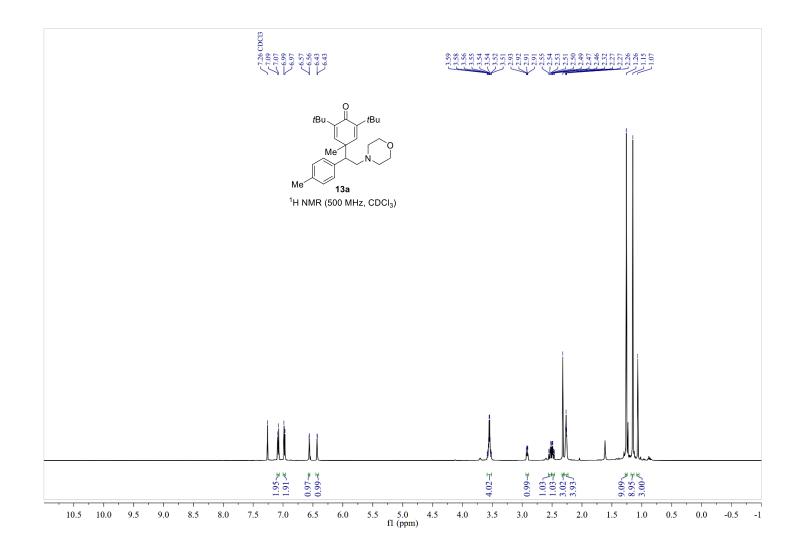


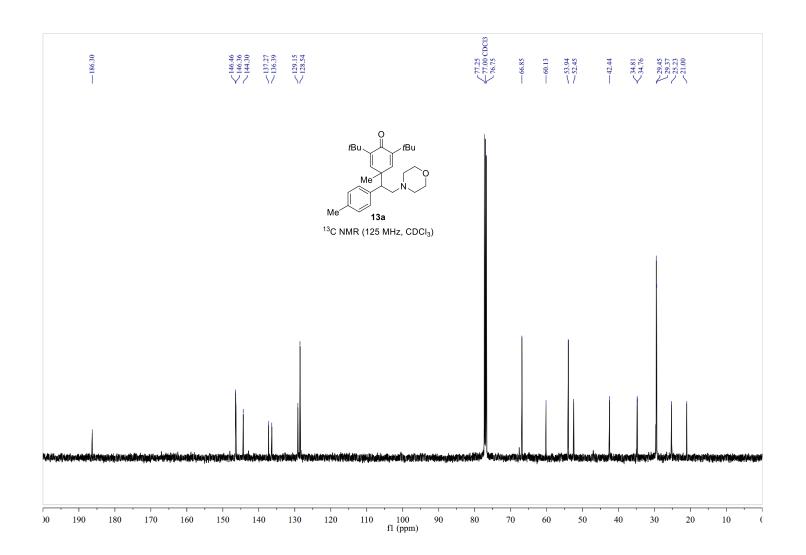

30 20 10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)



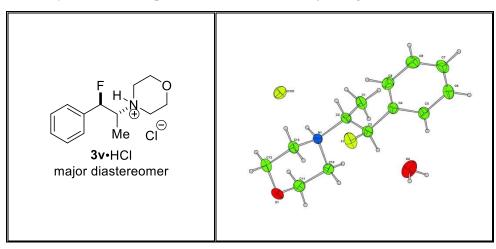

1HNMR gf-3-224aP2 in CDCI3







19FNMR gf-3-227cP in CDCI3


			· · · ·	· · · ·	· · · ·					· · · ·						· · ·		· · · · ·		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180
										l (ppm)										

11. X-ray crystallography information

The major single diastereomer of compound 3v·HCl was recrystallized twice in dichloromethane and hexanes. Then, a crystal of was slowly grown from dichloromethane, ethyl acetate and *n*-hexane, which is suitable for X-ray diffraction analysis. The chemical structure was showed as follows, CCDC number is 2210154. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre <u>via</u> www.ccdc. com.ac.uk/data request/cif.

Crystal structure report for 22097 (3v•HCl-major single diastereomer)

The sample was submitted by Guangshou Feng (research group of Wang, Department of Chemistry, Duke University). A colorless crystal (approximate dimensions $0.230 \times 0.100 \times 0.040 \text{ mm}^3$) was placed onto the tip of MiTeGen and mounted on a Bruker D8 VENTURE diffractometer and measured at 150 K.

Empirical formula	C13 H20.50 Cl1 F1.00	N1 O1.75
Formula weight	273.26	
Crystal color, shape, size	colorless block fragmer	nt, $0.230 \ge 0.100 \ge 0.040 \text{ mm}^3$
Temperature	150 K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, C2/c	
Unit cell dimensions	a = 22.792(2) Å	a= 90°.
	b = 11.6050(13) Å	b= 111.875(3)°.
	c = 23.759(3) Å	$g = 90^{\circ}$.
Volume	5831.8(10) Å ³	
Ζ	16	
Density (calculated)	1.245 Mg/m ³	
Absorption coefficient	0.266 mm ⁻¹	
F(000)	2328	

Table 1. Crystal data and structure refinement for 22097.

Data collection	
Diffractometer	Bruker D8 VENTURE, Bruker
Theta range for data collection	2.002 to 25.697°.
Index ranges	-27<=h<=26, -14<=k<=14, -28<=l<=28
Reflections collected	84262
Independent reflections	5542 [R(int) = 0.192]
Observed Reflections	3473
Completeness to theta = 25.697°	99.7 %
Solution and Refinement	
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.99 and 0.97
Solution	Intrinsic phasing methods
Refinement method	Full-matrix least-squares on F ²
Weighting scheme	$w = [s^2Fo^2 + AP^2 + BP]^{-1}$, with
	$P = (Fo^2 + 2 Fc^2)/3, A = 0.115, B = 12.240$
Data / restraints / parameters	5542 / 183 / 414
Goodness-of-fit on F ²	0.9871
Final R indices [I>2sigma(I)]	R1 = 0.0752, wR2 = 0.2076
R indices (all data)	R1 = 0.1109, WR2 = 0.2320
Largest diff. peak and hole	1.21 and -1.20 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for 22097. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
Cl1	2371(1)	4325(1)	4342(1)	57
C1101	4124(1)	8189(1)	2817(1)	66
F1	4143(2)	4872(2)	4548(1)	86
F101	4538(4)	4343(5)	5999(5)	42
F201	4444(2)	4427(4)	5808(3)	47
O1	3365(2)	8662(3)	4296(2)	93
O2	2054(2)	4746(5)	2935(2)	105
O101	4450(2)	796(3)	5456(2)	70
O102	5000	3638(5)	7500	88
N1	3723(1)	6803(3)	3708(1)	46
N101	3685(1)	2456(2)	5755(1)	42
C1	3526(2)	5372(3)	2882(2)	65
C2	3818(1)	5581(2)	3535(1)	54
C3	3752(1)	4666(2)	3935(1)	57
C4	3936(1)	3478(2)	3791(2)	56

C5	3415(2)	2767(3)	3456(2)	64
C6	3534(2)	1683(3)	3270(2)	76
C7	4140(2)	1340(3)	3400(2)	83
C8	4632(2)	2034(4)	3720(3)	88
С9	4520(2)	3120(3)	3910(2)	71
C10	3044(2)	7002(4)	3639(2)	62
C11	2956(3)	8271(4)	3722(3)	82
C12	4006(3)	8519(5)	4355(3)	79
C13	4153(2)	7268(4)	4305(2)	63
C101	2871(4)	3805(4)	5812(5)	73
C102	3530(1)	3640(2)	5925(2)	60
C103	3877(2)	4598(4)	5814(2)	42
C104	3843(2)	5707(2)	6155(1)	52
C105	3445(8)	6608(9)	5760(3)	53
C106	3443(8)	7690(8)	5995(4)	55
C107	3745(7)	7871(8)	6589(4)	53
C108	4118(8)	7010(10)	6961(4)	54
C109	4169(9)	5924(9)	6714(4)	49
C110	3744(2)	2416(4)	5151(2)	52
C111	3885(3)	1218(4)	5006(2)	67
C112	4362(2)	729(4)	6017(2)	64
C113	4247(2)	1899(4)	6224(2)	50
C201	3058(3)	3632(4)	6200(3)	48
C203	4047(1)	4444(3)	6157(1)	48
C205	3520(5)	6320(5)	5672(2)	60
C206	3367(5)	7469(6)	5736(3)	68
C207	3572(4)	7969(5)	6305(3)	62
C208	3923(5)	7369(6)	6799(3)	65
C209	4060(6)	6220(5)	6742(2)	58

H1-N1	0.994(10)	H2-N101	0.883(19)
H1-N1 H3-O2	0.884(19) 0.83(2)	H2-N101 H4-O2	0.883(19)
H5-O102	0.83(2)	F1-C3	1.417(4)
F101-C103	1.436(9)	F201-C203	1.438(6)
01-C11	1.430(9)	O1-C12	1.438(6)
0101-C111	1.420(6)	0101-C112	1.424(0)
N1-C2	1.515(4)	N1-C10	1.512(5)
N1-C2 N1-C13	1.493(5)	N101-C102	1.512(5)
N1-C15 N101-C110	1.493(3)	N101-C102 N101-C113	1.496(5)
C1-C2	1.461(5)	C1-H11	0.950
C1-H12	0.950	C1-H13	0.950
C1-III2 C2-C3	1.470(4)	C2-H21	0.950
C2-C3 C3-C4	1.517(3)	C2-H21 C3-H31	0.950
C4-C5	1.421(4)	C4-C9	1.320(4)
C5-C6	1.393(5)	C5-H51	0.950
C6-C7	1.359(5)	C6-H61	0.950
C7-C8	1.360(5)	C7-H71	0.950
C8-C9	1.396(5)	C8-H81	0.950
C9-H91	0.950	C10-C11	1.509(7)
C10-H101	0.950	C10-H102	0.950
C11-H111	0.950	C11-H112	0.950
C12-C13	1.505(7)	C12-H121	0.950
C12-H122	0.950	C12-H121	0.950
C12-H122	0.950	C101-C102	1.437(9)
C101-H1011	0.950	C101-H1012	0.950
C101-H1013	0.950	C102-C103	1.443(5)
C102-H1021	0.950	C102-C201	1.452(5)
C102-C203	1.441(4)	C102-H1022	0.950
C103-C104	1.537(4)	C103-C104	1.537(4)
С103-Н1032	0.950	C104-C105	1.471(7)
C104-C109	1.282(7)	C104-C203	1.537(4)
C104-C205	1.316(6)	C104-C209	1.427(6)
C105-C106	1.375(7)	C105-H1051	0.950
C106-C107	1.336(8)	C106-H1061	0.950
C107-C108	1.395(8)	C107-H1071	0.950
C108-C109	1.414(7)	C108-H1081	0.950
C109-H1091	0.950	C110-C111	1.496(6)
C110-H1101	0.950	C110-H1102	0.950
C111-H1111	0.950	C111-H1112	0.950
C112-C113	1.499(6)	C112-H1121	0.950
C112-H1122	0.950	C113-H1131	0.950

Table 3. Bond lengths [Å] and angles [°] for 22097.

C113-H1132 C201-H2012 C203-H2031 C205-H2051 C206-H2061 C207-H2071 C208-H2081	0.950 0.950 0.950 0.950 0.950 0.950 0.950	C201-H2011 C201-H2013 C205-C206 C206-C207 C207-C208 C208-C209 C209-H2091	0.950 0.950 1.401(6) 1.381(6) 1.342(6) 1.387(6) 0.950
C11-O1-C12	110.0(4)	Н4-О2-Н3	97(8)
C111-O101-C112	108.6(3)	H5-O102-H5#1	114(11)
H1-N1-C2	105.1(15)	H1-N1-C10	105.5(15)
C2-N1-C10	111.0(3)	H1-N1-C13	105.8(15)
C2-N1-C13	119.1(3)	C10-N1-C13	109.3(1)
H2-N101-C102	106.4(15)	H2-N101-C110	109.5(3)
C102-N101-C110	113.5(3)	H2-N101-C113	105.1(15)
C102-N101-C113	114.5(3)	C110-N101-C113	110.1(3)
C2-C1-H11	109.2	C2-C1-H12	109.9
H11-C1-H12	109.5	C2-C1-H13	109.3
Н11-С1-Н13	109.5	H12-C1-H13	109.5
N1-C2-C1	112.83(10)	N1-C2-C3	116.15(9)
C1-C2-C3	116.76(10)	N1-C2-H21	102.9
C1-C2-H21	102.9	С3-С2-Н21	102.5
C2-C3-F1	111.47(10)	C2-C3-C4	114.01(10)
F1-C3-C4	105.31(10)	С2-С3-Н31	108.3
F1-C3-H31	108.8	С4-С3-Н31	108.8
C3-C4-C5	114.23(8)	C3-C4-C9	125.34(8)
C5-C4-C9	120.21(8)	C4-C5-C6	118.78(9)
C4-C5-H51	119.8	С6-С5-Н51	121.4
C5-C6-C7	119.60(9)	С5-С6-Н61	119.9
С7-С6-Н61	120.5	C6-C7-C8	120.75(9)
С6-С7-Н71	119.8	С8-С7-Н71	119.4
C7-C8-C9	120.17(9)	С7-С8-Н81	119.9
С9-С8-Н81	119.8	C8-C9-C4	120.48(9)
С8-С9-Н91	119.8	C4-C9-H91	119.7
N1-C10-C11	108.4(4)	N1-C10-H101	109.6
C11-C10-H101	109.1	N1-C10-H102	109.8
C11-C10-H102	110.5	H101-C10-H102	109.5
C10-C11-O1	111.6(5)	C10-C11-H111	108.3
O1-C11-H111	107.8	C10-C11-H112	110.1
O1-C11-H112	109.5	H111-C11-H112	109.5
O1-C12-C13	110.8(4)	O1-C12-H121	108.7

C13-C12-H121	109.5	O1-C12-H122	109.1
C13-C12-H122	109.3	H121-C12-H122	109.5
C12-C13-N1	109.6(4)	C12-C13-H131	109.7
N1-C13-H131	109.5	C12-C13-H132	109.5
N1-C13-H132	108.9	H131-C13-H132	109.5
H1011-C101-H1012	109.5	H1011-C101-H1013	109.5
H1012-C101-H1013	109.5	N101-C102-C101	113.76(10)
N101-C102-C103	117.01(9)	C101-C102-C103	117.93(10)
N101-C102-H1021	103.3	C101-C102-H1021	96.9
C103-C102-H1021	103.6	N101-C102-C201	113.59(10)
N101-C102-C203	116.90(9)	C201-C102-C203	117.92(10)
N101-C102-H1022	101.4	C201-C102-H1022	102.2
C203-C102-H1022	100.8	C102-C103-C104	114.27(10)
F101-C103-C104	105.34(10)	F101-C103-H1032	107.2
C104-C103-H1032	108.2	C103-C104-C105	113.58(10)
C103-C104-C109	125.87(10)	C105-C104-C109	120.17(10)
C203-C104-C205	126.05(8)	C203-C104-C209	113.60(8)
C205-C104-C209	120.30(8)	C104-C105-C106	119.03(10)
C104-C105-H1051	119.5	C106-C105-H1051	121.4
C105-C106-C107	119.60(10)	C105-C106-H1061	119.7
C107-C106-H1061	120.7	C106-C107-C108	120.70(10)
C106-C107-H1071	119.8	C108-C107-H1071	119.5
C107-C108-C109	119.95(10)	C107-C108-H1081	120.0
C109-C108-H1081	120.0	C108-C109-C104	120.05(10)
C108-C109-H1091	119.9	C104-C109-H1091	120.0
N101-C110-C111	110.8(4)	N101-C110-H1101	109.2
C111-C110-H1101	108.8	N101-C110-H1102	109.0
С111-С110-Н1102	109.7	H1101-C110-H1102	109.5
C110-C111-O101	111.0(4)	С110-С111-Н1111	108.9
O101-C111-H1111	108.9	С110-С111-Н1112	109.1
O101-C111-H1112	109.4	H1111-C111-H1112	109.5
O101-C112-C113	111.1(4)	O101-C112-H1121	109.6
С113-С112-Н1121	110.2	O101-C112-H1122	108.6
С113-С112-Н1122	107.7	H1121-C112-H1122	109.5
C112-C113-N101	110.6(3)	С112-С113-Н1131	110.2
N101-C113-H1131	109.6	C112-C113-H1132	108.0
N101-C113-H1132	108.9	H1131-C113-H1132	109.5
H2011-C201-H2012	109.5	H2011-C201-H2013	109.5
H2012-C201-H2013	109.5	C104-C203-C102	114.41(10)
C104-C203-F201	105.39(10)	C104-C203-H2031	108.3
F201-C203-H2031	110.3	C104-C205-C206	120.03(9)
C104-C205-H2051	120.0	C206-C205-H2051	120.0
C205-C206-C207	119.94(9)	C205-C206-H2061	120.0

C207-C206-H2061	120.1	C206-C207-C208	120.74(9)
C206-C207-H2071	119.4	C208-C207-H2071	119.8
C207-C208-C209	119.74(9)	C207-C208-H2081	120.4
C209-C208-H2081	119.9	C104-C209-C208	119.15(9)
C104-C209-H2091	119.6	C208-C209-H2091	121.2

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2

	U11	U ²²	U33	U ²³	U ¹³	U12
Cl1	46(1)	54(1)	68(1)	4(1)	16(1)	-5(1)
Cl101	69(1)	67(1)	64(1)	15(1)	26(1)	-1(1)
F1	137(3)	60(2)	57(2)	1(1)	34(2)	-6(2)
F101	35(4)	44(5)	43(6)	-3(4)	8(4)	-2(3)
F201	45(3)	47(3)	52(4)	-4(2)	22(3)	-2(2)
01	116(3)	61(2)	134(4)	-35(2)	84(3)	-9(2)
02	85(3)	133(4)	83(3)	13(3)	15(2)	-30(3)
O101	65(2)	56(2)	97(3)	-12(2)	40(2)	12(2)
O102	99(4)	78(4)	64(3)	0	4(3)	0
N1	54(2)	36(2)	54(2)	-2(2)	28(2)	-2(2)
N101	37(2)	34(2)	58(2)	-4(2)	20(2)	-1(1)
C1	92(3)	48(3)	55(3)	-6(2)	29(3)	-5(2)
C2	69(3)	39(2)	63(3)	-4(2)	36(2)	1(2)
C3	70(3)	47(3)	63(3)	0(2)	34(2)	-4(2)
C4	71(3)	39(2)	65(3)	3(2)	35(2)	-2(2)
C5	66(3)	44(3)	87(3)	3(2)	33(3)	4(2)
C6	89(4)	47(3)	89(4)	-5(3)	30(3)	-5(3)
C7	124(5)	40(3)	107(4)	4(3)	67(4)	13(3)
C8	88(4)	56(3)	140(5)	16(3)	65(4)	25(3)
С9	60(3)	58(3)	100(4)	6(3)	36(3)	3(2)
C10	57(2)	49(3)	90(3)	-9(2)	37(2)	-1(2)
C11	78(3)	50(3)	137(5)	-8(3)	63(4)	3(3)
C12	92(4)	60(3)	92(4)	-27(3)	43(3)	-17(3)
C13	76(3)	54(3)	62(3)	-14(2)	29(2)	-12(2)
C101	62(6)	64(5)	89(6)	-10(6)	23(5)	-8(5)
C102	59(2)	42(2)	93(3)	-8(2)	43(2)	0(2)
C103	46(4)	37(4)	50(5)	0(4)	27(4)	1(4)
C104	58(2)	36(2)	73(3)	-6(2)	36(2)	-6(2)
C105	64(6)	43(5)	58(5)	1(5)	28(5)	13(6)
C106	68(5)	53(6)	48(7)	7(6)	27(7)	2(6)
C107	67(7)	41(5)	50(6)	4(5)	21(5)	13(4)
C108	73(10)	36(6)	48(6)	9(5)	16(5)	17(6)
C109	58(7)	32(6)	58(5)	-1(5)	24(5)	18(6)
C110	56(2)	45(2)	47(2)	-4(2)	11(2)	3(2)
C111	88(3)	51(3)	65(3)	-15(2)	32(3)	-2(3)
C112	53(2)	42(3)	83(3)	6(2)	11(2)	7(2)
C113	51(2)	46(2)	47(2)	3(2)	13(2)	0(2)
C201	51(3)	42(3)	65(4)	-14(3)	38(3)	-4(3)

Table 4. Anisotropic displacement parameters (Å²x 10³) for 22097. The anisotropic displacement factor exponent takes the form: $-2p^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C203	56(4)	42(3)	50(4)	-6(3)	24(3)	-4(3)
C205	74(5)	52(5)	64(4)	-8(4)	37(4)	1(4)
C206	74(5)	56(5)	71(6)	19(5)	24(5)	4(4)
C207	73(6)	45(4)	71(5)	-1(4)	30(5)	7(4)
C208	79(7)	51(5)	64(5)	-2(4)	24(4)	6(5)
C209	74(6)	35(5)	69(4)	-4(3)	33(4)	6(4)

	Х	У	Z	U(eq)
H1	3782(11)	7243(19)	3430(10)	68(2)
H2	3362(10)	2009(19)	5728(10)	63(2)
H3	2100(40)	4610(80)	3290(16)	158(2)
H4	1720(20)	4370(70)	2770(40)	158(2)
H5	5190(30)	3240(60)	7320(30)	131(2)
H11	3601	4597	2800	80
H12	3702	5877	2672	80
H13	3084	5503	2751	80
H21	4258	5558	3609	65
H31	3324	4647	3902	69
H51	2996	3032	3368	79
H61	3191	1194	3049	93
H71	4223	616	3258	97
H81	5054	1766	3828	103
H91	4865	3611	4122	86
H101	2956	6581	3942	75
H102	2768	6755	3249	75
H111	3054	8683	3423	100
H112	2530	8421	3675	100
H121	4274	8807	4739	100
H122	4076	8942	4043	100
H131	4580	7190	4339	74
H132	4091	6844	4621	74
H1011	2798	4564	5922	94
H1012	2707	3262	6015	94
H1013	2667	3709	5386	94
H1021	3673	3608	6355	72
H1022	3303	3964	5537	72
H1032	3723	4765	5393	56
H1051	3185	6426	5353	70
H1061	3223	8300	5734	73
H1071	3706	8594	6759	68
H1081	4350	7163	7378	68
H1091	4441	5352	6963	63
H1101	4079	2909	5157	61
H1102	3359	2674	4850	61
H1111	3544	728	4988	79
H1112	3929	1219	4623	79

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 22097.

H1121	4722	384	6315	77
H1122	3999	271	5961	77
H1131	4182	1840	6595	59
H1132	4610	2359	6283	59
H2011	2977	4399	6290	61
H2012	3212	3194	6564	61
H2013	2679	3296	5928	61
H2031	4281	4224	6565	62
H2051	3385	5979	5281	78
H2061	3125	7904	5389	88
H2071	3468	8749	6344	79
H2081	4072	7724	7187	79
H2091	4298	5773	7087	72

Table 6. Torsion angl	les [°] for 22097.
-----------------------	--------------------

C112-O101-C111-C110	63.3(5)	C111-O101-C112-C113	-63.1(5)
C110-N101-C102-C201	137.7(4)	C110-N101-C102-C203	-79.7(4)
C113-N101-C102-C201	-94.8(4)	C113-N101-C102-C203	47.9(4)
C102-N101-C110-C111	-178.9(4)	C113-N101-C110-C111	51.2(5)
C102-N101-C113-C112	179.8(3)	C110-N101-C113-C112	-50.9(4)
C12-O1-C11-C10	62.2(6)	C11-O1-C12-C13	-61.3(6)
C201-C102-C203-F201	-174.8(4)	N101-C102-C203-F201	44.2(4)
N101-C102-C203-C104	163.8(3)	C201-C102-C203-C104	-55.2(4)
C209-C104-C203-F201	-116.9(7)	C209-C104-C203-C102	119.9(6)
C205-C104-C203-C102	-62.6(7)	C209-C104-C205-C206	-2.5(14)
C203-C104-C209-C208	178.1(9)	C203-C104-C205-C206	-179.8(7)
C205-C104-C203-F201	60.5(8)	C205-C104-C209-C208	0.5(15)
N101-C110-C111-O101	-58.2(6)	O101-C112-C113-N101	57.6(5)
C104-C205-C206-C207	2.0(16)	C205-C206-C207-C208	0.7(16)
C206-C207-C208-C209	-2.7(16)	C207-C208-C209-C104	2.1(17)
C10-N1-C2-C1	71.5(4)	C10-N1-C2-C3	-67.1(4)
C13-N1-C2-C1	-160.2(4)	C13-N1-C2-C3	61.2(4)
C2-N1-C10-C11	-171.3(4)	C13-N1-C10-C11	55.4(5)
C2-N1-C13-C12	175.2(4)	C10-N1-C13-C12	-55.8(5)
N1-C2-C3-F1	-53.3(4)	N1-C2-C3-C4	-172.4(3)
C1-C2-C3-F1	169.7(3)	C1-C2-C3-C4	50.6(4)
F1-C3-C4-C5	136.7(3)	F1-C3-C4-C9	-48.8(4)
C2-C3-C4-C5	-100.8(3)	C2-C3-C4-C9	73.8(4)
C3-C4-C5-C6	176.3(3)	C9-C4-C5-C6	1.4(6)
C3-C4-C9-C8	-175.6(4)	C5-C4-C9-C8	-1.3(6)
C4-C5-C6-C7	-1.4(6)	C5-C6-C7-C8	1.3(7)
C6-C7-C8-C9	-1.2(8)	C7-C8-C9-C4	1.2(8)
N1-C10-C11-O1	-59.1(6)	O1-C12-C13-N1	58.7(6)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+3/2