Appendix 1: Participants

CHAMP leadership group:

- Kristy Arbogast, PhD Children's Hospital of Philadelphia (CHOP) and University of Pennsylvania
- Jeff Crandall, PhD Biocore, LLC
- James Funk, PhD Biocore LLC
- Gary Solomon, PhD National Football League Player Health and Safety

Workgroup leaders:

- Transparency and Disclosure
 - Kristy Arbogast, PhD CHOP/University of Pennsylvania
 - Jaclyn Caccese, PhD Ohio State University
- Study Design and Statistical Analysis in Studies of Head Acceleration Measurement
 - Steve Rowson, PhD Virginia Tech
- Laboratory Validation of Wearable Head Kinematic Devices
 - Lyndia Wu, PhD University of British Columbia
 - Lee Gabler, PhD Biocore, LLC
- On-Field Validation and Use of Wearable Head Kinematic Devices
 - Jillian Urban, PhD Wake Forest University
 - Calvin Kuo, PhD University of British Columbia
 - Initial contributions by Nate Dau, PhD formerly of Biocore, LLC
- Video Analysis of Head Acceleration Events

- William Neale, MArch J.S. Held
- Physical Reconstruction of Head Acceleration Events
 - James Funk, PhD Biocore, LLC
- Computational Modeling of Head Acceleration Events
 - Joel Stitzel, PhD Wake Forest University
 - Songbai Ji, PhD Worcester Polytechnic Institute

Attendees – March 2022 CHAMP conference (in-person and virtual):

Last name	First	Affiliation
	name	
Arbogast	Kristy	Children's Hospital of Philadelphia/University of Pennsylvania
Arrington	Dusty	Adamson Engineering, LLC
Bartsch	Adam	Prevent Biometrics
Begonia	Mark	Virginia Tech
Bergmann	Jeroen	University of Oxford
Broglio	Steven	University of Michigan
Buckley	Thomas	University of Delaware
Bussey	Melanie	University of Otago
Caccese	Jaclyn	Ohio State University
Chu	Jeff	Simbex
Crandall	Jeff	Biocore LLC
Esquivel	Amanda	University of Michigan - Dearborn

Falvey	Eanna	World Rugby
Funk	James	Biocore LLC
Gabler	Lee	Biocore LLC
Ghajari	Mazdak	Imperial College London
Goodger	Drew	Prevent Biometrics
Greenwald	Richard	Simbex
Harezlak	Jaroslaw	Indiana University
Harmon	Kimberly	University of Washington
Hawes	Damien	HITIQ
Heiderscheit	Bryan	University of Wisconsin
Huber	Colin	University of Pennsylvania
Ide	Thad	Riddell Sports
Ji	Songbai	Worcester Polytechnic Institute
Jones	Ben	Leeds Beckett University
Kaminski	Thomas	University of Delaware
Kelshaw	Patricia	University of New Hampshire
Kleiven	Svein	KTH Royal Institute of Technology
Kraft	Reuben	Penn State University
Kuo	Calvin	University of British Columbia
Laudenbach	Tom	HITIQ
Luck	Jason	Duke University

Lynall	Rob	University of Georgia
Makdissi	Michael	Australian Football League
Мао	Haojie	Western University
Mayer*	Thom	NFL Players Association
McIntosh	Andrew	McIntosh Consultancy & Research
Moran	Ryan	University of Alabama
Neale	William	JS Held
Panzer	Matthew	University of Virginia
Patton	Declan	Children's Hospital of Philadelphia
Reynier	Kristen	University of Virginia
Rooks	Tyler	U.S. Army Aeromedical Research Laboratory
Rowson	Steve	Virginia Tech
Schmidt	Julianne	University of Georgia
Shogren	Mike	Prevent Biometrics
Siegmund	Gunter	MEA Forensic Engineers & Scientists
Sills*	Allen	NFL
Smith	Terry	Galeatus LLC
Stitzel	Joel	Wake Forest University
Tierney	Gregory	Ulster University
Urban	Jillian	Wake Forest University
Willinger	Remy	University of Strasbourg

Willmott	Catherine	Australian Football League
Withnall	Chris	Biokinetics and Associates Ltd.
Wu	Lyndia	University of British Columbia

*observers only

Su	mmary statements	Number	Voting
		voting	results
1.	Laboratory Validation of Wearable Head Kinematic Devices	1	
	1.1. A wearable device that measures head kinematics must be	33	100%
	independently validated for its intended application		support
	through controlled laboratory testing, and the laboratory		
	should simulate the real-world loading environment in		
	which the device will be used.*		
	1.2. Laboratory testing of wearable devices should use a	35	97%
	validated biofidelic anthropomorphic test device (ATD)		support
	headform combined with a repeatable and reproducible		
	test setup that enables testing across multiple levels of		
	magnitude, duration and direction that simulate on-field		
	linear and angular head kinematics relevant to the setting		
	of study.*		
	1.3. Reference sensor setup and validation metric selection	33	97%
	depend on the intended application of the wearable		support
	device, which can vary on four main levels: impact		
	counting, impact magnitude, impact direction, and the		

Appendix 2: Voting results for each summary statement

time-history measurement of six-degree-of-freedom		
(6DOF) head kinematics.		
1.4. If a wearable device is designed to measure and report	35	86%
metrics derived from head kinematics, ground truth		support
measurements must be collected with an ATD-embedded		
laboratory-grade reference sensor system. If a wearable		
device is designed to count impacts only, a reduced		
reference setup enabling verification of impact events		
may be applied.		
1.5. Processed data from the wearable device must be	35	83%
compared with ground truth measurements using		support
validation metrics and statistical methods that enable		
complete, unbiased, and application-relevant assessment		
of accuracy and uncertainty.		
2. On-Field Validation and Use of Wearable Head Kinematic		
Devices		
2.1. A head acceleration event (HAE) is defined as an	32	91%
event/incident that gives rise to an acceleration response		support
of the head caused by an external short-duration collision		
force applied directly to the head or indirectly via the body		
in sport, recreational, military, or other activities of		
interest. Wearable devices are often both kinematically		

and field validated for direct HAEs and not indirect HAEs		
due to the limitation of reproducing indirect HAEs in the		
lab and identifying indirect HAEs on the field, respectively.		
2.2. Kinematic data must be filtered to remove potential false	31	100%
positive recordings and verify valid HAEs. Data windowing,		support
video verification, and pre- and post-processing		
techniques aid in data validation. Individual verification of		
HAEs is challenging, and time consuming but improper		
data validation may lead to errors in estimation of		
exposure.*		
2.3. Video review serves as an independent verification of	32	100%
HAEs for a given application (e.g. device development,		support
sport setting) and provides contextual information for		
HAEs. However, video should not be considered ground		
truth as the confidence in video review depends on video		
quality and a robust labelling process. Guided and blinded		
video review of head acceleration events are useful		
components to device performance in an on-field		
environment.*		
2.4. Advanced processing techniques (e.g. algorithms or	32	100%
hardware solutions) have the potential to offer fast and		support
reliable verification of valid HAEs. However, they are often		

developed for specific wearable devices in specific		
applications (e.g., collegiate football) and it is best practice		
to independently validate processing methods for use in		
the intended application.*		
2.5. Before deploying head acceleration measurement devices	33	100%
in an on-field environment, users should establish data		support
collection and analysis protocols according to the activity,		
resources, and research questions. Additionally, users		
should ensure 1) the devices are functional, 2) the		
batteries are charged, 3) the devices are attached securely		
to the individual, and 4) the wearable device is time-		
synchronized with other concurrent data sources (e.g.		
video, GPS systems).*		
3. Physical Reconstruction of Head Acceleration Events		
3.1. Physical reconstructions are a valuable methodology for	32	97%
understanding the dynamics of head acceleration events		support
captured on video.		
3.2. Due to selection bias and a small sample size, physical	31	100%
reconstruction study designs are typically limited to case		support
series and case-control studies.		

3.3. Common test surrogates (Hybrid III dummy, NOCSAE	32	88%
headform) are limited in their ability to match the size,		support
stiffness, posture, and active muscle tension of a		
particular athlete in a reconstruction.		
3.4. The test apparatus in a physical reconstruction should be	31	90%
designed to recreate the 3-D interaction of the head and		support
collision partner by matching their effective masses,		
combined stiffness (including head protection), closing		
speed, path eccentricity, and impact locations.		
3.5. When conducting physical reconstructions, iterative	30	100%
testing should be performed to match video-derived		support
parameters, both pre- and post-impact, and assess the		
repeatability and sensitivity of the test results to variance		
in test conditions.*		
3.6. Researchers should identify and quantify the	29	100%
biomechanical parameters of interest and evaluate the		support
accuracy, repeatability, and sensitivity of the		
reconstruction process relative to the effect size of the		
biomechanical parameters.*		
4. Video Analysis of Head Acceleration Events		
	1	

4.1. Video analysis and videogrammetry are critical tools to	24	92%
understand the position, orientation, and motion of		support
objects observable in video, such as the head or body of a		
sports athlete, or the helmet and equipment positioning		
and orientation. Analysis of these positions and		
orientations can be used to calculate change in linear and		
rotational velocities of the head as a result of an impact		
event. These techniques and procedures expand beyond		
sports and are applicable to the measuring of motion and		
position of most anything observable in video.		
4.2. When applied properly, and validated, current video	24	83%
tracking methods have been shown to accurately estimate		support
pre and post impact velocities. These estimates can be		
used to calculate characteristics of impact severity, such as		
change in velocity, using industry standard methodologies.		
4.3. There are several variables (e.g. frame rate, resolution)	26	100%
that can affect the quality of the results of video analysis.		support
The effect these variables have on the quality of the		
analysis should be quantified when possible, establishing a		
range of certainty for the specific set of parameters used		
in a given analysis.*		
	1	

	4.4. Videogrammetry provides valuable input when	29	100%
	reconstructing head acceleration events in the laboratory		support
	or when performing multi-body or finite element		
	modeling.*		
	4.5. Videogrammetry should consider and correct, when	25	100%
	possible, sources of error including lens distortion,		support
	interlacing, down sampling, compression, and variance in		
	timestep.*		
5.	Computational Modeling of Head Acceleration Events		
	5.1. Brain biomechanical models have strong potential to	32	100%
	improve injury prediction and interpret impact exposure		support
	over impact kinematics alone. They provide the ability to		
	interrogate physics-based tissue level response, estimate		
	risk of injury, and offer insight into injury specifics such as		
	location and extent of structural damage.*		
	5.2. The modeling community advocates for the sensor	33	100%
	community to standardize reporting of head kinematic		support
	data. Standardized reporting should include sensor		
	hardware and software details as well as specifics on		
	coordinate system, post-processing, sampling frequency,		
	and subjects' morphological and demographic		
	information.*		

5.3. It is recommended model quality be assessed	32	97%
comprehensively by comparing with experimental data		support
related to the metric used for model predictions (e.g.		
deformation, strain, stress), correlating against real-world		
data, and then where possible, comparing to responses		
from existing models. It is also recommended that models		
be reevaluated for validation quality when new		
experimental data or analytic strategies become		
available.*		
5.4. We recommend modelers explore modern data science	32	94%
techniques to efficiently process large amounts of sensor		support
impact data.		
5.5. The modeling community advocates for a curated open-	32	94%
access database repository to facilitate sharing of real-		support
world data such as subject-specific head kinematics, injury		
diagnoses, and other associated information including		
head/brain morphology. In addition, simulation results		
from existing models using idealized kinematic profiles		
should be shared as a benchmark for cross-model		
examination.*		
6. Study Design and Statistical Analyses		

6.1. Head impact sensor studies are typically observational in	36	83%
design, which limits their conclusiveness because they are		support
easily contaminated by unseen confounding factors and		
biases. Investigators should be wary of selection and		
sampling biases when composing their samples. Efforts		
should be made to measure and account for suspected		
confounders.		
6.2. Head impact sensor studies benefit from multidisciplinary	36	89%
teams with essential expertise. In addition, establishing		support
partnerships with the research participant community can		
help produce more representative and reliable		
conclusions.		
6.3. Proper operational planning for sensor maintenance and	36	86%
technical failures will help minimize missing data. In		support
addition, video recording of data collection sessions is		
recommended as a resource for explaining and verifying		
impact events as needed.		
6.4. Data quality must be assessed for outliers and spurious	34	91%
data and addressed through data cleaning practices.		support
Suspected missing data should be noted, and all kinematic		
waveforms should be inspected, either computationally or		

manually. Sensor validity should dictate the necessity and		
scope of these practices.*		
6.5. Investigators should employ analysis techniques that	33	94%
minimize sampling bias effects. Further, we recommend		support
statistical transparency in both procedure and output.*		
6.6. Investigators should perform a common-sense check on	29	93%
the data and their analysis results. Care should be taken to		support
investigate results that appear to be inconsistent,		
unrealistic or counterintuitive. Explanations and		
disclosures of disparities with reality will help inform		
better data collection, cleaning, and analysis techniques.*		

*Revised from initial draft after group discussion

Appendix 3: Disclosures – March 2022 CHAMP conference participants and work group

members

Support for	K. Arbogast	Football Research Inc., payments made to institution
attendance or	A. Bartsch	Prevent Biometrics
participation in the	M. Bussey	World Rugby, University of Otago
conference content	J. Caccese	NFL, travel funds for attendance
or activities	J. Crandall	NFL and Football Research Inc., payments made to
		Biocore
	J. Funk	NFL and Football Research Inc., payments made to
		Biocore
	L. Gabler	NFL and Football Research Inc., payments made to
		Biocore
	K. Harmon	Gift fund to institution support concussion research
	D. Hawes	HITIQ
	T. Ide	Riddell
	S. Ji	NIH, NSF
	R. Kraft	NSF
	Т.	HITIQ
	Laudenbach	
	T. Smith	Galeatus LLC

Grants or contracts	K. Arbogast	Football Research Inc., Chuck Noll Brain Research
from entities		Foundation (payments to institution)
(government	A. Bartsch	World Rugby
support excluded)	J. Bergmann	Lab10x; Podium Analytics Youth Sport Centre at
		University of Oxford
	S. Broglio	NCAA (payments to institution)
	T. Buckley	State Space Labs, Henry M. Jackson Foundation for the
		Advancement of Military Medicine, NCAA/DoD CARE
		Grand Alliance (payments to institution); University of
		Nevada COBRE (payment to individual).
	M. Bussey	World Rugby
	J. Caccese	American College of Sports Medicine (payment to
		institution).
	J. Chu	Riddell
	J. Crandall	Football Research, Inc. (contract to Biocore), NFL
		(contract to Biocore)
	R. Greenwald	Riddell
	J. Harezlak	NCAA
	K. Harmon	Football Research Inc. (payment to institution)
	D. Hawes	HITIQ

В.	Football Research Inc., NFL, GE Healthcare, Rheon
Heiderscheit	(payments to institution)
P. Kelshaw	USA Lacrosse, NOCSAE
Т.	HITIQ
Laudenbach	
R. Lynall	NOSCAE, Andee's Army, Georgia Clinical and
	Translational Science Alliance, NFL and Football
	Research Inc. (payments to institution)
J. Mihalik	NCAA, NFL, Football Res. Inc. (payments to
	institution)
R. Moran	Southeast Athletic Trainers Association, Football
	Research Inc. (payments to institution).
M. Panzer	Diversified Technical Systems, Inc.
D. Patton	Football Research Inc. (payment to institution)
S. Rowson	NCAA, NOCSAE (payments to institution).
J. Schmidt	NCAA (payments to institution)
M. Shogren	World Rugby
J. Stitzel	Childress Institute for Pediatric Trauma, NASCAR,
	Toyota Racing Development (payments made to
	institution)
G. Tierney	World Rugby and Rugby Football League

	J. Urban	Childress Institute for Pediatric Trauma, Toyota Racing
		Development (payments made to institution)
	C. Withnall	Football Research Inc.
	R. Willinger	Humanetics
Royalties or	A. Bartsch	Cleveland Clinic, Prevent Biometrics
licenses	J. Chu	For Riddell Insite and Sideline Response System
	R. Greenwald	For Riddell Insite and Sideline Response System
	M. Shogren	Cleveland Clinic
	R. Willinger	Humanetics
Consulting fees	K. Arbogast	NFL Players Association, grant reviews
	D. Arrington	Various defense firms, reconstruction of vehicle and
		pedestrian collisions
	S. Broglio	Medicolegal, grant reviews
	T. Buckley	Grant Reviews
	J. Crandall	NASCAR Head Neck and Spine Committee
	J. Funk	Football Research Inc.
	В.	Altec, Inc, Biocore LLC
	Heiderscheit	
	R. Lynall	Biocore LLC via UNC Chapel Hill

	A. McIntosh	Self-employed consultant. Consulting fees from
		insurance companies, law firms, Racing Australia,
		Transport for New South Wales, AFL, Worksafe
		Victoria, IOC, and Cricket Australia.
	G. Solomon	NFL
Payment or	K. Arbogast	American Academy of Pediatrics
honoraria	T. Buckley	Journal of Sport and Health Sciences – Editorial Board,
(lectures,		Precision Athletic Training, Eastern Athletic Trainers
presentations,		Association, Pennsylvania Athletic Trainers Society,
speaker bureaus,		Shandong Sport University
manuscript writing,	J. Caccese	Child Neurology Society, Eastern Athletic Trainers
educational		Association.
events)	J. Funk	Football Research Inc.
	K. Harmon	NFL Head, Neck and Spine Committee
	R. Moran	Southeast Athletic Trainers Association, National
		Athletic Trainers Association, Mississippi Athletic
		Trainers Association (MATA)
	S. Rowson	NOCSAE Scientific Advisory Committee
	J. Urban	International Association for Dance Medicine &
		Science
	T. Smith	Hockey Equipment Certification Council

Payment for expert	D. Arrington	Various defense firms, reconstruction of vehicle and
testimony		pedestrian collisions
	J. Funk	Expert witness work, sometimes related to head
		injury.
	A. McIntosh	Expert testimony on the causation of head injuries in
		criminal and civil legal matters. Fees paid to company.
		Very few, if any of these matters, involve concussion
		in sport.
	G. Siegmund	MEA Forensic Engineers & Scientists (am a salaried
		employee and owner of the firm). Fees paid to
		company. None of my forensic cases involve wearable
		sensors.
Support for	K. Arbogast	NFL Players Association, Football Research Inc.,
attending meetings		NOCSAE Scientific Advisory Committee
or travel	A. Bartsch	Prevent Biometrics, Department of Defense
(government	M. Bussey	University of Otago
support excluded)	J. Caccese	American College of Sports Medicine, Child Neurology
		Society, Eastern Athletic Trainers Association.
	J. Crandall	Football Research Inc., NFL, Biocore
	J. Funk	NFL
	L. Gabler	Football Research Inc., NFL, Biocore

	K. Harmon	NFL Head, Neck, and Spine Committee
	B. Heiderscheit	NFL Soft Tissue Injury Task Force
	R. Lynall	NATA, University of Georgia
	A. McIntosh	IOC
	M. Shogren	Prevent Biometrics
	G. Siegmund	MEA Forensic Engineers & Scientists
	C. Willmott	Australian Football League, Monash University
Patents, issued and	A. Bartsch	2011278996, 2011278997, 2011278999, 2012219306,
pending		2019379578, 2019404197, 21183467.6, 19817851.9,
		19845637.8, 2,805,252, 2,805,250, 2805266,
		2,837,239, EP2593010, 3338631, 2593015, 2592998,
		EP2675356, EP2593010, 2593015, 2592998,
		16/781,119, 16/737,325, 16/682,767, 16/720,589,
		15/432,107, 63/170,217, 63/181,574, EP2675356,
		EP2593010, 2593015, 602011054987.1, EP2675356,
		EP2593010, 2593015, 502019000006365, EP2593010,
		2593015, 2592998, EP2593010, 2593015, 2592998,
		EP2675356, 9,149,227, 10,582,883, 9,289,176,
		9,044,198, 9,585,619 (Prevent Biometrics, Cleveland
		Clinic).

J. Bergmann	WO 2019/020969/ US20200155033/ EP3658009; WO
	2021/111132
S. Broglio	U.S. Application No. 17/164,490 - pending
J. Chu	All IP related to InSite and Sideline Response System
	assigned to Riddell
J. Crandall	U.S. Patent 20190110746 - U.S. Patent 2019010584 -
	Co-inventor, Biocore ownership
R. Greenwald	All IP related to InSite and Sideline Response System
	assigned to Riddell
D. Hawes	Australian Innovation Patent (Patent No. 2021107530
	and Patent No. 2021107528)
T. Ide	Riddell (Riddell owns Head Acceleration Measurement
	patents).
Т.	Australian Innovation Patent (Patent No. 2021107530
Laudenbach	and Patent No. 2021107528)
J. Luck	US 2016/0345903
M. Shogren	US Patent 9,149,227, US Patent 9,585,619, US Patent
	10,582,883, AU Patent 2011278996, AU Patent
	2011278997, AU Patent 2011278999, AU Patent
	2012219306, CA Patent 2,805,252, CA Patent
	2,805,250, CA Patent 2,837,239, CA Patent 2,805,266,

		CA Patent 2,907,745, EP Patent 2,593,010, EP Patent
		2,675,356, EP Patent 3,338,631, EP Patent 2,593,015,
		EP Patent 2,592,998. Other patents pending
	G. Siegmund	US Patent No. 10,548,510
	J. Stitzel	2 patents pending on mouthpiece-based head
		acceleration measurement technology
	J. Urban	Patent pending for mouthpiece-based head
		acceleration measurement technology
	L. Wu	U.S. Patent 10,172,555. US PCT Patent Application
		PCT/US2019/066088 – Inventor, Patent applications
		assigned to Stanford University.
Participating in	K. Arbogast	NOCSAE Scientific Advisory Committee
DSM Board or	J. Crandall	NASCAR Head, Neck and Spine Committee
Advisory Board	S. Rowson	NOCSAE Scientific Advisory Committee
Leadership or	K. Arbogast	NFL Engineering Committee and NFL Sensor
fiduciary role in		Committee
relevant entity,	J. Bergmann	Lab10X
other board,	M. Bussey	Sport and Exercise Science New Zealand
society, committee	J. Crandall	NFL Engineering Committee
or advocacy grp.	K. Harmon	NFL Head, Neck and Spine Committee, Pac-12 Brain
Paid or unpaid		Trauma Task Force

	D. Hawes	HITIQ
	В.	NFL Soft Tissue Injury Task Force
	Heiderscheit	
	Т.	HITIQ
	Laudenbach	
	J. Luck	The Ohio State University Injury Biomechanics
		Symposium
	A. McIntosh	Standards Australia committees ISO working group on
		occupational protective helmets.
	J. Mihalik	Senaptec, Inc - Co-Founder; Chief Science Officer
	M. Shogren	Prevent Biometrics
	J. Stitzel	Elemance, LLC
	C. Willmott	Australian Football League, Monash-Epworth
		Rehabilitation Research Centre Advisory Board
Stock and stock	A. Bartsch	Prevent Biometrics
options	J. Bergmann	RegMetrics
	J. Crandall	Biocore LLC – Owner
	D. Hawes	HITIQ
	T. Ide	BRG Sports (Equity holder in Riddell parent BRG
		Sports)

	Т.	HITIQ
	Laudenbach	
	J. Mihalik	Senaptec, Inc - Co-Founder, Equity stakeholder
	M. Shogren	Prevent Biometrics
	J. Stitzel	Elemance, LLC – ownership interest
Receipt of equip.,	B. Jones	I have received equipment from Biocore-FRI, HitIQ,
materials, drugs,		Prevent and ORB to undertake a validity study. All
medical writing,		costs associated with the study were funded by Leeds
gifts or other		Beckett University.
services	G. Siegmund	MIPS (equipment and advice for the construction of a
		free fall drop tower used for helmet testing.)
Employment/salary	A. Bartsch	Prevent Biometrics
from relevant	J. Chu	Simbex
entity	J. Crandall	Biocore LLC – Owner
	E. Falvey	World Rugby
	J. Funk	Biocore LLC
	L. Gabler	Biocore LLC
	D. Goodger	Prevent Biometrics
	R. Greenwald	Simbex
	D. Hawes	HITIQ
	K. Harmon	Pac-12 Research Development Director

	T. Ide	Riddell
	Т.	HITIQ
	Laudenbach	
	M. Shogren	Prevent Biometrics
	G. Siegmund	MEA Forensic Engineering and Scientists
	C. Willmott	Australian Football League
	C. Withnall	Biokinetics and Associates, Ltd.
Other	A. Bartsch	Immediate family members own stock in Prevent
		Biometrics
	S. Broglio	Proceeds from Biomechanics of Injury (3rd edition,
		Human Kinetics) – book
	R. Kraft	BrainSim Technologies Inc.