Author year	Country	Design	Comparison	No. clusters	Sample population	Frequency and duration	Follow- up	Child mortality ^a	OR/RR (95%CI)
Azithromycin MDA a	nd child mo	ortality reducti	on						
Chandramohan 2019 ¹³	Burkina Faso and Mali	Cluster-RCT	Azithromycin+ Antimalarials vs Placebo+Antimalarials	9,618 households	21,737 children (3–59 m)	3-day cycles, monthly for four months, 3y	3 years	24.8 vs 23.5, p=0.57	1.1 (0.88–1.3)
Keenan 2018 ⁹ (MORDOR I)	Malawi, Niger, Tanzania	Cluster-RCT	Azithromycin vs Placebo	1,533 communities	190,238 children (1–59 m)	Biannual, 2y	2 years	14.6 vs 16.5, p<0.001	0.86 (0.80–0.93)
Porco 2009 ¹⁷	Ethiopia	Cluster-RCT	Azithromycin vs Untreated	48 communities	18,415 children (1–5 y)	Annual & Biannual & Quarterly, 1y	1 years	5.7 vs 12.1, p=0.01	0.53 (0.26–0.84)
Keenan 2011 ¹⁵	Ethiopia	Cohort	Azithromycin vs Untreated	24 subkebeles	5,507 children (1–5 y)	Single	26 months	All–cause: 2.79 vs 8.18, p=0.06	All–cause: 0.35 (0.17–0.74) Infectious-cause: 0.20 (0.07–0.58)
Repeated azithromyo	cin MDA on	mortality redu	uction						
Keenan 2019 ¹⁴ (MORDOR II)	Niger	Cohort	3rd vs 1st year	594 communities	76,092 children (1–59 m)	Biannual, 1y	1 year	23.3 vs 24.0, p=0.55	Not available
Different frequencies	s of azithro	mycin MDA on	mortality reduction						
O'Brien 2018 ¹⁶	Niger	Cluster-RCT	Annual vs Biannual-children only	48 communities	5304 children (6 m–12 y)	Annual vs Biannual, 3y	3 years	35.6 vs 29.0, p=0.07	All-cause: 0.81 (0.66–1.00) Infectious-cause: 0.73 (0.57–0.94)

Supplemental Table 1: Characteristics of studies on child mortality

					19 115 obildron	Annual vs		$2.2 \times 2.4 $	
Porco 2009 ¹⁷	Ethiopia	Cluster-RCT	Quarterly-children only	48 communities	(1_9 v)	Biannual vs	1 year	$3.2 \ \sqrt{5} \ 4.9 \ \sqrt{5} \ 4.7$	Not available
			Quarterry emiliaren enry		(1- 3 y)	Quarterly, 1y		p>0.00	

2 OR, odds ratio; RR, rate ratio; CI, confidence interval; ^a child mortality,1000 person-years

Author year	Country	Design	Comparison	No. cluster	Sample population	Frequency and duration	Follow-up	Outcome	OR/RR (95%CI)
Azithromycin M	DA on mala	ria reduct	ion						
Arzika 2019 ⁶ [MORDOR]	Niger	Cluster– RCT	Azithromycin vs placebo	30 communities	315 children (1–59 m)	Biannual, 2y	2 years	Malaria parasitemia: 3.5% vs 4.8%; <i>P</i>=0.02	0.54 (0.30–0.97)
Chandramohan 2019 ¹³	Burkina Faso and Mali	Cluster– RCT	Azithromycin+Antimala rials vs Placebo+Antimalarials	9,618 households	21,737 children (3–59 m)	3-day cycles, monthly for four months, 3y	3 years	Malaria parasitemia	0.97 (0.93–1.01)
Hart 2020 ²⁰ [MORDOR]	Malawi	Cluster– RCT	Azithromycin vs placebo	30 communities	1200 children (1–59 m)	Biannual, 2y	2 years	Malaria parasitemia: <i>P</i> =0.78	0.89 (0.53–1.50)
Bloch 2019 ¹⁸ [MORDOR]	Tanzania	Cohort	Azithromycin vs placebo	30 communities	738 children (1–35 m)	Biannual, 2y	2 years	Rapid diagnostic test: 13.2% vs 6.6%, <i>P</i> =0.34 Clinical malaria: 1.9% vs 1.2%, <i>P</i> =0.66	2.15 (1.16–3.99) 1.38 (0.38–4.95)
Hart 2014 ¹⁹	Gambia	Cluster– RCT	Azithromycin vs control	48 communities	3,646 children (0–5 y)	Annual, 3y	30 months	Spleen rate	0.35 (0.15–0.82)
Schachterle 2014 ²¹	Tanzania	Cohort	Azithromycin vs control	8 villages	1,986 residents (All age)	Single	1, 3, 4, 6 months	<i>Plasmodium falciparum</i> : Month 1: 1.6% vs 4.7% Month 3: 2.1% vs 2.5% Month 4: 0.8% vs 1.5% Month 6: 0.6% vs 0.7%	0.34 (0.17–0.64) 0.83 (0.38–1.77) 0.52 (0.13–1.81) 0.95 (0.18–5.12)
Sadiq 1995 ²⁵	Gambia, West Africa	Cluster– RCT	Azithromycin vs tetracycline eye ointment	8 villages	226 children (5-14 y)	Weekly, 3w	28 days	Plasmodium falciparum: 41% vs 74% Plasmodium malaria: 0% vs 11%	0.56 (0.44–0.71) 0 (0)

Supplemental Table 2: Characteristics of studies on malaria 3

								Clinical malaria:15% vs 32% Spleen rate: 27% vs 55%	0.45 (0.27–0.75) 0.5 (0.36–0.70)
Gaynor 2014 ²²	Niger	Cluster– RCT	Annual vs Biannual	24 communities	1030 children (< 1–72 m)	Annual or biannual, 1y	12 months	Malaria parasitemia: 29.8% vs 19.5%, <i>P</i>=0.03 Parasite density: 354 vs 74, <i>P</i>=0.03 Gametocytemia: 1.5% vs 0%, <i>P</i> =0.29 Hemoglobin: 10.0 vs 10.2, <i>P</i> =0.20	Not available
O'Brien 2017 ²³	Niger	Cluster– RCT	Annual vs Biannual	24 communities	1032 children (6–60 m)	Annual or biannual, 3y	3 years	Malaria parasitemia: 54.5% vs 54.5%, <i>P</i> =0.995 Parasite density: 7,710 vs 4,930, <i>P</i> =0.11 Gametocytemia: 0.5% vs 0.7%, <i>P</i> =0.63 Hemoglobin: 9.4 vs 9.4, <i>P</i> =0.87	Not available
Oldenburg 2018 ²⁴	Niger	Cluster– RCT	Annual vs Biannual	24 communities	1037 children (6 m–12 y)	Annual or biannual, 3y	3 years	Malaria prevalence 50.6% vs 42.6%, <i>P</i> =0.29 Parasite density: 6,260 vs 10,660, <i>P</i> =0.57 Clinical malaria 6.8% vs 5.9%, <i>P</i> =0.69 Hemoglobin 9.2 vs 9.5, <i>P</i> =0.21	Not available

4 OR odds ratio; RR rate ratio; CI confidence interval

6 Supplemental Table 3: Characteristics of studies on general morbidity or condition									
Author year	Country	Design	Comparison	No. cluster	Sample population	Frequency and duration	Follow-up	Outcome	OR/RR (95%CI)
General morbidity	y and sympt	om							
	Burkina		Azithromycin+A			3-day cycles,		Respiratory tract infection	0.85 (0.81–0.89)
Chandramohan 2019 ¹³	Faso and	Cluster –RCT	ntimalarials vs Placebo+Antim	9,618 households	21,737 children (<5 y)	monthly for four months	3 years	Diarrhea	0.85 (0.79–0.91)
	Iviali		alarials			each year, 3y		Fever	0.79 (0.72–0.86)
					1 000 abildram		100	Respiratory tract infection at 1 m	0.62 (0.43–0.91)
Coles 2012 ⁷	Coles 2012 ⁷ Tanzania	Cohort		8 communities	1,036 children	Single	1,3,6 months	Respiratory tract infection at 3 m	0.91 (0.69–1.20)
			untreated		(<5 y)		months	Respiratory tract infection at 6 m	1.00 (0.76–1.30)
			A		1 000 abildram		100	Diarrhea at 0–1 m	0.61 (0.39–0.95)
Coles 2011 ⁸	Tanzania	Cohort		8 communities	1,036 children	Single	1,3,6 maatha	Diarrhea at 1–3 m	0.76 (0.54–1.07)
			untreated		(<5 y)		months	Diarrhea at 3–6 m	0.85 (0.60–1.20)
								Respiratory tract infection	0.59 (0.41–0.90)
								Diarrhea	0.79 (0.49–1.27)
Em. 0000 ³³	Negal	Cohort	Azithromycin vs		458 children	Cinala	10 dava	Fever	0.46 (0.28–0.76)
Fry 2002	Nepai	Conort	untreated	8 villages	(1—10 y)	Single	TO days	Abdominal pain	0.91 (0.59–1.40)
								Vomiting	0.62 (0.33–1.16)
								Headache	0.50 (0.27–0.93)
								Respiratory tract infection	0.87 (0.70-1.08)
			A _'11					Diarrhea	0.26 (0.15–0.46)
	Oamhian	Cluster	Azithromycin vs	0	804 children			Fever	0.80 (0.72–0.88)
whitty 1999	Gampian	-RCT	topical	8 villages	(<14 y)	Weekly, 15 d	28 days	Abdominal pain	0.80 (0.62-1.03)
			tetracycline		((())))			Vomiting	0.59 (0.46–0.77)
								Headache	0.78 (0.68–0.89)

Oldenburg 2018 ⁴²	Niger	Cluster –RCT	Azithromycin vs placebo	30 communities	1,712 children (1-5 m)	Single	2 weeks	Diarrhea 19.3% vs 28.1%, <i>P</i>=0.03 Abdominal pain: 9.1% vs 10.2%, <i>P</i> =0.75 Vomiting: 15.9% vs 21%, <i>P</i> =0.07	0.68 (0.49–0.96) 0.90 (0.45–1.77) 0.76 (0.56–1.02)
Carriage of patho	genic orgai	nisms							
Batt 2003 ³⁰	Tanzania	Cross–s ection	Before vs after treatment	1 village	1,402 residents	Single	2, 6 months	<i>Sp</i> carriage at baseline: 11% <i>Sp</i> carriage at 2 m: 12%, <i>P</i> >0.05 <i>Sp</i> carriage at 6 m:7%, <i>P</i> >0.05	Not available
Burr 2014 ³¹	Gambia	Cross–s ection	Azithromycin vs untreated	30 villages	1575 residents	Annual, 3y	1, 6 months after the last MDA	<i>Sp</i> carriage at 1 m <i>Sp</i> carriage at 6 m	0.30 (0.22–0.42) 1.09 (0.80–1.48)
Coles 2013 ³²	Tanzania	Cohort	Azithromycin vs untreated	8 communities	1015 children (<5 y)	Single	1, 3, and 6 months	<i>Sp</i> carriage at 1 m: 41.4% vs 38.5% <i>P</i> >0.05 <i>Sp</i> carriage at 3 m: 22.0% vs 35.1%, <i>P</i> >0.05 <i>Sp</i> carriage at 6 m: 51.8% vs 50.9%, <i>P</i> >0.05	Not available
Fry 2002 ³³	Nepal	Cohort	Azithromycin vs untreated	8 villages	458 children (1–10 y)	Single	180 days	<i>Sp</i> carriage at 10 d: 42% vs 85%, <i>P</i><0.05 <i>Sp</i> carriage at 180 d: 89% vs 85%, <i>P</i> >0.05	Not available
Haug 2010 ³⁴	Ethiopia	Cross-s ection	Azithromycin vs untreated	8 villages	120 children (1–5 y)	Biannual, 3y	36 months	Sp carriage: P>0.05	Not available
Leach 1997 ²⁹	Australia	Cross–s ection	Before vs after treatment	1 community	79 children (<15 y)	Single	3 weeks, 2 and 6 months	<i>Sp</i> carriage at baseline: 68% <i>Sp</i> carriage at 3 w: 29%, <i>P</i><0.05 <i>Sp</i> carriage at 2 m: 78%, <i>P</i> >0.05 <i>Sp</i> carriage at 6 m: 87%, <i>P</i> >0.05	Not available
Skalet 2010 ³⁵	Ethiopia	Cluster –RCT	Azithromycin vs untreated	24 communities	110 children (<10 y)	Quarterly, 1y	12 months	<i>Sp</i> carriage 78% vs 81.7%, <i>P</i> >0.05	Not available
Doan 2020 ³⁶	Niger	Cluster –RCT	Azithromycin vs placebo	30 communities	890 children (<5 y)	Biannual, 3y	3 years	Coronavirus burden: P<0.05 Coronavirus prevalence: P >0.05	Not available
Doan 2018 ²⁷	Niger	Cluster	Azithromycin vs	30 villages	1,125 children	Biannual, 2y	30 months	Gut microbial structure: P<0.001	Not available

		-RCT	placebo		(<5 y)			Diversity of the gut microbiome: P=0.005	
Doan 2019 ²⁸	Niger	Cluster –RCT	Azithromycin vs placebo	30 villages	600 children (<5 y)	Biannual, 2y	24 months	Diversity of the gut microbiome: <i>P</i> =0.08 Reduction of 35 gut pathogenic species: <i>P</i> < 0.01	Not available
Nutrition									
Amza 2013 ³⁷	Niger	Cluster –RCT	2 vs 1 MDA	24 communities	1,030 children (6 m–5 y)	Annual or biannual, 1y	1 year	Wasting Low MUAC Stunting Underweight	0.75 (0.46–1.23) 0.93 (0.59–1.46) 0.89 (0.65–1.22) 0.81 (0.57–1.16)
Amza 2014 ³⁹	Niger	Cluster –RCT	2 vs 1 MDA	24 communities	1,034 children (6 m–5 y)	Annual or biannual, 3y	3 years	Wasting Low MUAC Stunting Underweight	0.89 (0.53–1.49) 0.62 (0.32–1.17) 0.78 (0.54–1.13) 0.88 (0.66–1.19)
Burr 2014 ⁴⁰	Gambia	Cluster –RCT	3 vs 1 MDA	48 clusters	2,886 children (1–4 y)	Annual, 3y or 1y	3 years	Wasting Stunting Underweight	1.07 (0.81–1.40) 1.12 (0.90–1.41) 1.10 (0.89–1.37)
Gore-Langton 2020 ⁴¹	Burkina Faso and Mali	Cluster –RCT	Azithromycin+A ntimalarials vs Placebo+Antim alarials	9,618 households	4,000 children (3–59m)	3–day cycles, monthly for four months each year, 3y	3 years	Wasting Low MUAC Stunting Underweight	0.94 (0.81–1.08) 0.79 (0.62–1.01) 0.92 (0.83–1.02) 1.01 (0.90–1.13)
Keenan 2019 ³⁸	Ethiopia	Cluster –RCT	Azithromycin vs untreated	24 communities	530 children (< 5 y)	Biannual, 3y	3 years	Height Weight	p=0.60 p=0.54

SP Streptococcus pneumoniae; OR, odds ratio; RR, rate ratio; CI, confidence interval; MUAC, mid-upper arm circumference.

	Confounding		Selec	tion bias	Misclassificati on bias	Performa	ince bias	Detection bias	Attrition bias	Reporting bias
Study	Bias due to confounding (O)	Selection into study (O)	Random sequence generation (R)	Allocation concealment (R)	Bias in intervention classification (O)	Bias due to deviations from interventions (O)	Masking of participants and personnel (R)	Masking of outcome assessors (R, O)	Incomplete outcome data (R, O)	Selective reporting (R, O)
RCT										
Chandramohan 2019 ¹³	NA	NA	Unclear	Low	NA	NA	Low	Low	Low	Low
Keenan 2018 ⁹	NA	NA	Low	Low	NA	NA	Low	Low	Low	Low
O'Brien 2018 ¹⁶	NA	NA	Low	Unclear	NA	NA	Unclear	Unclear	Low	Low
Porco 2009 ¹⁷	NA	NA	Moderate	Unclear	NA	NA	Unclear	Low	Low	Low
Non-RCT										
Keenan 2011 ¹⁵	Unclear	Moderate	NA	NA	Moderate	Unclear	NA	Low	Low	Low
Keenan 2019 ¹⁴	Moderate	Low	NA	NA	Low	Unclear	NA	Low	Low	Low

9 Supplemental Table 4: Risk of bias of studies on child mortality

10 Abbreviations: O, observational, non-randomized studies; R, randomized studies

	Confounding		Select	ion bias	Misclassification bias	Performance bias		Detection bias	Attrition bias	Reporting bias
Study	Bias due to confounding (O)	Selection into study (O)	Random sequence generation (R)	Allocation concealment (R)	Bias in intervention classification(O)	Bias due to deviations from interventions (O)	Masking of participants and personnel (R)	Masking of outcome assessors (R, O)	Incomplete outcome data (R, O)	Selective reporting (R, O)
RCT										
Arzika 2019 ⁶	NA	NA	Low	Low	NA	NA	Low	Low	Low	Low
Chandramohan 2019 ¹³	NA	NA	Unclear	Low	NA	NA	Low	Low	Low	Low
Gaynor 2014 ²²	NA	NA	Low	Low	NA	NA	High	Low	Low	Low
Hart 2014 ¹⁹	NA	NA	Moderate	Unclear	NA	NA	Moderate	Low	Low	Low
Hart 2020 ²⁰	NA	NA	Low	Low	NA	NA	Unclear	Unclear	Low	Low
O'Brien 2017 ²³	NA	NA	Low	Unclear	NA	NA	Unclear	Low	Low	Low
Oldenburg 2018 ²⁴	NA	NA	Low	Low	NA	NA	High	Low	Low	Low
Sadiq 1995 ²⁵	NA	NA	Unclear	Unclear	NA	NA	High	Low	Low	Low
Non-RCT	NA	NA								
Bloch 2019 ¹⁸	Low	Low	NA	NA	Low	Low	NA	Low	Unclear	Low
Schachterle 2014 ²¹	Moderate	Moderate	NA	NA	Low	Moderate	NA	Unclear	Low	Low

12 Supplemental Table 5: Risk of bias of included studies on malaria

13 Abbreviations: O, observational, non-randomized studies; R, randomized studies

	Confounding		Select	ion bias	Misclassification bias	Misclassification bias			Attrition bias	Reporting bias
Study	Bias due to confounding (O)	Selection into study (O)	Random sequence generation (R)	Allocation concealment (R)	Bias in intervention classification(O)	Bias due to deviations from interventions (O)	Masking of participants and personnel (R)	Masking of outcome assessors (R, O)	Incomplete outcome data (R, O)	Selective reporting (R, O)
RCT										
Amza 2014 ³⁹	NA	NA	Low	Low	NA	NA	High	Low	Low	Low
Amza 2013 ³⁷	NA	NA	Low	Unclear	NA	NA	High	Unclear	Low	Low
Burr 2014 ⁴⁰	Low	Low	NA	NA	Low	Low	NA	Unclear	Low	Low
Chandramohan 2019 ¹³	NA	NA	Unclear	Low	NA	NA	Low	Low	Low	Low
Doan 2020 ³⁶	NA	NA	Low	Low	NA	NA	Unclear	Low	Low	Low
Doan 2019 ²⁸	NA	NA	Low	Low	NA	NA	Low	Low	Low	Low
Doan 2018 ²⁷	NA	NA	Low	Low	NA	NA	Low	Low	Low	Low
Gore-Langton 2020 ⁴¹	NA	NA	Unclear	Unclear	NA	NA	High	Unclear	Low	Low
Keenan 2019 ³⁸	NA	NA	Low	Low	NA	NA	Unclear	Low	Low	Low
Whitty 1999 ²⁶	NA	NA	Unclear	Unclear	NA	NA	Unclear	Unclear	Low	Low
Oldenburg 2018 ⁴²	NA	NA	Low	Unclear	NA	NA	Low	Low	Low	Low
Skalet 2010 ³⁵	NA	NA	Low	Unclear	NA	NA	High	Low	Low	Low
Non-RCT										

15 Supplemental Table 6: Risk of bias of included studies on general morbidity or condition

Batt 2003 ³⁰	Unclear	Unclear	NA	NA	Low	Low	NA	Unclear	Low	Low
Burr 2014 ³¹	Unclear	Low	NA	NA	Low	Low	NA	Unclear	Low	Low
Coles 2013 ³²	Unclear	Unclear	NA	NA	Low	Unclear	NA	Unclear	Low	Low
Coles 2012 ⁷	Low	Low	NA	NA	Low	Low	NA	Unclear	Low	Low
Coles 2011 ⁸	Low	Low	NA	NA	Low	Low	NA	Unclear	Low	Low
Fry 2002 ³³	Low	Low	NA	NA	Low	Low	NA	Unclear	Moderate	Low
Haug 2010 ³⁴	Low	Unclear	NA	NA	Unclear	Unclear	NA	Unclear	Low	Low
Leach 1997 ²⁹	Unclear	Unclear	NA	NA	Low	Low	NA	Unclear	Low	Low

16 Abbreviations: O, observational, non-randomized studies; R, randomized studies

17 Supplemental Figure 1: Forest plot for azithromycin MDA and abdominal pain

20 Supplemental Figure 3: Forest plot for azithromycin MDA and vomiting