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Section 1. Fitting of ESR spectra 

Section 1.1. Fits with modified Fano functions  

In order to limit the number of free parameters to fit the hyperfine spectra we recorded for each field 

direction a reference spectrum on a 48Ti atom adsorbed on the same bridge site at the same settings as 

those used for the 49Ti atom. The reference data is fitted with a modified Fano function [1]: 

Δ𝐼 = 𝐼0 + 𝐼1
1+𝛼𝛿

1+𝛿2       (S1) 

with 𝛿 = (𝑓 − 𝑓0)/(Γ/2), where 𝑓0 is the center frequency of the resonance, Γ its width, 𝐼1 its intensity, 

𝐼0 a current offset and 𝛼 a parameter that accounts for the asymmetry of the resonance. 

The data recorded on the hyperfine atom is then fitted with a sum of Fano functions: 

Δ𝐼 = 𝐼0 + ∑ 𝐼1
1+𝛼𝛿𝑖

1+𝛿𝑖
2

𝑖 = 𝑛−1
𝑖 = 0            (S2) 

with 𝛿𝑖 = (𝑓 − (𝑓0 + 𝑖𝐴))/(Γ/2), where 𝑓0 is the center frequency of the first peak and 𝐴 the hyperfine 

splitting parameter. The parameters 𝛼 and Γ are fixed to the values obtained on the reference atom and 

𝑛 is the number of resonances that is determined by the value of the nuclear spin (𝑛 = 6 for 𝐼 = 5/2 and 

𝑛 = 8 for 𝐼 = 7/2). As a result, 𝑓0, 𝐴, 𝐼0 and 𝐼1 are the free parameters for this fit. We note that the 

splitting of the peaks are assumed to be identical, which means that we neglect the quadrupole 

interaction. This assumption is asserted when the peaks are individually resolved, i.e. for relatively large 

hyperfine splitting. At smaller splitting, the quadrupole interaction could compete with the hyperfine 

interaction [2] but this remains below our energy resolution. 
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Section 1.2. Estimation of the g vector and tip field 

 

Figure S1. Schematics describing the angles considered in this paper. (a) The tip field is described by its 
amplitude, the angle 𝛾 it makes with the 𝑧 axis and its azimuthal angle 𝛿 with respect to the 𝑥 axis. (b) 
The measurements span the red plane, defined by the directions of the in-plane and out-of-plane fields. 
The line at which it intersect the sample plane, with vector director �⃗�  is at an angle 𝜑 with the 𝑥 axis. 
More precisely, for the vertical bridge site 𝜑 = 𝜑0 and for the horizontal bridge site 𝜑 = 90∘ − 𝜑0. (c) In 
the rotation plane of the field, to reproduce our experimental observations, we furthermore consider an 
effective tilt angle 𝜃0 of the magnet axes with respect to the local crystal field of the atoms. 
 

In this section we evaluate the TiH g factor and the influence of the tip field on its evaluation. We can 

estimate the strength of the tip field by analyzing the position of the resonances as a function of external 

field. In the absence of any additional tip field the resonance position for 48Ti (and the mean position for 
49Ti) is given by 

𝑓0 =
𝜇𝐵

ℎ
√(𝑔∥𝐵∥)

2 + (𝑔𝑧𝐵⊥)2              (S3) 

Where 𝑔∥ = 𝑔𝑣 for the vertical bridge site and 𝑔∥ = 𝑔ℎ for the horizontal bridge site. Neglecting any 

additional field, we obtain for the vertical bridge site: 𝑔𝑣 =   1.688 ± 0.005 and 𝑔𝑧 = 2.005 ± 0.006 and, 

for the horizontal bridge site: 𝑔ℎ = 1.906 ± 0.009 and 𝑔𝑧 = 2.017 ± 0.009. 

Using eq. 3 of the main text these values can be compared to  the literature values [1] when taking into 

account the tilt of our in-plane field with respect to the crystal lattice (see Figure S1) that we estimate to 

be 𝜑0 = 14 ± 2∘. This angle is given by our experimental setup and has been determined in previous 

experiments [3]. In Table S1 the results of our evaluation are presented, showing first a small variation 

within our error bars of 𝜑0. 

𝜑0 12∘ 14∘ 16∘ Kim et al.  

𝑔𝑥 1.698 1.702 1.706 1.653 

𝑔𝑦 1.897 1.894 1.890 1.917 

𝑔𝑧 2.011 2.011 2.011 1.989 

Table S1. g-values obtained from our experimental data taking into account an uncertainty of 2∘ for 𝜑0 

and compared to literature values [1] (right column). 



We find a good agreement with the literature values and the small deviations can be explained by the 

presence of a small residual tip field, that has been carefully accounted for in [1]. More precisely, using 

from now on the g values of [1], we consider a field that has a fixed magnetization direction and can switch 

along its axis so that 𝑩𝑡𝑖𝑝 ⋅ 𝑩𝑒𝑥𝑡 > 0 [1]. We describe the tip field by its amplitude |𝑩𝒕𝒊𝒑| and the angle it 

makes with respect to the surface normal, 𝛾, as well as its azimuthal angle with the x axis, 𝛿 (see Figure 

S1a). 

We find for the microtip used for the vertical bridge site data (the error bars correspond to the 95% 

confidence interval of the fit coefficients) 

𝜑0 12∘ 14∘ 16∘ 
|𝑩𝑡𝑖𝑝| 100 ± 30 mT 110 ± 40 mT 80 ± 40 mT 

𝛾 101 ± 4∘ 111 ± 4∘ 106 ± 7∘ 
𝛿 91 ± 3∘ 89 ± 1∘ 90 ± 2∘ 

Table S2. Determination of the tip-field for the micro-tip used to record the data taken on Ti atoms 

adsorbed on a vertical bridge site; whilst considering our error bars of 𝜑0. 

 

And for the horizontal data set we have (we used 𝛿 =  −𝜑0 since the value obtained for 𝑔ℎ corresponds 

to the effective value obtained from Ref. [1] along the field direction) 

𝜑0 12∘ 14∘ 16∘ 
|𝑩𝑡𝑖𝑝| 11 ± 5 mT 12 ± 5 mT 13 ± 5 mT 

𝛾 25 ± 155∘ 15 ± 105∘ 5 ± 60∘ 
Table S3. Determination of the tip-field for the micro-tip used to record the data taken on Ti atoms 

adsorbed on a horizontal bridge site; whilst considering our error bars of 𝜑0. 

 

Section 2. Fitting of the hyperfine splitting 

 

Section 2.1. Determination of the hyperfine values 

Based on eq. (3) of the main text we fit the data of Fig.3c of the main text with the following function 

𝐴 =
1

𝑔
√𝑙2𝑔𝑣,ℎ

2 𝐴𝑣,ℎ
2 + 𝑛2𝑔𝑧

2𝐴𝑧
2     (S4) 

Where 𝑙 and 𝑛 are the cosine directions of the external field along the 𝑢 and 𝑧 axis respectively (see Figure 

S1b). As mentioned in the main text, we observe a rotation of the data in Fig.3c with respect to the magnet 

axes. Possible origins for this effective tilt are discussed in the next subsection. We account for it by an 

effective tilt between the magnet axes and the crystal field axes of the atom. More precisely, we consider 

an offset angle 𝜃0 between (𝑩∥, 𝑩⊥) and (𝒖, 𝒛) (see Figure S1c) and we therefore have 

𝑙 = cos(𝜃 − 𝜃0)                  (S5) 

𝑛 = sin(𝜃 − 𝜃0)      (S6) 



where  tan 𝜃 =
𝐵⊥

𝐵∥
.  

The fits in Fig.3c of the main text are based on eq.(S4)-(S6) and show a very good agreement with the 

experimental data. We obtain for the vertical bridge site 𝜃0 = −6.8∘ ± 0.8∘, 𝐴𝑣 = 65.4 ± 0.7 MHz, 𝐴𝑧 =

21.7 ± 1 MHz and for the horizontal bridge site 𝜃0 = −15∘ ± 5∘, 𝐴ℎ = 23.6 ± 0.8 MHz, 𝐴𝑧 = 16.1 ± 0.8 

MHz. 

Taking into account the presence of a tip-field, as determined in the previous section, does not improve 

the quality of the fits and leads to variations of less than 1 MHz of the fit coefficients. In particular, the 

presence of a tip field cannot account for the different values of 𝐴𝑧. These are most likely due to local 

variations of the electric field for each atom as also observed in Ref. [4]. 

To obtain the values of the hyperfine vector along the lattice direction we again have to take into account 

the tilt of the in-plane field with respect to the crystal lattice. Using eq. (3) of the main text we have 

𝜑0 12∘ 14∘ 16∘ 
𝐴𝑥 67 ± 2 MHz 68 ± 2 MHz 69 ± 2 MHz 

𝐴𝑦 20.5 ± 1.5 MHz 19 ± 2 MHz 17 ± 2 MHz 

Table S4. Values for hyperfine splitting along the x and y axis when taking into account the error bars for 

𝜑0. 

 

As one can see, the uncertainty concerning 𝜑0 dominates the error bars for 𝐴𝑥 and 𝐴𝑦. 

 

Section 2.2. Possible origins of the rotation  

As discussed in the main text and the last section, we observe an offset 𝜃0 ∼ 10∘ between the symmetry 

axis of the measured data and the magnet axes. In this section, we consider several origins for this 

observation: tip magnetic field, tilt of the STM head, tilt of the sample, local variations in the electric field 

emerging from inhomogeneities of the substrate, and electrostatic forces emanating from the tip. 

 

Figure S2. (a) Description of the tip field by the Stoner-Wohlfarth model. The orientation of its easy axis p 

is defined by the angle 𝛾 that makes with the z axis, and its azimuthal angle 𝛿 with the x axis (top). Around 

the easy axis, the tip and magnetic fields make an angle 𝜃 and 𝜃0 with p and have azimuthal angles 𝜙 and 

𝜙0 (bottom). The orientation of 𝑩𝒕𝒊𝒑 is then determined by minimizing the energy of the magnet. (b) 



Fitting of the experimental data to account for the rotation with respect to the magnet axes using a tip 

magnetic field described by the Stoner-Wohlfarth model (note that contrary to Fig.3c of the main text, 

the values of 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 are not fit parameters but fixed). 

In order to investigate if the tip magnetic field could be at the origin of the observed rotation between 

the data of Fig.3c and the magnet axes we modelled the tip field with a Stoner-Wohlfarth model. This 

model allows for the tip magnetization to deviate from its main axis and therefore covers a wider range 

of magnet behaviors in an external field than the model considered in the previous section. More 

precisely, the orientation of the easy axis of the magnet, p,  with respect to the (x,y,z) basis is characterized 

by its angle 𝛾 with the z axis, and its azimuthal angle 𝛿 with respect to the x axis (see Fig.S2a). The behavior 

of the magnet is assumed to be isotropic around this axis. Considering a basis (p,q,r) around this axis the 

orientation of the magnet and external fields are characterized by their angles with respect to the p axis, 

𝜃 and 𝜃0, and their azimuthal angles, 𝜙 and 𝜙0, respectively. The energy E of the system is then given by 

𝐸 =
𝑉 𝐵𝑡𝑖𝑝

2
[−𝐻𝑘 cos2 𝜃 − 2𝐵𝑒𝑥𝑡(sin𝜃0 sin 𝜃 cos𝜙0 cos𝜙 

+sin𝜃0 sin𝜃 sin𝜙0 sin𝜙 + cos𝜃0 cos 𝜃)]                               (S7) 

where V is the volume of the magnet and 𝐻𝑘 is the anisotropy field. The first term is the magnetic 

anisotropy and the second the Zeeman energy. The orientation of the tip field is then obtained by 

determining the minima of E, i.e. by solving 
𝜕𝐸

𝜕𝜙
= 0 and 

𝜕𝐸

𝜕𝜃
= 0. When two minima are found we weight 

each solution by their Boltzmann population at 1K. 

Using this model, we can estimate which tip field would be needed to reproduce the rotation observed 

between the experimental data and the magnet axes. More precisely, we fit the experimental data using 

eq.(2) and (3) of the main text, where we fix (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) = (1.653,1.917,1.989), and (𝐴𝑥 , 𝐴𝑦, 𝐴𝑧) =

(68,18,19). The total magnetic field is the sum of the external field (with the out-of-plane and in-plane 

components aligned with the z and u axes) and tip field - the latter being determined via the Stoner-

Wohlfarth model. We estimate that the volume of the magnet is that of a sphere with a radius of 2 Å and 

set 𝐻𝑘 = 100 T (we find empirically that this value of 𝐻𝑘 gives better fits to our experimental data). The 

fits for both adsorption sites are shown in Fig.S2b and yield, for the vertical bridge site, 𝐵𝑡𝑖𝑝 = 0.565 ±

0.125 T, 𝛾 = 82 ± 3∘ and 𝛿 =  −67 ± 2∘; and for the horizontal bridge site, 𝐵𝑡𝑖𝑝 = 0.270 ± 0.670 T, 𝛾 =

13 ± 22∘ and 𝛿 =  −6 ± 106∘. The fits demonstrate that a tip field can induce an apparent rotation of 

the data with respect to the magnet axes but do not completely reproduce the shape of the experimental 

data. Additionally, the tip fields corresponding to the fits would shift the ESR resonance frequencies 𝑓0 

substantially and therefore are too high to be realistic − by a factor ∼ 5 for the vertical bridge site and 

∼ 20 for the horizontal bridge site (see section S1.2). 

We identify a number of other possible origins for the tilt in the measurements for Fig 3c. We estimate 

the uncertainty of the STM head tilt with respect to the external field to be ˂5° based on the geometry of 

the STM design. The misalignment of the sample with respect to the scanning piezo was measured to be 

∼-0.2° in each direction. We therefore expect that although these errors could accumulate, macroscopic 

origins alone should be insufficient to explain the magnitude of the observed rotation. 

We also consider possible origins of a microscopic nature. Local variations in the electric field emerging 

from inhomogeneities of the substrate have been linked to variations in the g-factor of TiH atoms 



adsorbed on O-sites of the MgO lattice. The g-factor was found to be especially susceptible to changes in 

the in-plane direction of the electrostatic field leading to variations up to 15% [4]. This indicates that local 

charges play a large role in the crystalline environment the atom experiences. 

Next to that, due to the anisotropic shape of the tip, the in-plane components of van der Waals and 

electrostatic forces emanating from the tip could move the atom slightly with respect to the crystal lattice. 

Similar in-plane tilting effects have been observed for molecules adsorbed on AFM tips [5] and in 

mechanical bond breaking experiments [6], and has been used for lateral atomic manipulation [7,8]. The 

driving mechanism behind ESR-STM itself has been attributed to the electric field inducing movement of 

the adatom via a piezo crystalline effect in the MgO [9,10].  

While we cannot definitively identify the origin of the observed rotation, we believe that the effects 

discussed above may each contribute to its explanation. Independent of the origin, the hyperfine values 

and their error bars determined by the minima and maxima of the hyperfine splitting in Figure 3c remain 

unaffected. 

 

Section 3. Anisotropy of the hyperfine splitting in C2v symmetry 

The anisotropy of the g and A vectors in C2v symmetry is given by eq. (7) of the main text where the 

functions 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧 are defined as follows [11 p.382] 

𝑓𝑥 = −
4

3
(𝑐1 + √3𝑐2)

2
𝐾2 +

2

3
[(𝑐1 − √3𝑐2)

2
𝐾3 + 4𝑐1

2𝐾1] +
2

7
(𝑐1

2 − 𝑐2
2 − 2√3𝑐1𝑐2) −

4√3

7
𝑐1𝑐2𝐾1 

+
√3

7
(√3𝑐1 + 𝑐2)(𝑐1 − √3𝑐2)𝐾3        (S8) 

𝑓𝑦 = −
4

3
(𝑐1 − √3𝑐2)

2
𝐾3 +

2

3
[(𝑐1 + √3𝑐2)

2
𝐾2 + 4𝑐1

2𝐾1] +
2

7
(𝑐1

2 − 𝑐2
2 + 2√3𝑐1𝑐2) +

4√3

7
𝑐1𝑐2𝐾1 

+
√3

7
(√3𝑐1 − 𝑐2)(𝑐1 + √3𝑐2)𝐾2        (S9) 

     𝑓𝑧 = −
16

3
𝑐1
2𝐾1 +

2

3
 [ (𝑐1 + √3 𝑐2)

2
𝐾2 + (𝑐1 − √3 𝑐2)

2
𝐾3 ] −

4

7
(𝑐1

2 − 𝑐2
2) 

−
√3

7
(√3 𝑐1 + 𝑐2)(𝑐1 − √3 𝑐2)𝐾3 −

√3

7
(√3 𝑐1 − 𝑐2)(𝑐1 + √3 𝑐2)𝐾2    (S10) 

We calculate the values of Δ𝐴𝑥, Δ𝐴𝑦 and Δ𝐴𝑧 for parameter sets (𝑃, 𝛼, 𝑐1, 𝑐2, 𝑐𝑠) where P spans [0; −200] 

MHz, 𝛼 spans [0;1], 𝑐𝑠 spans [0; 0.8] for which we only calculate sets in increments of 0.2. 𝑐1 and 𝑐2 are 

calculated via the normalization equation 𝑐1
2 + 𝑐2

2 + 𝑐𝑠
2 = 1. An angle 𝜒 is defined as tan𝜒 =

𝑐2

𝐶1
, where 𝜒 

spans [0∘; 360∘]. The calculation is performed in the following way: first the values of 𝐾1, 𝐾2, and 𝐾3 are 

calculated via eq. (4)-(6) of the main text and then Δ𝐴𝑥, Δ𝐴𝑦 and Δ𝐴𝑧 are obtained from eq. (7), (S8)-

(S10). 

 



 

Figure S3. Sets of parameters (𝑃, 𝛼, 𝑐1, 𝑐2, 𝑐𝑠) that can give rise the observed anisotropy of the hyperfine 

splitting. (a-c) considers additionally variations of g (a) Values as reported in Ref. [1]: (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) =

(1.653, 1.917, 1.989). (b) (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) = (1.655, 1.898, 2.013). (c) (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) = (1.651, 1.936,

1.965). 
 
 
A parameter set is considered to be a valid solution if the values obtained for Δ𝐴𝑥, Δ𝐴𝑦 and Δ𝐴𝑧 are within 

±4 MHz of the experimental values. We plot in Fig. S3a the data points that correspond to such valid 

solutions: each solution is represented with a point whose coordinates are (𝑐1, 𝑐2) and the value of 𝑐𝑠 

determines the distance between this point and the origin (because of the normalization equation) - as a 

result the different concentric cycles correspond to the different values of the 𝑐𝑠 parameter. The two 

remaining parameters, 𝑃 and 𝛼, are represented by the color of the points in upper and lower graphs, 

respectively. We ensured the stability of our model against the uncertainty of g reported in literature and 

Fig. S3b-c, shows two examples of the results of the calculations performed when considering a 

combination of extrema/minima of the components of g (we performed the calculation for all 8 possible 

combinations). 

As one can see, the value of 𝑐𝑠 does not discriminate between different 𝜒 values but rather renormalizes 

the values of 𝛼 and 𝑃. The two lines corresponding to 𝜒 = 30∘ and 𝜒 = 60∘ indicated by red lines are 

robust against variations of g and correspond to reasonable values for 𝛼 and 𝑃. Indeed, 𝛼 quantifies the 

hybridization of the d levels with ligands orbitals and, since, we assume this effect to be minor, 𝛼 should 

be close to 1. On the other hand, 𝑃 scales with 〈𝑟−3〉 and large values of 𝑃 correspond to orbitals with a 

very small spatial extent, from literature values [11 – Table 9.13 p.359] we expect 𝑃 ∼ −78 MHz for a Ti3+. 



 

Section 4. Point charge model 

Ion Δ electrons (no.) X(Å) Y(Å) Z (Å) 

H 1 0 0 1.8 

O 2 -1.45 0 -1.6 

O 2 1.45 0 -1.6 

Mg -2 0 -1.45 -1.6 

Mg -2 0 1.45 -1.6 

Table S5. Point charge model used to identify the ground state orbital. Shown are the local charges as well 

as their position in the (𝑥, 𝑦, 𝑧) coordinate system centered around the Ti atom (see Figure 1 of the main 

text). 

To discriminate between the different solutions shown in Fig. S3, we use additionally a point charge model 

defined from Table S5. The point charge model allows to distinguish solutions that yield the correct 

hyperfine values (Fig. S3), but are unlikely ground states, since the orbital charges are pointing in 

unfavorable directions of the surrounding crystal field. Each charge 𝑞𝑖 at a position (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) yields a 

potential 

𝑉𝑖 =
𝑞𝑖

√(𝑥−𝑥𝑖)
2+(𝑦−𝑦𝑖)

2+(𝑧−𝑧𝑖)
2
              (S11) 

So that the total Coulomb energy for an electron in an orbital |𝜓〉 is 𝐸𝐶 = −𝑒〈𝜓|∑ 𝑉𝑖𝑖 |𝜓〉. 

For each set of parameters that yields correct values for the anisotropy of the hyperfine vector we 

calculate the corresponding ground state orbital 

|𝜓〉 = 𝑐1 𝑑𝑥2−𝑦2 + 𝑐2𝑑𝑧2 + 𝑐𝑠4𝑠               (S12) 

where 𝑑𝑥2−𝑦2, 𝑑𝑧2  and 4s are the spherical harmonics for which the radial parts verify 

𝑅3,2 =
4

81√6
 (

𝑍3𝑑

𝑎0
)
3/2

𝜌2 exp (−
𝜌

3
)                (S13) 

𝑅4,0 =
1

96
𝑍4𝑠

3/2
[24 −

26𝜌

2
+ 12(

𝜌

2
)
2
− (

𝜌

2
)
3
] exp (−

𝜌

4
)               (S14) 

where 𝜌 = 𝑍𝑟/𝑎0, with 𝑎0 being the Bohr radius and 𝑍3𝑑 (𝑍4𝑠) the effective nuclear charge for the 3𝑑 

(4𝑠) shell. 

And we have for the angular parts 

𝑌𝑥2−𝑦2 =
√15

4√𝜋

𝑥2−𝑦2

𝑟2                (S15) 

𝑌𝑧2 =
√5

4√𝜋

3𝑧2−𝑟2

𝑟2         (S16) 

𝑌4𝑠 =
1

√4𝜋
        (S17) 

 



Furthermore, we have (see main text) 

𝑃 = 𝑔0 𝑔𝑁  𝜇𝑁 𝜇𝐵 〈𝑟−3〉      (S18) 

Neglecting for simplicity any contribution of 𝑐𝑠, the radial extent of the orbital can be calculated from the 

radial wave-function for 𝑑 orbitals [see eq. S(13)] 

〈𝑟−3〉 =  ∫ [𝑅3,2(𝑟)]
2
𝑟−3𝑟2𝑑𝑟

∞

0
            (S19) 

And we obtain 

〈𝑟−3〉 =
𝑍3

81𝑎0
3                (S20) 

Therefore, for each set of solutions determined after the previous step, we calculate the value of 𝑍3𝑑 

using the value of the 𝑃 parameter and eq. (S18) and (S20). The effective nuclear charge for the 4𝑠 orbital 

is then adjusted so that the ratio 
𝑍3𝑑

𝑍4𝑠
 equals the one given in literature [12]. 

The calculation is performed using a grid in the (𝑥, 𝑦, 𝑧) space that spans [−4𝑎0: 4𝑎0] in each direction 

and with a spacing of 0.1𝑎0 between points. We ensure robustness of the results by varying the position 

of the Ti atom with respect to the crystal lattice along the z direction in the range of 20%. The position of 

the Mg and O atoms are determined experimentally by atomic resolution images and the one of the H 

atom is set according to [13]. 

 

Figure S4. Coulomb energy for the different sets of parameters that correctly describe the hyperfine 
anisotropy.  
 
In Figure S4 we show the Coulomb energy calculated for the sets of parameters shown in Figure S4a. Each 

color represents a different value of 𝑐𝑠 and the multiplicity of points for given 𝜒 and 𝑐𝑠 values corresponds 

to the multiple sets of candidates that contains these values. As one can see, decreasing 𝑐𝑠 leads to a 

systematic decrease in the Coulomb energy. While this can be easily explained by the smaller radial extent 

of the 4𝑠 orbital with respect to the 3𝑑 orbitals, the calculation suggests that the minimal solution 

corresponds to an electron only localized in the 4𝑠 orbital which is unrealistic. The point charge model 

therefore does not allow to determine with certainty the value of 𝑐𝑠. However, it allows us to clearly 

identify the ground state orbital for each value of 𝑐𝑠. As we consistently find a minimum at 𝜒 = −150°  



for every value of 𝑐𝑠 we conclude that the relative mixture between the d orbitals is not affected by the 

addition of 𝑐𝑠. 

 

Section 5. Influence of 𝒄𝒔 on the ground state orbital 

 

Figure S5. Influence of 𝑐𝑠 on the ground state orbital. Solution obtained for 𝑐𝑠 = 0.2 (a) and 𝑐𝑠 = 0.4 (b). 

 

In the main text, we show the solution obtained for 𝑐𝑠 = 0. In Figure S5, we show the optimal solutions 

for 𝑐𝑠 = 0.2 (a), which is most likely an upper boundary for the admixture of the 4𝑠 orbital, as well as for 

𝑐𝑠 = 0.4 (b), which is unrealistic but help us better capture the influence of the parameter. The admixture 

of the 4𝑠 orbital influences only marginally the shape of the orbital: it mostly reduces the size of the 

central ring that points towards the neighboring O atoms. We ensured that these results are robust 

against variations of the g vector within the error bars given in Ref. [1]. 
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5. Néel, N.; Kröger, J. Atomic force extrema induced by the bending of a CO-functionalized 
probe. Nano Letters 2021, 21(5). Link  

6. Chen, P.; Fan, D.; Zhang, Y.; Selloni, A.; Carter, E.A.; Arnold, C.B.; Dankworth, D.C.; Rucker, 
S.P.; Chelikowsky, J.R.; Yao, N. Breaking a dative bond with mechanical forces. Nature 
communications. 2021, 12(1). Link 

7. Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom 
manipulation. Science 2004, 306(5694). Link 

8. Ternes, M.; Lutz, C.P.; Hirjibehedin, C.F.; Giessibl, F.J.; Heinrich, A.J. The force needed to 
move an atom on a surface. Science 2008, 319(5866). Link 

9. Lado, J.L.; Ferrón, A.; Fernández-Rossier, J. Exchange mechanism for electron paramagnetic 
resonance of individual adatoms. Physical Review B, 2017, 96(20). Link 

10. Seifert, T.S.; Kovarik, S.; Juraschek, D.M.; Spaldin, N.A.; Gambardella, P.; Stepanow, S. 
Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling 
microscope. Science advances 2020, 6(40). Link  

11. Mabbs, F. E.; Collison, D. Electron paramagnetic resonance of d transition metal compounds 
(Vol. 16). Elsevier: Amsterdam, 2013. 

12. Clementi, E.; Raimondi, D. L.. Atomic Screening Constants from SCF Functions. J. Chem. Phys. 
1963, 38 (11), 2686. Link 

13. Launila, O.; Lindgren, B. Spectroscopy of TiH: Rotational analysis of the 4Γ → 𝑋4Φ(0,0) band 
at 530 nm. J. Chem. Phys. 1996, 104(17). Link 

 

https://doi.org/10.1021/acs.nanolett.1c00268
https://doi.org/10.1038/s41467-021-25932-6
https://doi.org/10.1126/science.1102370
https://doi.org/10.1126/science.1150288
https://doi.org/10.1103/PhysRevB.96.205420
https://doi.org/10.1126/sciadv.abc5511
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.471362

