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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors present dcHiC for differential compartment analysis. There is a need to innovate 

compartment analysis in Hi-C as the bioinformatic methodology has not changed much over the 

years. The authors mostly benchmark against Homer and use dcHiC to characterize differential 

compartments in published Hi-C datasets of differentiation and between individuals. However, 

there are a few major concerns to address in characterizing the tool that dampen my enthusiasm. 

As presented, it is unclear if dcHiC is an improvement of current methods. Additionally, it is 

difficult to see the significance of the tool, as there are little to no large departures from that of 

published findings. 

First, the authors compare only to Homer. However, both methods rely on eigenvalue 

decomposition. They should compare to alternate methods, like CScoreTool: 

https://pubmed.ncbi.nlm.nih.gov/29244056/ . 

In these comparisons, the authors should compare and report standard benchmarks, i.e. time and 

memory usage at various resolutions and sequencing depths. 

The authors should evaluate the effects of sequencing depth on compartment calls and differential 

compartment calls by downsampling maps. They should then report the false-positive / false-

negative rates compared to the high-read depth map. This should be done for a range of 

resolutions and sequencing depths. 

The manuscript relies heavily on correlation with other features, such as histone marks, 

replications timing, etc to validate the compartment calls and differences. However, they validate 

that the differences between Homer and dcHiC (and CScores) reflect differences in the Hi-C. They 

should show Hi-C examples of the loci where Homer and dcHiC differ. They should also examine 

the compartment scores independently by computing the intensity scores (AA)/(AB) of the actual 

Hi-C signal for these regions. 

Currently, it is difficult to tell if Homer of dcHiC is more accurate. Homer detects more differences, 

which appear to also correspond to differences in correlated features (Fig 3F&H). This dramatically 

dampens my enthusiasm. 

Similar to above, Gorkin et al identified far more differences than dcHiC, and it is not clear whether 

or not these are false positives. The authors should show the Hi-C signal at Gorkin exclusive vs 

dcHiC exculsive differences. Additionally, they should test whether Gorkin specific differences 

correlate with differences in the histone marks that they published. 

Authors should show what the Gorkin compartment calls look like at the NR2F2 and THEMIS 

regions to see how dcHiC compares. 

Reviewer #2: 

Remarks to the Author: 

In this manuscript, Chakraborty and colleagues proposed dcHiC to perform differential analysis of 

A/B compartments, from Hi-C data. Overall, there are many merits of the manuscript. The method 

is simple yet well motivated. Differential compartment testing is useful for Hi-C data analysis. The 

manuscript is well organized and easy to follow. The authors applied their methods to three 

datasets, leading biologically findings that are expected and supported from auxiliary 

transcriptomics or epigenomic data (although I didn’t find anything particularly note-worthy or 

novel in terms of biological insights). The GitHub site is well constructed and the examples from 

analyses performed in the manuscript are valuable for users. 



However, the biggest concern is that the method needs to be compared with the state-of-the-art 

alternatives. The authors started by showing that the method generates results consistent with the 

standard PCA analysis. How about applying PCA analyses to the datasets they analyzed and what 

would the results look like? Would the standard PCA approach lead to similar findings? What does 

dcHiC offer that would have been missed by PCA? 

Other major comments are listed below. 

(1) As a statistical testing method, the authors need to demonstrate the validity of the methods: 

that is, the authors need to first show protection of type-I error. The authors can do this by 

applying dcHiC to Hi-C datasets with replicates or randomly splitting high-depth Hi-C data into two 

sets. Under such scenarios, no differential compartments are expected, which would allow an 

evaluation of the method validity. Without establishing the validity, a statistical hypothesis testing 

is meaningless. 

(2) The authors applied an outlier detection approach when performing differential compartment 

analysis, which appears somewhat ad hoc. A standard approach is to use parametric or non-

parametric ANOVA analysis, which is computationally fast, as well as statistically straightforward 

and extensively used. 

(3) The authors should be applauded for attempting finer-resolution in at least one dataset. Have 

the authors applied their methods at higher-resolution to the other two datasets. How would the 

depth of Hi-C data affect the finest resolution recommended? 

(4) Have the authors considered extending the approach to single cell Hi-C data? A recent study 

(PMID: 33484631) has suggested that compartment score can reflect 3D chromatin structure in 

single cells. Can dcHiC handle the sparse single Hi-C data? 

Minor comments: 

(1) Under the “Computation and quantile normalization of compartment scores for comparison” 

sub-section of the Methods section, the authors said input to SVD is “distance-normalized” 

matrices: how were the matrices distance-normalized? 

(2) What is the computational costs of dcHiC? How does it scale with respect to input data depth, 

number of cell types compared etc? 

(3) How does the method perform when the data depth differs substantially? Conceptually, 

quantile normalization handles the issue but can the authors show some results with differential 

depths across the tested cell types? 

Reviewer #3: 

Remarks to the Author: 

In this study, Chakraborty and colleagues introduce a new computational method to determine 

differential chromatin compartmentalization across 2 or more samples. The method is briefly 

introduced in the main manuscript, and described in more detailed in the Methods section, and 

then ample space is dedicated to demonstrate the power of this approach in distinct biological 

contexts comparing Hi-C datasets ranging from 2 to 20 in number. In addition, the authors 

implement and perform multiple downstream analyses to gain information from the differential 

compartment regions detected by dcHiC. Overall, this is an interesting approach addressing an 

under-appreciated and under-studied problem (it’s amazing how much has been done to detect 

and compare TADs and how little to do so for chromatin compartments). 

Given the main contribution of this work is the development of a tool, I would have appreciated 

more insight and testing on the method itself, while the detailed description of the results from the 

various comparisons could sometime be reduced, especially when simply confirming previous 

findings. Below I highlight more detailed suggestions: 

1) A major concern of using PC values as compartment scores is data resolution (total number of 

Hi-C contacts). The authors employ a quantile normalization to make these values comparable 

across different experiments (which is great), but they should still test to what extent differential 

compartment regions can be detected by simply changing the resolution of the same experiment. 



To this extent, the authors should test the robustness of their method to data resolution in 

different ways such as: 

- by using dcHiC to compare multiple version of the same Hi-C matrix down-sampled to a different 

percentage of reads, this will allow to get an idea of the influence of data resolution on the extent 

of differential compartments expected by chance (and even provide guidelines to the users on 

when and in which context this comparison is reliable) 

- and by repeating the comparisons in the manuscript after reads-downsampling, these 

comparisons would allow to assess the robustness of the results in term of both the number of 

significant hits and how consistent these hits are upon downsampling. (I.e., will they find the same 

set of hits when comparing the same datasets but at different resolution?) 

2) In the first part of their algorithm, the authors present a new/fast approach to detect 

compartments (A and B) and compare their strategy to the more standard approach based on PCA 

as implemented in HOMER. Here I have a couple of questions: 

- if I understand correctly the main difference between the two is that dcHiC employs SVD, while 

HOMER standard PCA, is that the only difference? Can the author provide a few more details on 

the two approaches? 

(Also, how does HOMER perform differential compartment analysis? Why does it return such a 

larger number of hits?) 

- while the correlations shown in Figure 1A and 1D are strong, since compartments are called 

based on the sign of the PC, an additional (more proper) comparison would have been to show the 

fraction of bins that have different A/B assignments with the two approaches. 

Indeed in both comparisons in Figure 1A and 1D it appears that there is a subset of bins in the 

top-left quadrant that would be called A by dcHiC and B by HOMER. Of course I expect differences 

between the tools, 100% consistency would be unrealistic, but it is curious that while some A 

compartment regions in dcHiC are called B by HOMER (top-left quadrant), the vice versa almost 

never occur (bottom-right quadrant) suggesting a systematic shift of scores. Can the authors 

quantify the fraction of bins where discordant calls occur? Do they have an intuition on why 

discordant calls are almost exclusively in one direction? 

3) Along the same lines of the previous comment, the authors did not compare their compartment 

calls with those of other approaches, especially when these allow to call subcompartments (see 

PMID: 25497547, PMID: 31699985, PMID: 33972523). Besides the comparisons of A and B 

compartment calls made by these approaches, it would interesting to combine subcompartments 

inferred by them with dcHiC results to have a more granular analysis of significant compartment 

differences: do they at least involve subcompartment flips? are regions in different 

subcompartment equally likely to change or certain subcompartments are more "flexible"? (E.g. in 

PMID: 33972523 the authors talk about subcompartments enriched for differentiation genes, the 

regions of frequently change compartments across cell lines) 

4) To evaluate the results obtained by dcHiC, the authors performed several enrichment analyses 

(epigenetic features, gene expression, gene ontology etc.) While these are welcome, it would be 

great to have a better feeling of how frequently a significant compartment change is supported by 

orthogonal evidence. How many compartment changes are indeed associated with differentially 

expressed genes (and vice versa)? How many are associated with epigenetic changes (the authors 

could check if ChIP-seq data for histone modifications is available)? 

Also the authors always report compartment changes in terms of number of bins, but I suspect in 

many cases multiple bins are contiguous (a compartment change of only 1 bin is more likely to be 

due to noise). If they account for contiguity how many changes do they get and what is their size 

distribution? 

Possibly using orthogonal evidence and a size threshold could help determine the true differences 

and further filtering false positives which could emerge for technical reasons such as data 



resolution. 

A few minor comments: 

5) How much do the results of dcHiC depend on the weighting scheme adopted (Eq. 6 in the 

Methods)? It would be important to understand the contribution of this parameter to the results. 

How would the result change without weighting? What if a different weighting strategy was 

adopted (e.g. 75% quantile instead of max Z)? 

6) Why wasn’t the time-series analysis done also for the HSC lineage differentiation study? That 

would be a nice addition to understand the number of concordant/progressive changes during 

lineage differentiation vs. changes that emerge sporadically. 

7) I believe these are typos/oversights, but in the background section the descriptions of PCA and 

eigenvector decomposition are imprecise: 

- at line 65 the sentence seem to indicate that eigenvectors and principal components are the 

same thing, but they aren’t, 

- at line 73 the authors write “magnitude and sign of eigenvalues derived from PCA have been the 

major determinants of compartment type”, this is just wrong, eigenvalues are only used to rank 

eigenvectors. It is the sign and magnitude of the values of the first (or second) principal 

component that are used to determine compartment type. 

All of this is correctly reported in the Methods so I believe these were simple oversights, but they 

should be corrected.
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Reviewer #1 (Remarks to the Author): 

Reviewer comments are in red, our responses are in black and copy-pasted text from the 
manuscript are colored in blue 

The authors present dcHiC for differential compartment analysis. There is a need to innovate 
compartment analysis in Hi-C as the bioinformatic methodology has not changed much over the 
years. The authors mostly benchmark against Homer and use dcHiC to characterize differential 
compartments in published Hi-C datasets of differentiation and between individuals. However, 
there are a few major concerns to address in characterizing the tool that dampen my enthusiasm. 
As presented, it is unclear if dcHiC is an improvement of current methods. Additionally, it is difficult 
to see the significance of the tool, as there are little to no large departures from that of published 
findings. 

We thank the reviewer for their comments. We would like to first clarify that dcHiC’s main 
contribution and innovation is in enabling multi-way comparisons of compartments and in 
identifying significant changes that do not involve compartment flips/switches. In the process, we 
have also implemented an SVD-based compartment caller that is more efficient than existing tools 
such as HOMER and CscoreTool. However, our compartment calls are largely in agreement with 
these existing PCA-based approaches as expected by the general formulations of the matrix 
decomposition methods. Other than computational efficiency (mainly in runtime and scalability), 
we do not claim any superiority over existing tools for the task of calling compartments. We do, 
however, show multiple lines of evidence supporting dcHiC’s advantages in differential analysis 
(significantly extended in this version) and in providing novel analysis modalities that were not 
present in any other tool to date. 

Below we would like to highlight the most significant changes in this revision for your reference: 

1. As suggested by all reviewers, we have now extensively studied the impact of sequencing 
depth and resolution on the compartment calls and differential compartment calls from dcHiC 
including a false positive rate analysis using replicates and recovery analysis using 
downsampling. These analyses demonstrated that our results are quite robust for most relevant 
settings and allowed us to provide guidelines about the sequencing depth and other requirements 
for proper utilization of dcHiC.  

2. We now also applied dcHiC on single-cell Hi-C data demonstrating its utility in comparing 
different clusters and/or time points to study dynamic changes in compartmentalization from 
pseudo-bulk Hi-C profiles from as low as 80 single cells. Our analysis of the Tan et al. (Cell, 2021) 
single-cell Hi-C data from two regions of post-natal developing mouse brain (each with 6 time 
points) allowed us to reveal important genes related to synapse assembly and adult brain 
development that have dynamic and tissue-specific compartmentalization changes, which were 
not highlighted by the original publication. 

3. As requested by multiple reviewers, we have now substantially expanded our comparative 
analysis to HOMER, Gorkin et al and added Cscore into these comparisons. We have profiled 
runtimes and memory utilization of each approach for compartment detection in multiple settings 
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and resolution, highlighting the clear advantage of dcHiC for high-resolution/finer-scale 
compartment analysis.  

4. We also extensively compared the overlap of differential compartments identified by 
different approaches with changes/variation in orthogonal measurements from matched samples 
including gene expression, histone modifications and lamin B1 signal. These results confirmed 
and strengthened our previous findings that dcHiC differential compartments are consistently 
more enriched in variation of other biological signals.  

5. To address confusions from multiple reviewers, we have added a detailed discussion of 
HOMER and dcHiC in terms of their specific implementation of compartment calling and the 
source of dcHiC’s performance improvement including the use of more efficient data structure.  

6. We have expanded our documentation in Wiki page of our Github repository (https://ay-
lab.github.io/dcHiC/) to include single-cell analysis of Tan et. al and provided two demos with 
accompanying test data to show how dcHiC can be used for bulk and single-cell Hi-C data 
analysis: https://github.com/ay-lab/dcHiC/demo 

7. We have also added additional analyses showing: i) the overlap of dcHiC results with 
subcompartment calls and their differences, ii) consistency of dcHiC calls across different 
resolutions including high-resolution such as 10kb and 20kb maps when possible, iii) the dynamic 
changes through time series analysis of specific lineages in the mouse hematopoietic lineage. 

 

1. First, the authors compare only to Homer. However, both methods rely on eigenvalue 
decomposition. They should compare to alternate methods, like CscoreTool: 
https://pubmed.ncbi.nlm.nih.gov/29244056/. 

We have now done this and incorporated the results in Figure 2. In the revised Figure 2, we show 
correlation plots of all three methods against each other and Lamin B1 data. As expected, 
CscoreTool performs comparably with dcHiC and HOMER in compartment detection. We reflect 
these changes in our two different sections of the manuscript as follows:  

“To establish the validity of the dcHiC results, we first compared compartment calls to two 
other common compartment-finding approaches: a canonical PCA-based approach 
(HOMER [33]), and the CscoreTool [17], a method that uses a likelihood function over a 
sliding window to infer compartment scores. The resulting compartment scores were 
highly similar among the three methods at 100Kb resolution using mouse ESC Hi-C data, 
with Pearson’s r=0.96 between dcHiC and HOMER, 0.97 between HOMER and 
CscoreTool, and 0.98 between CscoreTool and dcHiC (Figures 2A-C). Similar to A/B 
compartment decomposition from Hi-C data, association with the nuclear lamina (or radial 
position) is another strong indicator of a broad-level chromatin state with heterochromatin 
localizing at the periphery and euchromatin at the nucleus center. All three methods also 
showed strong negative correlation with Lamin B1 data, confirming the previous findings 
[27, 36], with R-values of -0.91, -0.89, and -0.90  for dcHiC, HOMER, and CscoreTool, 
respectively (Figures 2D-F). We further plotted the compartment scores for chromosome 
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2 and chromosome 6 for ESCs and NPCs from dcHiC, HOMER and CscoreTool 
alongside Lamin B1 association signal confirming the high concordance (Figure 2G-H). 
These results established that dcHiC, similar to existing approaches, accurately captures 
compartment patterns. ” 

 

Figure 2: Comparison of dcHiC compartment scores with HOMER compartment 
scores and Lamin B1 association data. (A-C) Genome-wide comparison of dcHiC, 
HOMER, and Cscore compartment scores against each other for mouse ESCs. (D-F) 
Genome-wide comparison of dcHiC, HOMER, and Cscore compartment scores against 
Lamin B1 profiles for mouse ESCs. (G-H) Browser views of the compartment scores from 
three different methods and Lamin B1 signal in chromosomes 6 and 2 in mouse ESC. 
Arrows highlight a subset of regions where the compartment assignment was not 
consistent among the three methods. (I) Genome-wide runtimes for compartment calling 
by each of the three methods at 10Kb, 25Kb, 40Kb, 50Kb, and 100Kb resolution for mESC 
Hi-C data. The runtimes include a sequential run of compartment calling for each 
chromosome and this is repeated for two pseudo-replicates of mESC data with runtimes 
summed up. (H) Genome-wide runtimes for 50kb resolution mESC Hi-C maps at 10%, 
20%, 40%, 60%, 80%, and 100% down-sampling rate (100% = 500 million reads) for two 
pseudo-replicates (similar to Fig. 2I). 
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2. In these comparisons, the authors should compare and report standard benchmarks, i.e. time 
and memory usage at various resolutions and sequencing depths. 

We have now done this and incorporated the results in Figure 2 and in Supplementary Tables 
S1-S4. We added a new results section that outline our findings: 

“Performance evaluation of compartment calling by dcHiC and other approaches 

Next, we assessed the resource utilization of dcHiC against HOMER and CscoreTool for 
compartment calling, a prerequisite to differential compartment analysis as well as the 
major bottleneck for high-resolution analysis in general. We evaluated the time and 
memory utilization of these three methods using two mouse ESC pseudo-replicates 
(~500M reads each), from which we generated contact maps at 5 different resolutions 
and 6 different sequencing depths (30 combinations; Supplemental Information, Table 
S1-4). In Figure 2I-J, we plotted genome-wide runtimes at 100% sampling rate for 5 
different resolutions and for 50kb resolution at 6 different down-sampling rates showing 
that dcHiC runs 4-13x faster than CscoreTool and 22-33x faster than HOMER across 
these conditions. Across all read depths and all resolutions we tested, dcHiC ran 1.3-15x 
faster than CscoreTool and 10-52x faster than HOMER genome-wide (Supplementary 
Tables S1-2). Figure 2J also demonstrated that dcHiC scales better with increasing 
sequencing depth. With respect to memory use, at full read depth and 100kb resolution, 
CscoreTool had a lower peak memory (~0.24Gb) usage than dcHiC (~0.34Gb) and 
HOMER (~1.2Gb). For resolutions of 50Kb, 40Kb and 25Kb Hi-C data at 100% 
sequencing depth, all the three tools were within 30% of each other (~1.13Gb, ~1.25Gb 
and ~1.3Gb for CscoreTool, dcHiC and HOMER, respectively) with CscoreTool utilizing 
the least amount memory for computing the compartment score at every resolution 
(Supplementary Tables S3-4). For these time and memory profiling, we ran all tests 
genome-wide, and used one CPU per chromosome (Intel Xeon Gold 6252 CPU @ 
2.10GHz). Running HOMER genome-wide at 10Kb resolution did not finish after 100 
hours of compute time for ESC data.” 

 

3. The authors should evaluate the effects of sequencing depth on compartment calls and 
differential compartment calls by downsampling maps. They should then report the false-
positive / false-negative rates compared to the high-read depth map. This should be done for 
a range of resolutions and sequencing depths. 

We agree with the reviewer that testing robustness of our method with respect to read depth and 
resolution is very important. To this end, as suggested, we performed a series of new analyses 
using a range of resolutions and sequencing depths, which led do the addition of a new section 
and Supplementary Figures S4 and S5 as well as Supplementary Tables S5-S9. These results 
can be summarized as: 
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• We observe that the compartment calls (before differential analysis) are highly concordant 

within 100% to 40% (500M-200M reads) down-sampling rate (R>0.9; Supplementary 
Table S6).  

• We see that dcHiC is robust to type-1 error when comparing replicates at different 
resolutions and read depths (Supplementary Table S5). 

• We see no false positive differential compartment calls among samples with 100% to 60% 
down-sampling (500M-300M reads), whereas false positive calls appear when 20% or 
10% down-sampled replicates are introduced providing us guidelines for proper use of 
dcHiC (Supplementary Table S8). 

• We found that there is a high recall of differential compartments (>80%) called from full 
sequencing depth (“ground truth”) for down-sampling rates of 40% or more 
(Supplementary Figure S4) with similar trends for other resolutions including 
50kb, 40kb and 25kb (Supplementary Figure S5). 

• These analyses allowed us to provide guidelines about the sequencing depth and other 
requirements for proper utilization of dcHiC. 

• Overall, dcHiC results are quite robust for most relevant settings.  

“Robustness of dcHiC differential compartment calls 

Next, we sought to see how well the pairwise differential compartment calls between 
different Hi-C profiles are preserved through down-sampling and at different resolutions. 
We used the 4 ESC biological replicates (230M-1.2B reads) and the 3 NPC biological 
replicates (720M-1.5B reads) at their full sequencing depth (100%) and then down-
sampled each replicate separately to 5 different read depths: 80%, 60%, 40%, 20%, and 
10%. To profile the effects of down-sampling, we first compared ESC and NPC replicates 
at each read depth using 100Kb resolution contact maps. We found that there is a high 
recall of differential compartments (>80%) called from full sequencing depth (“ground 
truth”) for down-sampling rates of 40% or more (Supplementary Figure S4). In order to 
also assess the role of resolution in recall of differential compartments, we repeated the 
same down-sampling experiments for 4 other resolutions: 50Kb, 40Kb, 25Kb, and 10Kb. 
We observed that except from 10Kb resolution, all other cases were similar to 100Kb 
where 40% down-sampling still led to a high recall (>75%), whereas for 10Kb resolution, 
the results at 60% down-sampling had a recall of 80% that dropped to 61% for 40% down-
sampling (Supplementary Figure S5A-D). Given that the sequencing depth for each 
replicate varied between 200M to 1.5B reads, we believe that with replicates of at least 
80-100M reads, differential compartment analysis at 25Kb or lower resolution can be 
carried out with high/acceptable recall of all compartmentalization changes that can be 
detected with deeper sequencing. Later in this section we analyze the role of sequencing 
depth and resolution on precision of differential compartment detection.  

… 
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To further assess the type-1 error rate, we carried out a series of differential compartment 
analysis between mouse ESC pseudo-replicates (2 replicates) at different resolutions 
(100Kb, 50Kb, 40Kb, 25Kb and 10Kb) and down-sampling rates (100%, 80%, 60%, 405, 
20% and 10% of 500 million sequencing depth). We measured the number of differential 
compartments when running two down-sampled replicates against each other at different 
resolutions and our results indicate that dcHiC is robust to type-1 error when comparing 
replicates at different resolutions and read depths (Supplementary Table S5). We also 
evaluated the type-1 error rate, when two mouse ESC pseudo-replicate Hi-C maps of 
different sequencing depth are compared by dcHiC. Across the 21 comparisons, we first 
see that the compartment calls are highly correlated within 100% to 40% (500M-200M 
reads) of read depth (Supplementary Table S6). The correlations with high read depth 
samples drop substantially for 20% (100M reads) and further for 10% (50M reads) 
sample. We noticed this occurred because compartment scores for some chromosomes 
started to not fully reflect the compartmentalization pattern at lower read depths. 
Removing the 5 chromosomes (chr 4, 5, 14, 17, X) with such issues, we see correlations 
at lower read depths improve, however not to the point that we highly concordant 
(correlation >0.9) compartment calls between two pseudo-replicates (Supplementary 
Table S7). While evaluating the false-positive calls, we first observed that correlations 
between compartment scores are closely related to the number of differential calls. When 
we utilized dcHiC to find differential compartments (i.e., false positive calls) between two 
replicates of different sequencing depth by down-sampling Hi-C maps at 100Kb 
resolution, we see no false positives up among samples with 100% to 60% down-
sampling (500M-300M reads) (Supplementary Table S8). We also do not obtain any 
false positives even for lower depth samples when they are compared against the sample 
with the same rate of down-sampling. However, a substantial number of false positive 
differential calls appear when 20% or 10% down-sampled samples are compared to 
higher depth samples (Supplementary Table S8).  Like compartmental correlations, here 
also when we filter out the 5 chromosomes with issues in compartment calls at low read 
depths, we see that the false positive rates dramatically improve for 40% and for 20% 
down-sampled samples (Supplementary Table S9). Based on these results, we believe 
compartment scores and differential compartment calls are robust when comparing Hi-C 
maps that are sufficiently sequenced (100M or more reads) and are within 2-3-fold read 
depth of each other. “ 
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Supplementary Figure S4: Effect of 
sequencing depth on pairwise differential 
compartment calls (mouse ESC vs NPC) 
by dcHiC. The panel shows the 
percentages of differential compartments 
detected at 100% sequencing depth that 
are recovered after down-sampling the 
biological replicates (4 for ESC and 3 for 
NPC) at different levels (80% to 10%) for 
100kb resolution analysis.   

 

 

 

 

Supplementary Table S5: Effect of resolution and sequencing depth on type-1 error rate. 
The table shows differential compartments identified by comparing two pseudo-replicates 
against each other using dcHiC on mouse ESC. The comparison is repeated at different 
sequencing depths (rows) and resolutions (columns). 

 
 

Supplementary Table S8: Effect of differential down-sampling (different down-sampling 
rates for each replicate) on the differential compartment detection by dcHiC between two 
mouse ESC pseudo-replicates.  

 

 

100Kb 50Kb 40Kb 25Kb 10Kb
100% 0 0 0 0 0
80% 0 0 0 0 0
60% 0 0 0 0 0
40% 0 0 0 0 0
20% 0 0 0 0 0
10% 0 0 0 2 6

ESC (Pseudo-replicate 1 vs 2)Down sampling rates
(100% = 500 million)

100% 80% 60% 40% 20% 10%
100% 0 0 0 0 247 827
80% 0 0 0 84 353 907
60% 0 0 0 124 348 1215
40% 0 84 124 0 335 1027
20% 247 353 348 335 0 737
10% 827 907 1215 1027 737 0

Differential 
compartments

ESC Pseudo-replicate 2

ESC 
Pseudo-replicate 1

Down sampling rates
(100% = 500 million)
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4. The manuscript relies heavily on correlation with other features, such as histone marks, 
replication timing, etc to validate the compartment calls and differences. However, they 
validate that the differences between Homer and dcHiC (and CScores) reflect differences in 
the Hi-C. They should show Hi-C examples of the loci where Homer and dcHiC differ. 
Currently, it is difficult to tell if Homer of dcHiC is more accurate. Homer detects more 
differences, which appear to also correspond to differences in correlated features (Fig 3F&H). 
This dramatically dampens my enthusiasm. 

We thank the review for raising this point. Figure 3F in the previous (and new) version of the 
manuscript showed the overlap between dcHiC and HOMER pairwise differential calls. We have 
now expanded characterization of the differences between two methods by: 

a. Specific analysis of inconsistent compartment calls (A vs B) between dcHiC and 
HOMER: 

“Next, we further analyzed the 4-7% of the genome that is labeled in opposite 
compartments by dcHiC in comparison to HOMER for ESC and NPC (Supplementary 
Figure S1A-B). Overall, dcHiC-B but HOMER-A regions (~1% for ESC and NPC) showed 
positive lamin B1 signal and lower gene expression levels compared to dcHiC-A but 
HOMER-B regions    (Supplementary Figure S1C-D). The latter set (3% for ESC and 
6% for NPC) had a mix of regions with positive and negative lamin B1 association as well 
as gene expression values that are lower than constitutive A but higher than constitutive 
B compartment regions (compare to Figure 3) suggesting a weak compartmentalization 

for these regions into either A 
or B compartment.” 

Supplementary Figure S1: 
Inconsistent A/B compartment 
assignments between dcHiC 
and HOMER. (A-B) Shows the 
number (top) and fraction 
(bottom) of consistent and 
inconsistent A/B assignments 
by dcHiC and HOMER in 
mouse ESC and NPC Hi-C 
maps. (C) Shows the Lamin B1 
signal of inconsistently labelled 
regions with dcHiC-B but 
HOMER-A regions showing 
lamin B1 association 
supporting their 

heterochromatin (or B) assignment. (D) Shows the expression distribution of genes 
overlapping with the inconsistently labelled regions by dcHiC and HOMER.  
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b. Further analysis of differences in differential compartment calls from dcHiC and 
HOMER: 

“To compare the calls made by the two different methods, we plotted the absolute 
differences in lamin B1 signal, replication timing and log2 gene expression values of all 
the reported differential compartments (Figure 3G) or method-specific differential 
compartments (Figure 3H) for each method. These results show that dcHiC differential 
compartments are significantly (unpaired t-test p-values < 0.05) enriched for regions with 
higher ESC and NPC differentials for lamin B1 association and replication timing signals 
although both methods captured regions with signal differences in all three measures. 
We also performed differential expression analysis between ESCs and NPCs to map the 
differentially expressed (DE) genes (DEseq2 [41], FDR<0.05, fold change>4) on the 
differential compartments. We observed that dcHiC differential compartment bins were 
enriched in the number of DE genes (Figure 3I) as well as the fold change (log2) and 
significance (DESeq2) of the difference for those DE genes (Supplementary Figure 
S2A-B). Further, we also looked at the average number of histone modification peak 
(MACS2 p-value < 1e-5) differences between ESC and NPC per 100Kb for the regions 
from dcHiC and HOMER’s differential calls (Supplementary Figure S3). For all three 
different histone marks (H3K4me1, H3K4me3, H3K27ac), we observed a higher number 
of peak differences per 100Kb for dcHiC compared to HOMER. ” 

 

Supplementary Figure S3: Average difference in absolute number of histone peaks 
(MACS2 p-value < 1e-5) per 100Kb of differential bins within dcHiC and HOMER 
differential compartments. (A) Shows the absolute difference of average number 
H3K27ac peaks between ESC and NPC per 100Kb of dcHiC and HOMER differential 
compartments. The result shows that there is more difference in H3K27ac peaks per 
100Kb of differential compartments identified by dcHiC. (B-C) The result shows that are 
more differences in both H3K4me3 and H3K4me1 peaks per 100Kb of differential 
compartments called by dcHiC compared to HOMER.       
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c. Example regions where dcHiC and HOMER calls differ: 

For ESC vs NPC comparison, we have now scanned the differential compartments specifically 
called by either dcHiC or HOMER and extracted examples of such cases (see below). We have 
also added the LaminB1 signal (First two tracks) and gene expression values (TPM, last two 
tracks) along with compartment signal track to better annotate these differences. Following are 
the few example regions where dcHiC and HOMER calls differ . Consistent with the higher number 
of differential calls by HOMER, these examples also suggested that HOMER is more sensitive to 
detect changes, including some that are not visually appreciable (e.g., chr6 and chr10). This is 
likely related to the specific t-test (moderated t-test) that is used by limma for microarray analysis, 
which HOMER employs for differential compartment calling. We also found dcHiC-specific 
differences that involve substantial changes in compartmentalization that are missed by HOMER 
(e.g., chr 13). This being said, there are examples of changes that are HOMER-specific and 
involve visible differences, which we believe are missed by dcHiC (e.g., chr18). We hope these 
examples highlight the advantages and limitations of each method sufficiently.  
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5. They should also examine the compartment scores independently by computing the intensity 
scores (AA)/(AB) of the actual Hi-C signal for these regions. 

We appreciate the reviewer’s suggestion and for pointing out an interesting analysis. We now 
have plotted the distribution of distance normalized intensity scores (Observed/Expected 
interaction) of AA divided by AB (as suggested) for all differential A compartments from ESC 
(panel A below) and from NPC (panel B below). We observed that for both cell types of the 
differential A-compartments have overall weaker AA/AB intensity scores compared to random 
non-differential A-compartments. When we compared this trend between dcHiC and HOMER 
differential calls, we did not see any substantial differences with differential calls from both cases 
leading to significantly lower AA/AB scores compared to random non-differential A compartment 
regions.     

 

 

6. Similar to above, Gorkin et al identified far more differences than dcHiC, and it is not clear 
whether or not these are false positives. The authors should show the Hi-C signal at Gorkin 
exclusive vs dcHiC exculsive differences. Additionally, they should test whether Gorkin 
specific differences correlate with differences in the histone marks that they published. 

We acknowledge that the concern raised by the reviewer is valid and we have performed 
additional analyses in this revision to address this issue. This led to addition of two new 
supplementary figures (Supplementary Figure S10 and S11) and their discussion in the main text. 
We also provide below example regions where Gorkin et al. specific differences are illustrated.  

a. Analysis of the overlap between dcHiC and Gorkin et al differential compartment calls 
and variable histone modification regions previously identified across different LCLs: 
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“We then asked whether the identified differential compartment regions were enriched in 
regions with variability in histone marks (H3K27ac, H3K4me3, H3K4me1 and H3K27me3) 
across different individuals. The variable histone modification regions/peaks identified for 
human LCLs by Kasowski et. al. 2013 [65] were mapped on differential compartments 
identified from dcHiC and by Gorkin et. al. [66]. Using the non-differential compartment 
regions as background for each method, we observed nearly no enrichment for regions 
called differential only by Gorkin et. al. (Supplementary Figure S10) while calls from 
dcHiC showed 26-45% of enrichment. The proportion of differential calls that overlapped 
with at least one variable region for each histone mark was also substantially higher for 
regions from dcHiC in comparison to Gorkin et. al. specific regions (Supplementary 
Figure S11A-D).” 

Supplementary Figure S10: 
Enrichment of differential 
compartments from either dcHiC or 
Gorkin et. al. paper that overlap at 
least one variable histone mark 
region/peak identified by Kasowski 
et. al (2013). The enrichment is 
computed with respect to all non-
differential compartment regions 
for each method. We assess the 
enrichment for all calls from dcHiC 
in comparison to calls that are 
specific to Gorkin et. al.  

Supplementary 
Figure S11: The 
number of differential 
compartments from 
each method that 
overlap with a 
variable histone 
mark region (similar 
to Figure S10) for (A) 
H3K27ac, (B) 
H3K4me3, (C) 
H3K4me1, and (D) 
H3K27me3.  
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b. Example regions where Gorkin et al. calls cover a large fraction of the region without 
accompanying visual differences in compartment scores 

• ~20Mb region of chromosome 16 

 

• ~25Mb region of chromosome 18 
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Although the above examples were common and representative of the overall trend, one 
exception to this was a ~10Mb region on chromosome 4 (the chromosome with the highest 
fraction of differential calls by dcHiC) where dcHiC calls covered a larger fraction of the region 
compared to Gorkin at al. These tracks can be interactively browsed genome-wide using the link:  

https://ay-lab.github.io/dcHiC/Gorking_hg19_40Kb.RefineY_Rconf90_FDR10.pcOri.html  
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7. Authors should show what the Gorkin compartment calls look like at the NR2F2 and THEMIS 
regions to see how dcHiC compares. 

The regions in question are plotted below. We plotted the 15Mb region around NR2F2 and 25Mb 
region around THEMIS. There was a better consistency between dcHiC and Gorkin et al. calls for 
the THEMIS locus whereas NR2F2 locus showed a similar pattern to the other examples above 
where Gorkin et al calls covered most of the region. 

As mentioned above, the same tracks went into this visualization can be interactively browsed 
from the link: 

https://ay-lab.github.io/dcHiC/Gorking_hg19_40Kb.RefineY_Rconf90_FDR10.pcOri.html  
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Reviewer #2 (Remarks to the Author): 

Reviewer comments are in red, our responses are in black and copy-pasted text from the 
manuscript are colored in blue 

In this manuscript, Chakraborty and colleagues proposed dcHiC to perform differential analysis 
of A/B compartments, from Hi-C data. Overall, there are many merits of the manuscript. The 
method is simple yet well motivated. Differential compartment testing is useful for Hi-C data 
analysis. The manuscript is well organized and easy to follow. The authors applied their methods 
to three datasets, leading biologically findings that are expected and supported from auxiliary 
transcriptomics or epigenomic data (although I didn’t find anything particularly note-worthy or 
novel in terms of biological insights). The GitHub site is well constructed and the examples from 
analyses performed in the manuscript are valuable for users. 

We thank the reviewer for their comments and positive assessment. Below we would like to 
highlight the most significant changes in this revision for your reference: 

1. As suggested by all reviewers, we have now extensively studied the impact of sequencing 
depth and resolution on the compartment calls and differential compartment calls from dcHiC 
including a false positive rate analysis using replicates and recovery analysis using 
downsampling. These analyses demonstrated that our results are quite robust for most relevant 
settings and allowed us to provide guidelines about the sequencing depth and other requirements 
for proper utilization of dcHiC.  

2. We now also applied dcHiC on single-cell Hi-C data demonstrating its utility in comparing 
different clusters and/or time points to study dynamic changes in compartmentalization from 
pseudo-bulk Hi-C profiles from as low as 80 single cells. Our analysis of the Tan et al. (Cell, 2021) 
single-cell Hi-C data from two regions of post-natal developing mouse brain (each with 6 time 
points) allowed us to reveal important genes related to synapse assembly and adult brain 
development that have dynamic and tissue-specific compartmentalization changes, which were 
not highlighted by the original publication. 

3. As requested by multiple reviewers, we have now substantially expanded our comparative 
analysis to HOMER, Gorkin et al and added Cscore into these comparisons. We have profiled 
runtimes and memory utilization of each approach for compartment detection in multiple settings 
and resolution, highlighting the clear advantage of dcHiC for high-resolution/finer-scale 
compartment analysis.  

4. We also extensively compared the overlap of differential compartments identified by 
different approaches with changes/variation in orthogonal measurements from matched samples 
including gene expression, histone modifications and lamin B1 signal. These results confirmed 
and strengthened our previous findings that dcHiC differential compartments are consistently 
more enriched in variation of other biological signals.  

5. To address confusions from multiple reviewers, we have added a detailed discussion of 
HOMER and dcHiC in terms of their specific implementation of compartment calling and the 
source of dcHiC’s performance improvement including the use of more efficient data structure.  
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6. We have expanded our documentation in Wiki page of our Github repository (https://ay-
lab.github.io/dcHiC/) to include single-cell analysis of Tan et. al and provided two demos with 
accompanying test data to show how dcHiC can be used for bulk and single-cell Hi-C data 
analysis: https://github.com/ay-lab/dcHiC/demo  

7. We have also added additional analyses showing: i) the overlap of dcHiC results with 
subcompartment calls and their differences, ii) consistency of dcHiC calls across different 
resolutions including high-resolution such as 10kb and 20kb maps when possible, iii) the dynamic 
changes through time series analysis of specific lineages in the mouse hematopoietic lineage. 

However, the biggest concern is that the method needs to be compared with the state-of-the-art 
alternatives. The authors started by showing that the method generates results consistent with 
the standard PCA analysis. How about applying PCA analyses to the datasets they analyzed and 
what would the results look like? Would the standard PCA approach lead to similar findings? What 
does dcHiC offer that would have been missed by PCA? 

We would like to address this concern, one shared by multiple reviewers, by clarifying dcHiC’s 
precise compartment calling method. In R, the standard way to compute eigenvalues is the 
eigen() or svd() function. However, when the matrix becomes large, these functions can be very 
time-consuming: the complexity to calculate all eigenvalues of an ‘n’ by ‘n’ matrix is O(n^3). While 
in real applications including compartment analysis, we usually only need to compute a few 
eigenvectors, for example to visualize high dimensional data using PCA. The same thing happens 
in Singular Value Decomposition (SVD). It is often the case that only a Partial SVD or Truncated 
SVD is needed, and moreover the matrix is usually stored in sparse format. In the background, 
both our method and other popular programs like HOMER uses the eigendecomposition of the 
correlation matrices to find the principal components. HOMER in particular uses the default 'eigen' 
function of R to perform the PCA. Due to its inefficient handling of large matrices, however, the 
principal component calculation of Hi-C maps at higher resolution becomes impractical to run with 
eigen function. dcHiC implements the ‘bigstatsr’ package in R and uses Filebacked Big Matrices 
(FBM) via memory-mapping. This allows, for instance, matrix operations that includes memory 
and time-efficient low-rank approximation of standard PCA calculation based on the algorithm in 
C++ spectra library. Given an ‘n’ by ‘n’ large matrix A, the ‘big_randomSVD’ from ‘bigstatr’ 
package can calculate a specified number of eigenvectors of A. Users can specify the selection 
criterion by an argument which allows computing only the k largest eigenvalues and their 
corresponding eigenvectors.  

One other popular method for compartment calling is CscoreTool, an approach that completely 
avoids the canonical PCA and instead uses a sliding genomic window that predicts whether a 
given region is A or B as a log-likelihood function of the number of interaction counts in the region. 
As such, dcHiC and HOMER are based on the same method (with different implementations), 
while CscoreTool is a different approach for compartment detection. We have now done the 
comparison and incorporated the results in Figure 2. In the revised Figure 2, we show correlation 
plots of all three methods against each other and Lamin B1 data. As expected, CscoreTool 
performs comparably with dcHiC and HOMER in compartment detection. We reflect these 
changes in our two different sections of the manuscript as follows:  
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“To establish the validity of the dcHiC results, we first compared compartment calls to two other 
common compartment-finding approaches: a canonical PCA-based approach (HOMER [33]), and 
the CscoreTool [17], a method that uses a likelihood function over a sliding window to infer 
compartment scores. The resulting compartment scores were highly similar among the three 
methods at 100Kb resolution using mouse ESC Hi-C data, with Pearson’s r=0.96 between dcHiC 
and HOMER, 0.97 between HOMER and CscoreTool, and 0.98 between CscoreTool and dcHiC 
(Figures 2A-C). Similar to A/B compartment decomposition from Hi-C data, association with the 
nuclear lamina (or radial position) is another strong indicator of a broad-level chromatin state with 
heterochromatin localizing at the periphery and euchromatin at the nucleus center. All three 
methods also showed strong negative correlation with Lamin B1 data, confirming the previous 
findings [27, 36], with R-values of -0.91, -0.89, and -0.90  for dcHiC, HOMER, and CscoreTool, 
respectively (Figures 2D-F). We further plotted the compartment scores for chromosome 2 and 
chromosome 6 for ESCs and NPCs from dcHiC, HOMER and CscoreTool alongside Lamin B1 
association signal confirming the high concordance (Figure 2G-H). These results established that 
dcHiC, similar to existing approaches, accurately captures compartment patterns.” 

 

Figure 2: Comparison of dcHiC compartment scores with HOMER compartment 
scores and Lamin B1 association data. (A-C) Genome-wide comparison of dcHiC, 
HOMER, and Cscore compartment scores against each other for mouse ESCs. (D-F) 
Genome-wide comparison of dcHiC, HOMER, and Cscore compartment scores against 
Lamin B1 profiles for mouse ESCs. (G-H) Browser views of the compartment scores from 
three different methods and Lamin B1 signal in chromosomes 6 and 2 in mouse ESC. 
Arrows highlight a subset of regions where the compartment assignment was not 
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consistent among the three methods. (I) Genome-wide runtimes for compartment calling 
by each of the three methods at 10Kb, 25Kb, 40Kb, 50Kb, and 100Kb resolution for mESC 
Hi-C data. The runtimes include a sequential run of compartment calling for each 
chromosome and this is repeated for two pseudo-replicates of mESC data with runtimes 
summed up. (H) Genome-wide runtimes for 50kb resolution mESC Hi-C maps at 10%, 
20%, 40%, 60%, 80%, and 100% down-sampling rate (100% = 500 million reads) for two 
pseudo-replicates (similar to Fig. 2I). 

We also show in the first section that dcHiC’s compartment calls are closely aligned with 
HOMER’s (PCA) and whenever there is a mismatch of calls between the two methods the 
independent evidence (gene expression and lamin association) mostly supports dcHiC calls, 
although we note that such regions with method-specific compartment labels tend to have weak 
compartmentalization in general.  

“Next, we further analyzed the 4-7% of the genome that is labeled in opposite 
compartments by dcHiC in comparison to HOMER for ESC and NPC (Supplementary 
Figure S1A-B). Overall, dcHiC-B but HOMER-A regions (~1% for ESC and NPC) showed 
positive lamin B1 signal and lower gene expression levels compared to dcHiC-A but 
HOMER-B regions    (Supplementary Figure S1C-D). The latter set (3% for ESC and 
6% for NPC) had a mix of regions with positive and negative lamin B1 association as well 
as gene expression values that are lower than constitutive A but higher than constitutive 
B compartment regions (compare to Figure 3) suggesting a weak compartmentalization 

for these regions into either A 
or B compartment.” 

Supplementary Figure S1: 
Inconsistent A/B compartment 
assignments between dcHiC 
and HOMER. (A-B) Shows the 
number (top) and fraction 
(bottom) of consistent and 
inconsistent A/B assignments 
by dcHiC and HOMER in 
mouse ESC and NPC Hi-C 
maps. (C) Shows the Lamin B1 
signal of inconsistently labelled 
regions with dcHiC-B but 
HOMER-A regions showing 
lamin B1 association 
supporting their 

heterochromatin (or B) assignment. (D) Shows the expression distribution of genes 
overlapping with the inconsistently labelled regions by dcHiC and HOMER.  
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Further, as suggested by the reviewer, to inspect the effect of the standard PCA analysis on the 
differential compartment calls we compared the 
dcHiC results with and without quantile normalized 
PCA. As, expected about more than 90% of the 
differential calls overlapped with each other and 
almost all the major regions along with others that 
we discuss in the paper remained as significant. 
As a support to this claim, we are showing the 
differential calls between the two approaches in 
the following four chromosomes. The first two rows 
show the principal component of ESC and NPC Hi-
C maps followed by the -log10 (Padj) values from 
quantile normalized and raw PCA approach.  
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Since our compartment calls largely match those of other established methods included PCA-
based, we would also like to reiterate the point to the reviewer that dcHiC does not reinvent the 
PCA analysis approach from scratch but instead taking compartment scores (possible to start 
from PCA-based scores previously computed such as Gorkin et. al. data here) and performing a 
statistical analysis on their differences with or without replicates.  The framework we developed 
here provides a systematic way to identify differential compartments by performing the standard 
or using any existing principal component analysis of Hi-C data and visualize these differences in 
different scenarios, including multiway, hierarchical, time-series and single-cell settings. The 
novelty of dcHiC lies in implementing an integrative framework and an easy-to-use tool for 
comparative analysis of Hi-C maps using standard PCA data that identifies biologically relevant 
differences in compartmentalization across multiple cell types.  

Other major comments are listed below. 

(1) As a statistical testing method, the authors need to demonstrate the validity of the methods: 
that is, the authors need to first show protection of type-I error. The authors can do this by applying 
dcHiC to Hi-C datasets with replicates or randomly splitting high-depth Hi-C data into two sets. 
Under such scenarios, no differential compartments are expected, which would allow an 
evaluation of the method validity. Without establishing the validity, a statistical hypothesis testing 
is meaningless. 

We agree with the reviewer that testing robustness and validity of our method is very important. 
To this end, as suggested, we performed a series of new analyses using replicates from the same 
cell type or different cell types with a range of resolutions and sequencing depths, which led do 
the addition of a new section and Supplementary Figures S4 and S5 as well as Supplementary 
Tables S5-S9. These results can be summarized as: 

• We observe that the compartment calls (before differential analysis) are highly concordant 
within 100% to 40% (500M-200M reads) down-sampling rate (R>0.9; Supplementary 
Table S6).  

• We see that dcHiC is robust to type-1 error when comparing replicates at different 
resolutions and read depths (Supplementary Table S5). 

• We see no false positive differential compartment calls among samples with 100% to 60% 
down-sampling (500M-300M reads), whereas false positive calls appear when 20% or 
10% down-sampled replicates are introduced providing us guidelines for proper use of 
dcHiC (Supplementary Table S8). 

• We found that there is a high recall of differential compartments (>80%) called from full 
sequencing depth (“ground truth”) for down-sampling rates of 40% or more 
(Supplementary Figure S4) with similar trends for other resolutions including 
50kb, 40kb and 25kb (Supplementary Figure S5). 

• These analyses allowed us to provide guidelines about the sequencing depth and other 
requirements for proper utilization of dcHiC. 

• Overall, dcHiC results are quite robust for most relevant settings.  

We added the following paragraph in the main manuscript to demonstrate the validity of the 
method in terms of its type-1 error rate -    
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“Robustness of dcHiC differential compartment calls 

… 

To further assess the type-1 error rate, we carried out a series of differential compartment 
analysis between mouse ESC pseudo-replicates (2 replicates) at different resolutions 
(100Kb, 50Kb, 40Kb, 25Kb and 10Kb) and down-sampling rates (100%, 80%, 60%, 405, 
20% and 10% of 500 million sequencing depth). We measured the number of differential 
compartments when running two down-sampled replicates against each other at different 
resolutions and our results indicate that dcHiC is robust to type-1 error when comparing 
replicates at different resolutions and read depths (Supplementary Table S5). We also 
evaluated the type-1 error rate, when two mouse ESC pseudo-replicate Hi-C maps of 
different sequencing depth are compared by dcHiC. Across the 21 comparisons, we first 
see that the compartment calls are highly correlated within 100% to 40% (500M-200M 
reads) of read depth (Supplementary Table S6). The correlations with high read depth 
samples drop substantially for 20% (100M reads) and further for 10% (50M reads) 
sample. We noticed this occurred because compartment scores for some chromosomes 
started to not fully reflect the compartmentalization pattern at lower read depths. 
Removing the 5 chromosomes (chr 4, 5, 14, 17, X) with such issues, we see correlations 
at lower read depths improve, however not to the point that we highly concordant 
(correlation >0.9) compartment calls between two pseudo-replicates (Supplementary 
Table S7). While evaluating the false-positive calls, we first observed that correlations 
between compartment scores are closely related to the number of differential calls. When 
we utilized dcHiC to find differential compartments (i.e., false positive calls) between two 
replicates of different sequencing depth by down-sampling Hi-C maps at 100Kb 
resolution, we see no false positives up among samples with 100% to 60% down-
sampling (500M-300M reads) (Supplementary Table S8). We also do not obtain any 
false positives even for lower depth samples when they are compared against the sample 
with the same rate of down-sampling. However, a substantial number of false positive 
differential calls appear when 20% or 10% down-sampled samples are compared to 
higher depth samples (Supplementary Table S8).  Like compartmental correlations, here 
also when we filter out the 5 chromosomes with issues in compartment calls at low read 
depths, we see that the false positive rates dramatically improve for 40% and for 20% 
down-sampled samples (Supplementary Table S9). Based on these results, we believe 
compartment scores and differential compartment calls are robust when comparing Hi-C 
maps that are sufficiently sequenced (100M or more reads) and are within 2-3-fold read 
depth of each other. ” 
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Supplementary Table S5: Effect of resolution and sequencing depth on type-1 error rate. 
The table shows differential compartments identified by comparing two pseudo-replicates 
against each other using dcHiC on mouse ESC. The comparison is repeated at different 
sequencing depths (rows) and resolutions (columns). 

 
Supplementary Table S8: Effect of differential down-sampling (different down-sampling 
rates for each replicate) on the differential compartment detection by dcHiC between two 
mouse ESC pseudo-replicates.  

 

 
 

(2) The authors applied an outlier detection approach when performing differential compartment 
analysis, which appears somewhat ad hoc. A standard approach is to use parametric or non-
parametric ANOVA analysis, which is computationally fast, as well as statistically straightforward 
and extensively used. 

We thank the reviewer for raising this question and allowing us to clarify our reasoning. In the field 
of multivariate statistics, Mahalanobis distance is one of the most straightforward and common 
measures to detect outliers [1] and has been extensively used in other fields with success [2-13]. 
Outlier detection in multidimensional space requires scaling the contribution of individual variables 
to the distance value according to the variability of each observation [8, 14]. Mahalanobis distance 
uses a covariance matrix of variables to find the distance between data points and the center 
which works robustly on multivariate data. Indeed, we utilized an R function that implements 
Minimum Covariance Determinant (MCD) procedure that has been shown to improve multivariate 
outlier detection compared to basic Mahalanobis distance [7]. We now clarify this in the methods 
by adding the below text.  

“For calculation of the covariance matrix, we utilize covrob function of the R package 
robust, which implements Minimum Covariance Determinant (MCD) procedure that has 
been shown to improve multivariate outlier detection.” 

100Kb 50Kb 40Kb 25Kb 10Kb
100% 0 0 0 0 0
80% 0 0 0 0 0
60% 0 0 0 0 0
40% 0 0 0 0 0
20% 0 0 0 0 0
10% 0 0 0 2 6

ESC (Pseudo-replicate 1 vs 2)Down sampling rates
(100% = 500 million)

100% 80% 60% 40% 20% 10%
100% 0 0 0 0 247 827
80% 0 0 0 84 353 907
60% 0 0 0 124 348 1215
40% 0 84 124 0 335 1027
20% 247 353 348 335 0 737
10% 827 907 1215 1027 737 0

Differential 
compartments

ESC Pseudo-replicate 2

ESC 
Pseudo-replicate 1

Down sampling rates
(100% = 500 million)
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 (3) The authors should be applauded for attempting finer-resolution in at least one dataset. Have 
the authors applied their methods at higher-resolution to the other two datasets. How would the 
depth of Hi-C data affect the finest resolution recommended? 

We thank the reviewer for his/her comment. To be clear, dcHiC implements ‘bigstatsr’ package in 
R and uses Filebacked Big Matrices (FBM) via memory-mapping for instance matrix operations 
that includes time-efficient algorithm for the low-rank approximation of standard PCA calculation. 
This allows dcHiC to perform eigendecomposition and find compartment scores at finer resolution.  

We have indeed applied dcHiC to the other datasets at high resolution. For instance, apart from 
the ESC vs NPC pairwise differential compartment comparison, we carried out the 100Kb to 20Kb 
differential compartment call comparison within 10-way mouse hematopoietic Hi-C maps. At 20Kb 
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resolution and with the relatively low read depth for this data, it became challenging to get 
compartment signals correctly for a few chromosomes such as chromosome 1 in MEP, 
chromosome 2 in MPP and chromosome X in general. After excluding these chromosomes, we 
were left with 25,035 differential compartment bins (~25% of the total genome). Our 100Kb 
analysis of the same set of Hi-C maps led to a similar percentage ~24% (no chromosomes 
excluded) of the genome as part of differential compartments. To check if both analyses detected 
similar regions, we calculated the fraction of common differential regions between the 100Kb and 
20Kb dataset. We found around ~98% of the 100Kb differential compartments (4932 out of 5042, 
excluding chr1, 2 and X) and ~70% of the 20Kb differential compartments (17,635 out of 25,035) 
overlapped with each other. Since we start Gorkin et al. data analysis directly from 40kb 
compartment scores computed in the original paper (in order to have a fair comparison to the 
variable compartment regions reported by in the same paper), we did not perform a higher 
resolution analysis on this dataset. The sequencing depth of that dataset would have likely limited 
such analysis even if we reanalyzed the data from scratch.   

We have also performed an extensive analysis of compartment and differential compartment calls 
and added a new section and supplementary material as we have elaborated in our response to 
this reviewer’s Major comment #1 above. We hope that these results sufficiently demonstrate 
dcHiC’s robustness across different resolutions and ability to perform high-resolution analysis 
when the contact maps have sufficient depth. 

(4) Have the authors considered extending the approach to single cell Hi-C data? A recent study 
(PMID: 33484631) has suggested that compartment score can reflect 3D chromatin structure in 
single cells. Can dcHiC handle the sparse single Hi-C data? 

This was an excellent suggestion! We now added a whole new section with an accompanying 
main figure (Figure 8) and three supplementary figures (S12-14) that focuses on analysis of 
compartments from single-cell Hi-C data during post-natal mouse brain development (Tan et. al. 
2021). This analysis revealed dcHiC is able to call compartments and perform differential analysis 
from pseudo-bulk profiles of as low as 80 cells per condition as well as identify important known 
and novel gene regions with dynamic patterns of compartmentalization change during three 
developmental stages (6 timepoints) from two different brain regions. 

 

From DISCUSSION 

“Genomic compartment identification from single-cell Hi-C maps is still a major issue in 
this field due to sparsity of single-cell contact maps even at coarse resolution. A recent 
paper (Zhang et. al. 2021) demonstrated the challenges introduced by different technical 
and biological factors in reliably calling and comparing A/B compartments across single 
cells. Here, by studying a recent single-cell Hi-C (Dip-C) data characterizing post-natal 
dynamics of mouse brain development in two brain regions, we showed that dcHiC is able 
to call compartments and perform differential analysis from pseudo-bulk profiles of as low 
as 80 cells per condition. We observed a higher number of differential compartments in 
cortex region compared to hippocampus. The differential compartments were overlapping 
with cell-type specific marker genes and previously known variable genes identified 
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through single-cell transcriptomic analysis. The time series clustering of the differential 
compartments across three stages (‘Early’, ‘Mid’ and ‘Late’) of development helped us 
identify other important genes in differential compartments that were not captured in the 
original paper. Although we highlighted the use of dcHiC for time course analysis of 
single-cell data, the same can be applied to any pre-defined set of clusters of cells either 
with respect to their functional annotations (cell type or subset) or sample conditions”  

From RESULTS 

Differential compartment analysis of pseudo-bulk single cell Hi-C data from post-
natal mouse brain development  

The post-natal dynamics of mammalian brain development is still a fundamental question 
in developmental biology [27]. Although, gene expression dynamics has been studied in 
developing adult and embryonic brains [67-70], the dynamics of 3D genome organization 
in conjunction with transcriptional changes remain largely uncharacterized. Tan et. al. 
2021 [27] attempted to address the issue by integrating single-cell gene expression and 
single-cell Hi-C data from two mouse brain regions (Cortex and Hippocampus). They 
employed diploid chromatin conformation capture (Dip-C) method and generated over 3k 
single-cell Hi-C maps from cortex and hippocampus encompassing 6 different time points 
that comprehensively describe the dynamic 3D genome organization. This high-quality, 
time-course and single-cell resolution Hi-C data provided us with an opportunity to 
showcase the expansion of dcHiC’s utility in performing differential analysis on the 
pseudo-bulk single-cell Hi-C data. Tan et. al. 2021 comprehensively described neuronal 
sub-types from the single-cell 3D genome data and most of their analysis focused on 
comparisons among the sub-types. Here we performed differential compartmental 
analysis among the time points to demonstrate the utility of dcHiC in identifying dynamic 
changes in compartmentalization for both brain regions. To perform the differential 
analysis, we first categorized the 6 time points from each brain region into three groups, 
namely – Early (includes Day 1, 7), Mid (Day 28, 56) and Late (Day 309, 347) as shown 
in the figure Figure 8A. The two time points in each group were treated as replicates and 
pseudo-bulk Hi-C maps were analyzed at 250kb resolution. We then used dcHiC with 
default parameters to perform differential compartment analysis and reported 
compartmental changes below an FDR threshold of 10% (Figure 8B-C). Comparing the 
three groups (Early, Mid and Late), dcHiC found a total of ~140Mb of the genome (562 
Hi-C bins at 250Kb resolution) in cortex and ~53Mb of the genome (212 Hi-C bins) in 
hippocampus to be differential in their compartmentalization (Figure 8B-C). The higher 
number of differential compartments in cortex may be reflective of its sudden change in 
compositional structure in the “Mid” group (i.e., higher fraction of oligodendrocytes) 
previously identified by Tan et. al. 2021. Intersecting the differential compartments 
between the tissues revealed 89 Hi-C bins that are common as well as 473 Hi-C bins 
uniquely differential in cortex and 31 Hi-C bins uniquely differential in hippocampal tissue. 
The 562/473 bins in cortex overlapped with 2,973/2,566 genes while 212/31 bins in 
hippocampus encompassed 873/466 genes. A subset of the top cell-type specific marker 
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and variable genes ranked by PC1 loading identified in the previous study (Tan et. al., 
2021) such as Tshz2, Vip, Sst, Sox11, Tubb2b, Nrep, and Syt1 were also found to be part 
of dcHiC-identified dynamic changes (Supplementary Figure S12A-F). We also 
observed other important genes in differential compartments that are either specific to 
one region or are common (Supplementary Figure S12G-L). For example, we identified 
Grin2a and Nrg3 (Supplementary Figure S12) as part of differential compartments in 
both brain regions. Grin2a provides instructions for making a protein called GluN2A, 
which is a component of NMDA receptors. This protein is found in nerve cells of the brain 
region involved in speech and language processing [71]. Neuregulin 3 (encoded by Nrg3) 
is structurally related to neuregulin 1 (NRG1) [71], which plays a critical role in controlling 
the growth and differentiation of glial, epithelial and muscle cells [72]. The expression of 
Nrg3 is known to be highly restricted within developing and adult nervous system. Tissue-
specific differential compartments encompassing important genes included the region 
containing Chrm5, which encodes a muscarinic cholinergic receptor that binds 
acetylcholine and was found within a differential compartment in hippocampus but not in 
cortex (Supplementary Figure S12). On the other hand, Clstn2, which is predicted to 
bind calcium ion and help positive regulation of synapse assembly and synaptic 
transmission was observed in a differential compartment that is specific to cortex 
(Supplementary Figure S12).  

The time-course analysis of three time points (early, mid and late) also helped us identify 
significantly differential compartments falling into similar dynamic patterns (e.g., 
descending or ascending) for each brain region. The Figure 8D-E shows the descending 
(cluster 1) and ascending (cluster 2) differential compartments across early, mid and late 
group in cortex. The genes overlapping with cluster 1 (descending pattern) of Figure 8D 
showed enrichment in development and morphogenesis related GO terms, while 
differential compartments of cluster 2 (ascending pattern) in Figure 8E were enriched in 
terms like membrane potential and synaptic signaling related biological functions. We also 
observed two other cluster patterns for cortex that are worth mentioning (Supplementary 
Figure S13A-B). The first one corresponded to a peak in ‘Mid’ stage (cluster 3, 
Supplementary Figure S13A) and the second one corresponded to a dip (cluster 4, 
Supplementary Figure S13B). Cluster 3 genes showed an enrichment of non-specific 
functional terminologies while genes belonging to cluster 4 showed specific enrichment 
of terms related to nervous system (Supplementary Figure S13C-D). Tan et.al. 2021 
previously described a sudden change in compositional structure types where they 
observed a higher fraction of glial cells in the ‘Mid’ stage (Day 28, 56) within cortex. 
Interestingly, we found CD33, a gene that is known to be expressed in microglia [73], as 
part of cluster 3 (peak in ‘Mid’; Supplementary Figure S14A). The region containing 
Trex1, a gene with enriched expression in glial cells in human brain [74] also belonged to 
cluster 3 (Supplementary Figure S14A). Two example genes overlapping cluster 4 
regions were Gabra5 and Anks1b, both of which were specifically enriched for high 
expression in excitatory and inhibitory neurons [74] (Supplementary Figure S14B-D). 
Figure 8F-G shows the significantly differential compartments with descending or 
ascending patterns in hippocampus. Unlike cluster 1 of cortex, the genes within 
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differential compartments following a descending pattern in hippocampus are marginally 
enriched in Wnt signaling, cell surface and transmembrane receptor signaling pathways. 
The genes overlapping with cluster 2 (Figure 8G) in hippocampus, like those in cortex, 
are also enriched for biological functions such as membrane potentials and synaptic 
signaling terms.  

Example genes from differential compartments among different stages of post-
natal mouse brain development: 

Figure 8H-I shows a pair of differential compartments from each region that follows the 
descending and ascending pattern of score transition among three time points and are 
overlapping with interesting genes. We observed Sox11 (Figure 8H, left panel), a gene 
identified by Tan et. al. 2021 [27] as one of the top variable genes, as part of the cluster 
1 (Figure 8D) in cortex. In the early stages of cortex, Sox11 resides within an active 
compartment but with more differentiation the region overlapping with the gene 
undergoes a gradual AB transition. The right panel of Figure 8H shows another gene 
Csmd1 from cluster 2 in cortex. CUB and SUSHI multiple domains 1 (Csmd1) is known 
to be expressed in developing neurons [75] and plays critical role in learning and memory 
formation [76]. We found this gene as part of a specific differential compartment in cortex 
that gradually changes from B in early to A in late stages of development. The left panel 
in Figure 8I shows the differential compartment encompassing the Cntnap4 gene in 
hippocampus following cluster 1’s pattern shown in Figure 8F. Cntnap4 is part of the 
common set of regions that are differential in both brain regions. The right panel in Figure 
8I shows a hippocampus-specific differential compartment that overlaps Dennd1a. DENN 
domain containing 1A or Dennd1a is a protein coding gene known to be involved in 
vesicle-mediated transport pathways [77] and Rab regulation of trafficking [78]. Although 
highly expressed in neuronal as well as glial cells of the brain, the specific role of this 
gene in hippocampus remains to be investigated.  

Overall, these results showed that dcHiC addresses a need in the differential analysis of 
single-cell Hi-C data by first utilizing pseudo-bulk profiles from a low number of cells (80 
to 251) to characterize compartmentalization of each condition. dcHiC then systematically 
compares multiple conditions such as timepoints or clusters with the same approach we 
use for the bulk cell Hi-C data. Our analysis here from post-natal developing mouse brain 
offers an example scenario where the comparison of multiple conditions with replicates 
(three developmental stages) was essential to identify important known and novel genes 
and to characterize dynamic patterns shared across different regions.  
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Figure 8: Differential compartment analysis of pseudo-bulk single cell Hi-C data 
from post-natal mouse brain development. (A) Single-cell Hi-C summary and our 
categorization of 6 time points from each mouse brain region into three groups, namely – 
Early (includes Day 1, 7), Mid (Day 28, 56) and Late (Day 309, 347). (B-C) The transition 
of differential compartments in Early, Mid and Late groups within cortex and hippocampal 
region. (D-E) Time-series clustering of differential compartments in cortex and the 
functional enrichment of genes overlapping with these compartments. (F-G) Time-series 
clustering of differential compartments in hippocampus and the functional enrichment of 
genes overlapping with the compartments. (H-I) Example genes overlapping differential 
compartments from cortex and hippocampus.    

Minor comments: 

(1) Under the “Computation and quantile normalization of compartment scores for comparison” 
sub-section of the Methods section, the authors said input to SVD is “distance-normalized” 
matrices: how were the matrices distance-normalized? 
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We have now added text to clarify this. It is the commonly used method of dividing the observed 
contact count for each locus pair (pixel or entry) by the average contact count of all pairs (including 
pairs with zero count) with the same genomic distance across that chromosome.  

“observed/expected contact count for each genomic distance bin” 

 

(2) What is the computational costs of dcHiC? How does it scale with respect to input data depth, 
number of cell types compared etc? 

We have now done an extensive analysis on this for dcHiC and in comparison, to other methods 
and incorporated the results in Figure 2 and in Supplementary Tables S1-S4. We added a new 
results section that outline our findings: 

“Performance evaluation of compartment calling by dcHiC and other approaches 

Next, we assessed the resource utilization of dcHiC against HOMER and CscoreTool for 
compartment calling, a prerequisite to differential compartment analysis as well as the 
major bottleneck for high-resolution analysis in general. We evaluated the time and 
memory utilization of these three methods using two mouse ESC pseudo-replicates 
(~500M reads each), from which we generated contact maps at 5 different resolutions 
and 6 different sequencing depths (30 combinations; Supplemental Information, Table 
S1-4). In Figure 2I-J, we plotted genome-wide runtimes at 100% sampling rate for 5 
different resolutions and for 50kb resolution at 6 different down-sampling rates showing 
that dcHiC runs 4-13x faster than CscoreTool and 22-33x faster than HOMER across 
these conditions. Across all read depths and all resolutions we tested, dcHiC ran 1.3-15x 
faster than CscoreTool and 10-52x faster than HOMER genome-wide (Supplementary 
Tables S1-2). Figure 2J also demonstrated that dcHiC scales better with increasing 
sequencing depth. With respect to memory use, at full read depth and 100kb resolution, 
CscoreTool had a lower peak memory (~0.24Gb) usage than dcHiC (~0.34Gb) and 
HOMER (~1.2Gb). For resolutions of 50Kb, 40Kb and 25Kb Hi-C data at 100% 
sequencing depth, all the three tools were within 30% of each other (~1.13Gb, ~1.25Gb 
and ~1.3Gb for CscoreTool, dcHiC and HOMER, respectively) with CscoreTool utilizing 
the least amount memory for computing the compartment score at every resolution 
(Supplementary Tables S3-4). For these time and memory profiling, we ran all tests 
genome-wide, and used one CPU per chromosome (Intel Xeon Gold 6252 CPU @ 
2.10GHz). Running HOMER genome-wide at 10Kb resolution did not finish after 100 
hours of compute time for ESC data.” 

 

(3) How does the method perform when the data depth differs substantially? Conceptually, 
quantile normalization handles the issue but can the authors show some results with differential 
depths across the tested cell types? 

We have now extensively characterized the robustness of our method with respect to read depth 
and resolution. We performed a series of new analyses using a range of resolutions and 
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sequencing depths, which led do the addition of a new section and Supplementary Figures S4 
and S5 as well as Supplementary Tables S5-S9. These results can be summarized as: 

• We observe that the compartment calls (before differential analysis) are highly concordant 
within 100% to 40% (500M-200M reads) down-sampling rate (R>0.9; Supplementary 
Table S6).  

• We see that dcHiC is robust to type-1 error when comparing replicates at different 
resolutions and read depths (Supplementary Table S5). 

• We see no false positive differential compartment calls among samples with 100% to 60% 
down-sampling (500M-300M reads), whereas false positive calls appear when 20% or 
10% down-sampled replicates are introduced providing us guidelines for proper use of 
dcHiC (Supplementary Table S8). 

• We found that there is a high recall of differential compartments (>80%) called from full 
sequencing depth (“ground truth”) for down-sampling rates of 40% or more 
(Supplementary Figure S4) with similar trends for other resolutions including 
50kb, 40kb and 25kb (Supplementary Figure S5). 

• These analyses allowed us to provide guidelines about the sequencing depth and other 
requirements for proper utilization of dcHiC. 

• Overall, dcHiC results are quite robust for most relevant settings.  

“Robustness of dcHiC differential compartment calls 

Next, we sought to see how well the pairwise differential compartment calls between 
different Hi-C profiles are preserved through down-sampling and at different resolutions. 
We used the 4 ESC biological replicates (230M-1.2B reads) and the 3 NPC biological 
replicates (720M-1.5B reads) at their full sequencing depth (100%) and then down-
sampled each replicate separately to 5 different read depths: 80%, 60%, 40%, 20%, and 
10%. To profile the effects of down-sampling, we first compared ESC and NPC replicates 
at each read depth using 100Kb resolution contact maps. We found that there is a high 
recall of differential compartments (>80%) called from full sequencing depth (“ground 
truth”) for down-sampling rates of 40% or more (Supplementary Figure S4). In order to 
also assess the role of resolution in recall of differential compartments, we repeated the 
same down-sampling experiments for 4 other resolutions: 50Kb, 40Kb, 25Kb, and 10Kb. 
We observed that except from 10Kb resolution, all other cases were similar to 100Kb 
where 40% down-sampling still led to a high recall (>75%), whereas for 10Kb resolution, 
the results at 60% down-sampling had a recall of 80% that dropped to 61% for 40% down-
sampling (Supplementary Figure S5A-D). Given that the sequencing depth for each 
replicate varied between 200M to 1.5B reads, we believe that with replicates of at least 
80-100M reads, differential compartment analysis at 25Kb or lower resolution can be 
carried out with high/acceptable recall of all compartmentalization changes that can be 
detected with deeper sequencing. Later in this section we analyze the role of sequencing 
depth and resolution on precision of differential compartment detection. ” 
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Supplementary Figure S4: Effect of sequencing 
depth on pairwise differential compartment calls 
(mouse ESC vs NPC) by dcHiC. The panel shows the 
percentages of differential compartments detected at 
100% sequencing depth that are recovered after 
down-sampling the biological replicates (4 for ESC 
and 3 for NPC) at different levels (80% to 10%) for 
100kb resolution analysis.   

 

Supplementary Table S5: Effect of resolution and sequencing depth on type-1 error rate. 
The table shows differential compartments identified by comparing two pseudo-replicates 
against each other using dcHiC on mouse ESC. The comparison is repeated at different 
sequencing depths (rows) and resolutions (columns). 

 
 

Supplementary Table S8: Effect of differential down-sampling (different down-sampling 
rates for each replicate) on the differential compartment detection by dcHiC between two 
mouse ESC pseudo-replicates.  

 
 

 

 

 

 

100Kb 50Kb 40Kb 25Kb 10Kb
100% 0 0 0 0 0
80% 0 0 0 0 0
60% 0 0 0 0 0
40% 0 0 0 0 0
20% 0 0 0 0 0
10% 0 0 0 2 6

ESC (Pseudo-replicate 1 vs 2)Down sampling rates
(100% = 500 million)

100% 80% 60% 40% 20% 10%
100% 0 0 0 0 247 827
80% 0 0 0 84 353 907
60% 0 0 0 124 348 1215
40% 0 84 124 0 335 1027
20% 247 353 348 335 0 737
10% 827 907 1215 1027 737 0

Differential 
compartments

ESC Pseudo-replicate 2

ESC 
Pseudo-replicate 1

Down sampling rates
(100% = 500 million)
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Reviewer #3 (Remarks to the Author): 

In this study, Chakraborty and colleagues introduce a new computational method to determine 
differential chromatin compartmentalization across 2 or more samples. The method is briefly 
introduced in the main manuscript, and described in more detailed in the Methods section, and 
then ample space is dedicated to demonstrate the power of this approach in distinct biological 
contexts comparing Hi-C datasets ranging from 2 to 20 in number. In addition, the authors 
implement and perform multiple downstream analyses to gain information from the differential 
compartment regions detected by dcHiC. Overall, this is an interesting approach addressing an 
under-appreciated and under-studied problem (it’s amazing how much has been done to detect 
and compare TADs and how little to do so for chromatin compartments). 

We thank the reviewer for their constructive evaluation of our work and agree about the 
importance of developing tools and benchmarks focused on the analysis of chromatin 
compartments. Below we would like to highlight the most significant changes in this revision for 
your reference: 

1. As suggested by all reviewers, we have now extensively studied the impact of sequencing 
depth and resolution on the compartment calls and differential compartment calls from dcHiC 
including a false positive rate analysis using replicates and recovery analysis using 
downsampling. These analyses demonstrated that our results are quite robust for most relevant 
settings and allowed us to provide guidelines about the sequencing depth and other requirements 
for proper utilization of dcHiC.  

2. We now also applied dcHiC on single-cell Hi-C data demonstrating its utility in comparing 
different clusters and/or time points to study dynamic changes in compartmentalization from 
pseudo-bulk Hi-C profiles from as low as 80 single cells. Our analysis of the Tan et al. (Cell, 2021) 
single-cell Hi-C data from two regions of post-natal developing mouse brain (each with 6 time 
points) allowed us to reveal important genes related to synapse assembly and adult brain 
development that have dynamic and tissue-specific compartmentalization changes, which were 
not highlighted by the original publication. 

3. As requested by multiple reviewers, we have now substantially expanded our comparative 
analysis to HOMER, Gorkin et al and added Cscore into these comparisons. We have profiled 
runtimes and memory utilization of each approach for compartment detection in multiple settings 
and resolution, highlighting the clear advantage of dcHiC for high-resolution/finer-scale 
compartment analysis.  

4. We also extensively compared the overlap of differential compartments identified by 
different approaches with changes/variation in orthogonal measurements from matched samples 
including gene expression, histone modifications and lamin B1 signal. These results confirmed 
and strengthened our previous findings that dcHiC differential compartments are consistently 
more enriched in variation of other biological signals.  

5. To address confusions from multiple reviewers, we have added a detailed discussion of 
HOMER and dcHiC in terms of their specific implementation of compartment calling and the 
source of dcHiC’s performance improvement including the use of more efficient data structure.  
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6. We have expanded our documentation in Wiki page of our Github repository (https://ay-
lab.github.io/dcHiC/) to include single-cell analysis of Tan et. al and provided two demos with 
accompanying test data to show how dcHiC can be used for bulk and single-cell Hi-C data 
analysis: https://github.com/ay-lab/dcHiC/demo  

7. We have also added additional analyses showing: i) the overlap of dcHiC results with 
subcompartment calls and their differences, ii) consistency of dcHiC calls across different 
resolutions including high-resolution such as 10kb and 20kb maps when possible, iii) the dynamic 
changes through time series analysis of specific lineages in the mouse hematopoietic lineage. 

  

Given the main contribution of this work is the development of a tool, I would have appreciated 
more insight and testing on the method itself, while the detailed description of the results from the 
various comparisons could sometime be reduced, especially when simply confirming previous 
findings.  

We appreciate the comment and completely agree on the need for cutting down detailed 
descriptions. However, as you will see, we had to actually extensively expand the results section 
in order to address the detailed comments from each reviewer. We believe it may be critical for 
the reviewers to have access to all this information at this stage for making their final decision. 
However, once/if accepted, we will move the detailed results descriptions into the supplementary 
information in accordance with editorial office’s guidelines and requests. 

 

Below I highlight more detailed suggestions: 

1) A major concern of using PC values as compartment scores is data resolution (total number of 
Hi-C contacts). The authors employ a quantile normalization to make these values comparable 
across different experiments (which is great), but they should still test to what extent differential 
compartment regions can be detected by simply changing the resolution of the same experiment. 
To this extent, the authors should test the robustness of their method to data resolution in different 
ways such as: 

We thank the reviewer for this suggestion. In our previous submission, we already had a 
comparison between 100kb and 10kb resolution calls for the ESC-NPC comparison. We have 
now performed a series of new analyses using a range of resolutions and sequencing depths, 
which led do the addition of a new section and Supplementary Figures S4 and S5 as well as 
Supplementary Tables S5-S9.  

These results can be summarized as: 

• We observe that the compartment calls (before differential analysis) are highly concordant 
within 100% to 40% (500M-200M reads) down-sampling rate (R>0.9; Supplementary 
Table S6).  

• We see that dcHiC is robust to type-1 error when comparing replicates at different 
resolutions and read depths (Supplementary Table S5). 
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• We see no false positive differential compartment calls among samples with 100% to 60% 
down-sampling (500M-300M reads), whereas false positive calls appear when 20% or 
10% down-sampled replicates are introduced providing us guidelines for proper use of 
dcHiC (Supplementary Table S8). 

• We found that there is a high recall of differential compartments (>80%) called from full 
sequencing depth (“ground truth”) for down-sampling rates of 40% or more 
(Supplementary Figure S4) with similar trends for other resolutions including 
50kb, 40kb and 25kb (Supplementary Figure S5). 

• These analyses allowed us to provide guidelines about the sequencing depth and other 
requirements for proper utilization of dcHiC. 

• Overall, dcHiC results are quite robust for most relevant settings.  

“Robustness of dcHiC differential compartment calls 

Next, we sought to see how well the pairwise differential compartment calls between 
different Hi-C profiles are preserved through down-sampling and at different resolutions. 
We used the 4 ESC biological replicates (230M-1.2B reads) and the 3 NPC biological 
replicates (720M-1.5B reads) at their full sequencing depth (100%) and then down-
sampled each replicate separately to 5 different read depths: 80%, 60%, 40%, 20%, and 
10%. To profile the effects of down-sampling, we first compared ESC and NPC replicates 
at each read depth using 100Kb resolution contact maps. We found that there is a high 
recall of differential compartments (>80%) called from full sequencing depth (“ground 
truth”) for down-sampling rates of 40% or more (Supplementary Figure S4). In order to 
also assess the role of resolution in recall of differential compartments, we repeated the 
same down-sampling experiments for 4 other resolutions: 50Kb, 40Kb, 25Kb, and 10Kb. 
We observed that except from 10Kb resolution, all other cases were similar to 100Kb 
where 40% down-sampling still led to a high recall (>75%), whereas for 10Kb resolution, 
the results at 60% down-sampling had a recall of 80% that dropped to 61% for 40% down-
sampling (Supplementary Figure S5A-D). Given that the sequencing depth for each 
replicate varied between 200M to 1.5B reads, we believe that with replicates of at least 
80-100M reads, differential compartment analysis at 25Kb or lower resolution can be 
carried out with high/acceptable recall of all compartmentalization changes that can be 
detected with deeper sequencing. Later in this section we analyze the role of sequencing 
depth and resolution on precision of differential compartment detection.  

… 

To further assess the type-1 error rate, we carried out a series of differential compartment 
analysis between mouse ESC pseudo-replicates (2 replicates) at different resolutions 
(100Kb, 50Kb, 40Kb, 25Kb and 10Kb) and down-sampling rates (100%, 80%, 60%, 405, 
20% and 10% of 500 million sequencing depth). We measured the number of differential 
compartments when running two down-sampled replicates against each other at different 
resolutions and our results indicate that dcHiC is robust to type-1 error when comparing 
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replicates at different resolutions and read depths (Supplementary Table S5). We also 
evaluated the type-1 error rate, when two mouse ESC pseudo-replicate Hi-C maps of 
different sequencing depth are compared by dcHiC. Across the 21 comparisons, we first 
see that the compartment calls are highly correlated within 100% to 40% (500M-200M 
reads) of read depth (Supplementary Table S6). The correlations with high read depth 
samples drop substantially for 20% (100M reads) and further for 10% (50M reads) 
sample. We noticed this occurred because compartment scores for some chromosomes 
started to not fully reflect the compartmentalization pattern at lower read depths. 
Removing the 5 chromosomes (chr 4, 5, 14, 17, X) with such issues, we see correlations 
at lower read depths improve, however not to the point that we highly concordant 
(correlation >0.9) compartment calls between two pseudo-replicates (Supplementary 
Table S7). While evaluating the false-positive calls, we first observed that correlations 
between compartment scores are closely related to the number of differential calls. When 
we utilized dcHiC to find differential compartments (i.e., false positive calls) between two 
replicates of different sequencing depth by down-sampling Hi-C maps at 100Kb 
resolution, we see no false positives up among samples with 100% to 60% down-
sampling (500M-300M reads) (Supplementary Table S8). We also do not obtain any 
false positives even for lower depth samples when they are compared against the sample 
with the same rate of down-sampling. However, a substantial number of false positive 
differential calls appear when 20% or 10% down-sampled samples are compared to 
higher depth samples (Supplementary Table S8).  Like compartmental correlations, here 
also when we filter out the 5 chromosomes with issues in compartment calls at low read 
depths, we see that the false positive rates dramatically improve for 40% and for 20% 
down-sampled samples (Supplementary Table S9). Based on these results, we believe 
compartment scores and differential compartment calls are robust when comparing Hi-C 
maps that are sufficiently sequenced (100M or more reads) and are within 2-3-fold read 
depth of each other. “ 

Supplementary Table S5: Effect of resolution and sequencing depth on type-1 error rate. 
The table shows differential compartments identified by comparing two pseudo-replicates 
against each other using dcHiC on mouse ESC. The comparison is repeated at different 
sequencing depths (rows) and resolutions (columns). 

 
 

 

100Kb 50Kb 40Kb 25Kb 10Kb
100% 0 0 0 0 0
80% 0 0 0 0 0
60% 0 0 0 0 0
40% 0 0 0 0 0
20% 0 0 0 0 0
10% 0 0 0 2 6

ESC (Pseudo-replicate 1 vs 2)Down sampling rates
(100% = 500 million)



 

38 
 

 

 

2A) In the first part of their algorithm, the authors present a new/fast approach to detect 
compartments (A and B) and compare their strategy to the more standard approach based on 
PCA as implemented in HOMER. Here I have a couple of questions: 

- if I understand correctly the main difference between the two is that dcHiC employs SVD, while 
HOMER standard PCA, is that the only difference? Can the author provide a few more details on 
the two approaches? 

(Also, how does HOMER perform differential compartment analysis? Why does it return such a 
larger number of hits? 

We would like to address this concern, one shared by multiple reviewers, by clarifying dcHiC’s 
precise compartment calling method. In R, the standard way to compute eigenvalues is the 
eigen() or svd() function. However, when the matrix becomes large, these functions can be very 
time-consuming: the complexity to calculate all eigenvalues of an ‘n’ by ‘n’ matrix is O(n^3). While 
in real applications including compartment analysis, we usually only need to compute a few 
eigenvectors, for example to visualize high dimensional data using PCA. The same thing happens 
in Singular Value Decomposition (SVD). It is often the case that only a Partial SVD or Truncated 
SVD is needed, and moreover the matrix is usually stored in sparse format. In the background, 
both our method and other popular programs like HOMER uses the eigendecomposition of the 
correlation matrices to find the principal components. HOMER in particular uses the default 'eigen' 
function of R to perform the PCA. Due to its inefficient handling of large matrices, however, the 
principal component calculation of Hi-C maps at higher resolution becomes impractical to run with 
eigen function. dcHiC implements the ‘bigstatsr’ package in R and uses Filebacked Big Matrices 
(FBM) via memory-mapping. This allows, for instance, matrix operations that includes memory 
and time-efficient low-rank approximation of standard PCA calculation based on the algorithm in 
C++ spectra library. Given an ‘n’ by ‘n’ large matrix A, the ‘big_randomSVD’ from ‘bigstatr’ 
package can calculate a specified number of eigenvectors of A. Users can specify the selection 
criterion by an argument which allows computing only the k largest eigenvalues and their 
corresponding eigenvectors.  

For HOMER, after calling the principal compartments on the Hi-C maps using the ‘runPCA.pl’ 
function, the pairwise differential compartment analysis involves two default steps - the first step 
is to annotate the compartment bedGraph file using ‘annotatePeaks.pl’ function followed by 
quantifying the differential features using ‘getDiffExpression.pl’ function as described under the 
‘Quick reference for PCA analysis’ page. By default, annotatePeaks.pl uses the genomics 
positions to determine the closest transcription start sites (TSS) of that genome. To annotate the 
location of a given peak (or compartment score) in terms of important genomic features, 
annotatePeaks.pl calls a separate program (assignGenomeAnnotation) to efficiently assign peaks 
to one of millions of possible annotations genome wide. Once the assignment is complete, the 
analysis of differential regulation in handled by the ‘getDiffExpression.pl’ function. The 
getDiffExpression.pl program is essentially a wrapper for R/Bioconductor/limma/EdgeR/DESeq2 
to make running those programs easy using data generated by other HOMER programs. For 
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differential principal component analysis HOMER suggests to use ‘limma’ package. In the 
background, HOMER first implements ‘lmFit’ i.e. fits multiple linear models on the design matrix 
by generalized least squares. The coefficients of the fitted models describe the differences 
between testing conditions.  Given a linear model fit from ‘lmFit’ function, HOMER then 
implements ‘eBayes’ function from the same package to compute the moderated t-statistics and 
to rank annotated regions in order of evidence for differentiability. By default, limma uses 
moderated t-statistics to estimate significance in microarray experiments. The moderated t-
statistic (t) is the ratio of the M-value (Difference in log2 signal intensity between two channels) to 
its standard error. This has the same interpretation as an ordinary t-statistic except that the 
standard errors have been moderated across genes, effectively borrowing information from the 
ensemble of genes to aid with inference about each individual gene. Limma uses this Empirical 
Bayes method to moderate the sample variances, which are mean squared deviations across the 
same region among the replicates.  In summary, the moderated t-test is a t-test using the square 
root of the moderated variance as the standard deviation instead of the sample variance which 
allows limma to detect a more differential genes compared to others available methods. We 
believe the approach that has shown to work well for microarray probes leads to a higher number 
of differential compartment calls of Hi-C maps especially at lower-resolution like 100Kb resolution.    

One other popular method for compartment calling is CscoreTool, an approach that completely 
avoids the canonical PCA and instead uses a sliding genomic window that predicts whether a 
given region is A or B as a log-likelihood function of the number of interaction counts in the region. 
As such, dcHiC and HOMER are based on the same method (with different implementations), 
while CscoreTool is a different approach for compartment detection. We have now done the 
comparison and incorporated the results in Figure 2. In the revised Figure 2, we show correlation 
plots of all three methods against each other and Lamin B1 data. As expected, CscoreTool 
performs comparably with dcHiC and HOMER in compartment detection  

 

2B) while the correlations shown in Figure 1A and 1D are strong, since compartments are called 
based on the sign of the PC, an additional (more proper) comparison would have been to show 
the fraction of bins that have different A/B assignments with the two approaches. 

Indeed in both comparisons in Figure 1A and 1D it appears that there is a subset of bins in the 
top-left quadrant that would be called A by dcHiC and B by HOMER. Of course I expect 
differences between the tools, 100% consistency would be unrealistic, but it is curious that while 
some A compartment regions in dcHiC are called B by HOMER (top-left quadrant), the vice versa 
almost never occur (bottom-right quadrant) suggesting a systematic shift of scores. Can the 
authors quantify the fraction of bins where discordant calls occur? Do they have an intuition on 
why discordant calls are almost exclusively in one direction? 

We thank the review for raising this point. Figure 3F in the previous (and new) version of the 
manuscript showed the overlap between dcHiC and HOMER pairwise differential calls. We have 
now expanded characterization of the differences between two methods by performing an 
analysis of inconsistent compartment calls (A vs B) between dcHiC and HOMER.  
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“Next, we further analyzed the 4-7% of the genome that is labeled in opposite 
compartments by dcHiC in comparison to HOMER for ESC and NPC (Supplementary 
Figure S1A-B). Overall, dcHiC-B but HOMER-A regions (~1% for ESC and NPC) showed 
positive lamin B1 signal and lower gene expression levels compared to dcHiC-A but 
HOMER-B regions    (Supplementary Figure S1C-D). The latter set (3% for ESC and 
6% for NPC) had a mix of regions with positive and negative lamin B1 association as well 
as gene expression values that are lower than constitutive A but higher than constitutive 
B compartment regions (compare to Figure 3) suggesting a weak compartmentalization 

for these regions into either A 
or B compartment.” 

Supplementary Figure S1: 
Inconsistent A/B compartment 
assignments between dcHiC 
and HOMER. (A-B) Shows the 
number (top) and fraction 
(bottom) of consistent and 
inconsistent A/B assignments 
by dcHiC and HOMER in 
mouse ESC and NPC Hi-C 
maps. (C) Shows the Lamin B1 
signal of inconsistently labelled 
regions with dcHiC-B but 
HOMER-A regions showing 
lamin B1 association 
supporting their 

heterochromatin (or B) assignment. (D) Shows the expression distribution of genes 
overlapping with the inconsistently labelled regions by dcHiC and HOMER.  

 

3) Along the same lines of the previous comment, the authors did not compare their 
compartment calls with those of other approaches, especially when these allow to call 
subcompartments (see PMID: 25497547, PMID: 31699985, PMID: 33972523). Besides the 
comparisons of A and B compartment calls made by these approaches, it would interesting to 
combine subcompartments inferred by them with dcHiC results to have a more granular 
analysis of significant compartment differences: do they at least involve subcompartment flips? 
are regions in different subcompartment equally likely to change or certain subcompartments 
are more "flexible"? (E.g. in PMID: 33972523 the authors talk about subcompartments enriched 
for differentiation genes, the regions of frequently change compartments across cell lines) 

We have now done an extensive comparison of dcHiC results and subcompartment flips using 
Calder subcompartment calls. This led to addition of a new section and a supplementary figure 
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(Figure S7). Our conclusion was that although subcompartment analysis is needed to 
capture the multistate genomic activity across cell lines, and algorithms such as Calder 
provide a useful approach to decipher the underlying epigenetic and transcriptional 
heterogeneity they are likely not suitable for the task of de novo detection of 
compartmentalization changes (i.e., as any change that involves a subcompartment label 
flip) across samples due to a large number of transitions (70-80%) involving sub-
compartment types that are very similar (distance of 1 or 2), at least in the case of ESC 
vs NPC. 

“Differential compartments are associated with sub-compartment transitions during ESC 
to NPC lineage differentiation  

Recent studies have shown that beyond open and closed chromatin, genome activity 
encompasses multiple states of compartmentalization which can be captured via a more 
refined sub-compartment analysis [14, 15, 47]. Therefore, we hypothesized that 
differential compartments identified by dcHiC, whether they involve compartment flips or 
not, should also be associated with changes in sub-compartments between conditions. 
To compare the changes in sub-compartments with differential compartments, we 
mapped the dcHiC differential calls on the ‘Calder’ [47] derived sub-compartments within 
mouse ESC and NPC cell lines. The Calder algorithm infers a complete hierarchy of 
compartment domains using intrachromosomal interactions and classifies each A/B 
compartment into 4 sub-compartments each (8 in total; A/B.1.1, A/B.1.2, A/B.2.1, A/B.2.2) 
adopting a more nuanced representation of the two primary compartment classes. We 
applied Calder on ESC and NPC Hi-C maps separately and retrieved a total of 7,967 
100Kb bins (~800Mb) with sub-compartment assignments for both ESC and NPC. For 
these bins, we then assessed the overlap of differential calls from dcHiC with the 
differences in sub-compartment labels. Out of 1,981 dcHiC bins, for 1,820 we had Calder 
labels on both cell types and among those 97.6% (1777 bins) overlapped with differential 
sub-compartment labels. For the remaining 6,147 bins with Calder labels that do not 
overlap with dcHiC calls, still a high but smaller percentage (74.8%) corresponded to 
differences in sub-compartment labels. Supplementary Figure S7A-B shows the total 
number of differential compartment transitions, grouped based on their sub-compartment 
classes within ESC and NPC lineages. These results highlight that nearly all dcHiC 
differential compartments have underlying changes in sub-compartment assignments 
consistent with our initial hypothesis. In terms of being able to do a differential analysis 
directly from sub-compartments, however, the large percentage (~80% or 6,377 out of 
7,967 100kb bins) of sub-compartment transitions/flips suggest that this approach may 
lead to low specificity in detecting important differences and would need to be coupled 
with additional filters and/or supplemented by further statistical assessments.   

To better understand the type of sub-compartment flips that are overrepresented in dcHiC 
calls, we compared the transition probabilities among sub-compartment labels (ESC vs 
NPC) obtained from dcHiC differential calls versus non-differential regions 
(Supplementary Figure S7C-D).  The fold-change values show that dcHiC differential 
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calls are significantly enriched for sub-compartment transitions with a distance of 3 or 
more in the sub-compartment hierarchy (e.g., A.1.1 to A.2.2 (distance of 3) or A.1.1 to 
B.1.1 (distance of 4)) supporting the strong compartmentalization change of these bins 
(Supplementary Figure S7C-D). We observed highly enriched transitions from ESC-A 
subcompartments to strong NPC-B subcompartments (B.2.1 and B.2.2) that 
corresponded to substantial reduction in the transcriptional activity of overlapping genes 
going from ESC to NPC (Supplementary Figure S7E). An example of such sub-
compartment transition was the 145-148Mb region in chromosome 4 encompassing 71 
unique genes (Supplementary Figure S7F). This locus harbored genes with known 
functions including pluripotency (Rex2) and migration and invasion inhibition (Miip) [48].  

Although the broad classification of A and B compartments is likely insufficient to capture 
the multistate genomic activity across cell lines, our sub-compartment analysis suggested 
that differential analysis using compartment scores is able to effectively capture changes 
involving sub-compartments with biological significance. Sub-compartment inferring 
algorithms such as Calder [47] provide a useful approach to decipher the underlying 
epigenetic and transcriptional heterogeneity within tissue types, differentiation stages and 
other conditions but are not directly applicable for the task of de novo detection of 
compartmentalization changes across samples due to a large number of transitions 
involving sub-compartment types that are very similar (distance of 1 or 2).  ” 
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Supplementary Figure S7: Differential compartments are associated with sub-
compartment transitions during ESC to NPC lineage differentiation. (A-B) shows the total 
number of differential compartment transitions, grouped based on their sub-compartment 
classes within ESC and NPC lineages. (C-D) Shows the background normalized 
transitions, or the fold-change values obtained from differential sub-compartment 
frequencies divided by non-differential sub-compartment changes. (E) The sub-
compartment flipping correspond to changes in genomic activity. The panel shows a 
significant alteration in the gene expression pattern when ESC-A.2.1 flips to NPC-B.2.2 
sub-compartment. (F) Shows one of such flips in chromosome 4 (145-148Mb region) 
encompassing 71 unique genes. The average expression of these genes in ESC is 
around 20 TPM and ~0.4 TPM in NPC. 
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4A) To evaluate the results obtained by dcHiC, the authors performed several enrichment 
analyses (epigenetic features, gene expression, gene ontology etc.) While these are welcome, it 
would be great to have a better feeling of how frequently a significant compartment change is 
supported by orthogonal evidence. How many compartment changes are indeed associated with 
differentially expressed genes (and vice versa)? How many are associated with epigenetic 
changes (the authors could check if ChIP-seq data for histone modifications is available)? 

We acknowledge that the concern raised by the reviewer is valid and we have performed 
additional analyses in this revision to address this issue. In addition to Supplementary Figure 1 
that was discussed above for ESC – NPC comparison, we also added  Supplementary Figures 
S2 and S3 with gene expression and histone modification changes in comparison to dcHiC and 
HOMER calls as well as Supplementary Figures S10 and S11 for the discussion of variable 
histone modification regions for the Gorkin et al. data. Both analyses suggest higher enrichment 
of differences in biological signals for dcHiC compared to other methods.  

a. Further analysis of differences in differential compartment calls from dcHiC and 
HOMER: 

“To compare the calls made by the two different methods, we plotted the absolute 
differences in lamin B1 signal, replication timing and log2 gene expression values of all 
the reported differential compartments (Figure 3G) or method-specific differential 
compartments (Figure 3H) for each method. These results show that dcHiC differential 
compartments are significantly (unpaired t-test p-values < 0.05) enriched for regions with 
higher ESC and NPC differentials for lamin B1 association and replication timing signals 
although both methods captured regions with signal differences in all three measures. 
We also performed differential expression analysis between ESCs and NPCs to map the 
differentially expressed (DE) genes (DEseq2 [41], FDR<0.05, fold change>4) on the 
differential compartments. We observed that dcHiC differential compartment bins were 
enriched in the number of DE genes (Figure 3I) as well as the fold change (log2) and 
significance (DESeq2) of the difference for those DE genes (Supplementary Figure 
S2A-B). Further, we also looked at the average number of histone modification peak 
(MACS2 p-value < 1e-5) differences between ESC and NPC per 100Kb for the regions 
from dcHiC and HOMER’s differential calls (Supplementary Figure S3). For all three 
different histone marks (H3K4me1, H3K4me3, H3K27ac), we observed a higher number 
of peak differences per 100Kb for dcHiC compared to HOMER. ” 
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Supplementary Figure S3: Average difference in absolute number of histone peaks 
(MACS2 p-value < 1e-5) per 100Kb of differential bins within dcHiC and HOMER 
differential compartments. (A) Shows the absolute difference of average number 
H3K27ac peaks between ESC and NPC per 100Kb of dcHiC and HOMER differential 
compartments. The result shows that there is more difference in H3K27ac peaks per 
100Kb of differential compartments identified by dcHiC. (B-C) The result shows that are 
more differences in both H3K4me3 and H3K4me1 peaks per 100Kb of differential 
compartments called by dcHiC compared to HOMER.       

 

b. Analysis of the overlap between dcHiC and Gorkin et al differential compartment calls 
and variable histone modification regions previously identified across different LCLs: 

“We then asked whether the identified differential compartment regions were enriched in 
regions with variability in histone marks (H3K27ac, H3K4me3, H3K4me1 and H3K27me3) 
across different individuals. The variable histone modification regions/peaks identified for 
human LCLs by Kasowski et. al. 2013 [65] were mapped on differential compartments 
identified from dcHiC and by Gorkin et. al. [66]. Using the non-differential compartment 
regions as background for each method, we observed nearly no enrichment for regions 
called differential only by Gorkin et. al. (Supplementary Figure S10) while calls from 
dcHiC showed 26-45% of enrichment. The proportion of differential calls that overlapped 
with at least one variable region for each histone mark was also substantially higher for 
regions from dcHiC in comparison to Gorkin et. al. specific regions (Supplementary 
Figure S11A-D).” 
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Supplementary Figure S10: 
Enrichment of differential 
compartments from either dcHiC or 
Gorkin et. al. paper that overlap at 
least one variable histone mark 
region/peak identified by Kasowski 
et. al (2013). The enrichment is 
computed with respect to all non-
differential compartment regions 
for each method. We assess the 
enrichment for all calls from dcHiC 
in comparison to calls that are 
specific to Gorkin et. al.  

Supplementary 
Figure S11: The 
number of differential 
compartments from 
each method that 
overlap with a 
variable histone 
mark region (similar 
to Figure S10) for (A) 
H3K27ac, (B) 
H3K4me3, (C) 
H3K4me1, and (D) 
H3K27me3.  

 

4B) Also the authors always report compartment changes in terms of number of bins, but I suspect 
in many cases multiple bins are contiguous (a compartment change of only 1 bin is more likely to 
be due to noise). If they account for contiguity how many changes do they get and what is their 
size distribution? 

Possibly using orthogonal evidence and a size threshold could help determine the true differences 
and further filtering false positives which could emerge for technical reasons such as data 
resolution. 

We thank the reviewer for their suggestion about further studying differential compartment sizes 
with the possibility of using this information for filtering. In the current setting, dcHiC does not filter 
out singleton bins of differential compartments or segregate them from longer stretches of 
differences. Upon this comment, we decided to further study such singleton regions first. In the 
pairwise comparison between ESC and NPC, dcHiC predicted 1,981 differential compartments at 
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100Kb resolution. When we merged all the contiguous differential compartments using ‘bedtools 
merge’, we were left with 272 singleton genomic bins (~14% of all calls). To check if these 
singleton bins overlap important differences such as in gene expression, we overlapped the ESC-
NPC differentially expressed genes (4,958 DEGs, FDR < 0.05 and |log2FC| > 2) and found that 
98 out 272 differential compartments (~36%) overlapping with DE genes (a total of 138 genes). 
Upon manual inspection, we observed that a few of these singleton bins overlapped with 
important and relevant genes like Ctnnd2 and Pcdh7 with neuronal functions, the pluripotency 
marker Dppa5a as well as several other genes plotted below. We, therefore, made the decision 
to not filter (or treat differently) the singleton bins from longer stretches of differential compartment 
calls. Such filtering, especially with large bin sizes such as 100kb, may lead to a significant loss 
in sensitivity and equally importantly, the regions that are missed by this filter may be enriched 
with genes that have critical functions within the context of the compared Hi-C maps. We agree, 
however, that for high-resolution analysis such filtering can be useful to eliminate regions with 
sporadic changes. Although not incorporated into the tool, we provided a script that can perform 
such filtering in our GitHub repository under: https://github.com/ay-lab/dcHiC/tree/master/utility  
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A few minor comments: 

5) How much do the results of dcHiC depend on the weighting scheme adopted (Eq. 6 in the 
Methods)? It would be important to understand the contribution of this parameter to the results. 
How would the result change without weighting? What if a different weighting strategy was 
adopted (e.g. 75% quantile instead of max Z)? 

We carried out the differential compartment analysis between ESC vs NPC samples using 
different weighing strategy and here is the table showing its effect on number of differential 
compartment calls - 

 

Essentially, selecting max Z-score provides more weight to the points that are distant from others 
among the samples (further from the diagonal) than to points that are closer together in the 
multidimensional space (close to the diagonal). Equation (4) in the methods section of the 
manuscript is the standard MD formulation, which we modify using the weighted centers as 
computed through Equations (6) to (8). We have also looked at the successive overlap of 
differential calls with increasing weight and found that the smaller set is always a subset of the 
larger one.    

 

6) Why wasn’t the time-series analysis done also for the HSC lineage differentiation study? That 
would be a nice addition to understand the number of concordant/progressive changes during 
lineage differentiation vs. changes that emerge sporadically. 

We thank the reviewer for asking this question. We have now performed the time-series analysis 
of the differential compartments on the Long-Term Hematopoietic stem cells (LT-HSC) to 
Granulocytes (GR) (6 time-points) and LT-HSC to Megakaryocytes (MK) (7 time-points) lineage 
differentiation separately.  The time-series analysis pointed out some interesting patterns in both 
the cell differentiation types but the functional enrichment result for time-series clusters were 
somewhat non-specific. We now discuss these results in a new paragraph and two supplementary 
figures (S8 and S9). 
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“Further, we have performed time-series analysis of the differential compartments on the 
Long-Term Hematopoietic stem cells (LT-HSC) to Granulocytes (GR) (6 time-points) and 
LT-HSC to Megakaryocytes (MK) (7 time-points) lineage differentiation separately. For 
LT-HSC to GR differentiation, the first 3 clusters show a general pattern of differential 
compartments with decreasing genomic activity while the last 3 shows an increase 
(Supplementary Figure S8A). The functional enrichments for genes within each cluster 
involved general terms such as ‘morphogenesis’, ‘development’ and ‘organization’ 
(Supplementary Figure S8B). When we repeat the same analysis for LT-HSC to MK 
lineage differentiation, we observed more nuanced patters involving four clusters with 
distinct signatures in MEPs (Supplementary Figure S9A). For these clusters (Cluster 1, 
2, 4, and 5), the change in compartment score is most prominent at the MEP stage and 
is generally prominent after this stage. We believe this is due to the unique condensed 
chromosomal organization observed in MEP stage along with MKs [33]. This previous 
study proposed that in these cell types, there is a reduction in long-range chromatin 
interactions, which resembles the condensed chromosome structures found in mitotic 
metaphase cells [33]. We believe the time-series analysis of differential compartments 
from dcHiC thus captured this feature of MEPs while also capturing two clusters (cluster 
3 and 6) with gradual increase or decrease in their compartment scores (Supplementary 
Figure S9A). The functional enrichment of genes in each cluster again involve general 
terms such as ‘morphogenesis’, ‘development’ and ‘differentiation’ (Supplementary 
Figure S9B).” 
 
7) I believe these are typos/oversights, but in the background section the descriptions of PCA and 
eigenvector decomposition are imprecise: 

- at line 65 the sentence seem to indicate that eigenvectors and principal components are the 
same thing, but they aren’t, 

- at line 73 the authors write “magnitude and sign of eigenvalues derived from PCA have been 
the major determinants of compartment type”, this is just wrong, eigenvalues are only used to 
rank eigenvectors. It is the sign and magnitude of the values of the first (or second) principal 
component that are used to determine compartment type. 

All of this is correctly reported in the Methods so I believe these were simple oversights, but they 
should be corrected. 

We thank the reviewer for pointing these issues. We have now fixed all of these and did another 
detailed check on grammar and such oversights.  

 

 

 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

The authors addressed my concerns and have improved the manuscript. I do have one remaining 

concern in that the sequencing depth does appear to impact the recall rate quite dramatically (i.e. 

500 vs 200 million reads makes it drop to 80%). Because 200 million contacts is fairly commonly 

found in published Hi-C data, this would indicate a loss of 1/5th of the recall in addition to the 

unmeasurable recall rate at 500 million reads. That's somewhat concerning, especially since the 

recall curves do not plateau, possibly indicating that 500 million is insufficient to have good recall 

rates. However, I don't believe this should detract from the importance of the work and would like 

to acknowledge that this is already a dramatic improvement over current methods of differential 

compartment analysis which have traditionally lacked robust statistical basis. I greatly appreciate 

the authors' revisions. 

Reviewer #2: 

Remarks to the Author: 

THe authors have made tremendous efforts addressing reviewers' comments. I have no further 

comments. 

Reviewer #3: 

Remarks to the Author: 

In this revised version of their study, the authors did an impressive job including several new 

analyses to address my previous concerns as well as those of the other reviewers. 

I just have a few minor notes / requests of clarification on their responses: 

1) I believe my comment 2B had been misinterpreted. What I meant originally was to investigate 

the differences in compartment calling between the two methods (dcHiC and HOMER), NOT the 

differences in differential compartment calling. 

In the current Figure 2A,B,C the authors compare compartment scores, which are used to call 

compartments, among each pair of tools (dcHIC, HOMER, and Cscore). 

These values are correlated but are not centered with respect to the diagonal of the cartesian 

plane. For example in 2A one can see several bins that have positive scores for dcHiC and negative 

scores for HOMER, but the opposite is not true. 

The same is seen and even stronger in Fig. 2B and C. In Fig. 2C many bins have positive scores for 

dcHiC but negative for Cscore, while the opposite almost never happens. Since compartments are 

typically called based on the sign of these scores, how should one interpret such phenomena? 

Do the authors know what drives this systematic difference? 

Also, in Fig. 2I, it would be helpful to maintain the colors as in the other panels. 

2) In the comparison with calder, I’m not sure I got the numbers right… from what I read in the 

text, it seems that in total ~8000 bins have been analyzed, each of size 100KB. That corresponds 

to ~800M base pairs, which is approximately one third of the mouse genome (~2.5B). Why is 

that? 

In addition, we have recently analyzed that dataset with the same tool and got very different 

results, we obtained ~22,500 bins of size 100kb, out of which ~59% changed sub-compartment 

label, not 80% as stated in the rebuttal document.. Am I misinterpreting something? 

There might be version differences of the tool, not sure, but the differences seem quite big..



REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors addressed my concerns and have improved the manuscript. I do have one remaining concern in that 
the sequencing depth does appear to impact the recall rate quite dramatically (i.e. 500 vs 200 million reads makes 
it drop to 80%). Because 200 million contacts is fairly commonly found in published Hi-C data, this would indicate a 
loss of 1/5th of the recall in addition to the unmeasurable recall rate at 500 million reads. That's somewhat 
concerning, especially since the recall curves do not plateau, possibly indicating that 500 million is insufficient to 
have good recall rates. However, I don't believe this should detract from the importance of the work and would like 
to acknowledge that this is already a dramatic improvement over current methods of differential compartment 
analysis which have traditionally lacked robust statistical basis. I greatly appreciate the authors' revisions. 
 
We thank the reviewer for their constructive comments and positive views of our work. On this specific issue, we 
would first like to clarify that the downsampling analysis with respect to recall that the reviewer refers to is actually 
done on the real replicates (4 for ESC and 3 for NPC) rather than pseudo-replicates, which we used for time, memory 
usage and false positive rate estimation. Therefore, the read depths are not 500M for 100% and 200M for 40% for 
this analysis. They change between 230M-1.2B reads for ESC 720M-1.5B reads for NPC replicates at 100% depth (4v3 
analysis). Therefore, 40% downsampling would put one ESC replicate below 100M reads. And that one replicate is 
the likely culprit of the decline in recall. To further assess this, we have now repeated our recall analysis for 100kb 
resolution by removing that one replicate of 230M reads leaving us with reads ranging from 600M to 1.5B reads (3v3 
analysis).  
First of all, this new 3v3 analysis captured  1906  out  of 1981 differential bins from 4v3 analysis suggesting that 
removing the low depth replicate had minimal effect on recall. Importantly, when we repeated the downsampling 
analysis to see what fraction of those 1906 differential bins are captured at different sequencing depths, we saw 
that 40% downsampling (putting the least sequenced replicate at around 240M reads) kept the recall rate at around 
90% and 20% downsampling was at around 80% recall (see figure below). These results suggest that replicates with 
substantially lower sequencing depths may not contribute much to overall discovery power and they may adversely 
affect recall rate if they are sequenced below 100M reads. We have now revised the text accordingly with some of 
this above discussion. We sincerely thank the reviewer for a chance to revisit and clarify this important point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #3 (Remarks to the Author): 
 
In this revised version of their study, the authors did an impressive job including several new analyses to address my 
previous concerns as well as those of the other reviewers. I just have a few minor notes / requests of clarification on 
their responses: 
 
1) I believe my comment 2B had been misinterpreted. What I meant originally was to investigate the differences in 
compartment calling between the two methods (dcHiC and HOMER), NOT the differences in differential 
compartment calling. In the current Figure 2A,B,C the authors compare compartment scores, which are used to call 
compartments, among each pair of tools (dcHIC, HOMER, and Cscore). These values are correlated but are not 
centered with respect to the diagonal of the cartesian plane. For example in 2A one can see several bins that have 
positive scores for dcHiC and negative scores for HOMER, but the opposite is not true. The same is seen and even 
stronger in Fig. 2B and C. In Fig. 2C many bins have positive scores for dcHiC but negative for Cscore, while the 
opposite almost never happens. Since compartments are typically called based on the sign of these scores, how 
should one interpret such phenomena? Do the authors know what drives this systematic difference? 
 
We thank the reviewer for clarification of their previous comment. Although we did not address it in our response 
to this specific comment 2B, we have done a detailed analysis of compartment call differences between HOMER and 
dcHiC in our previous submission which is mentioned in the text below and shown in detail in Supp. Fig 1 (previous 
and current).  
 
“Next, we further analyzed the 4-7% of the genome that is labeled in opposite compartments by dcHiC in comparison 
to HOMER for ESC and NPC (Supplementary Figure S1A-B). Overall, dcHiC-B but HOMER-A regions (~1% for ESC and 
NPC) showed positive lamin B1 signal and lower gene expression levels compared to dcHiC-A but HOMER-B regions    
(Supplementary Figure S1C-D). The latter set (3% for ESC and 6% for NPC) had a mix of regions with positive and 
negative lamin association as well as gene expression values that are lower than constitutive A but higher than 
constitutive B compartment regions (compare to Figure 3) suggesting a weak compartmentalization for these regions 
into either A or B compartment.” 
 
In short, we found that regions with method-specific compartment labels (A or B) tend to have weak 
compartmentalization in general. This is expected since “zero” is rather an arbitrary threshold to determine 
compartment labels from a continuous score and values close to zero are likely to change sign even with small 
technical differences in between methods.  
 
Regardless, we have done some further analysis, this time including Cscore to better characterize these discordantly 
labeled regions. As shown below and in Supp. Fig 1A-B, and as also noticed by the reviewer, the discordant calls are 
mainly in the direction of dcHiC A compartment being called B by HOMER and by Cscore for both ESC and NPC.   

 
 
To further evaluate the dcHiC, HOMER and Cscore calls, we also mapped the ESC and NPC Lamin B1 signal regions 
over the compartments. In general, the Lamin B1 detached regions (-ve signal) should correspond to Hi-C A 
compartments while Lamin B1 attached regions (+ve signal) represents Hi-C B compartments. In the following two 
tables, we observed that HOMER and Cscore have higher number of B compartment calls with regions detached 



from the lamina suggesting they might be overcalling B compartments. On the other hand, dcHiC and HOMER 
compared to cScore for ESCs and dcHiC and cScore compared to HOMER for NPCs called higher number of A 
compartments with lamin attachment suggesting they may be overcalling A compartments. As mentioned above 
and highlighted also in our down-sampling analysis for compartment correlations, it is difficult to assign a confident 
compartment label for regions with a compartment score that is close to zero.  Therefore, we avoid making 
conclusive statements about this issue at this point.  
 

 
 
 
2) Also, in Fig. 2I, it would be helpful to maintain the colors as in the other panels. 
 
We thank the reviewer for this suggestion. We have now revisited the plots to match colors across each panel. 
 
3) In the comparison with calder, I’m not sure I got the numbers right… from what I read in the text, it seems that in 
total ~8000 bins have been analyzed, each of size 100KB. That corresponds to ~800M base pairs, which is 
approximately one third of the mouse genome (~2.5B). Why is that? In addition, we have recently analyzed that 
dataset with the same tool and got very different results, we obtained ~22,500 bins of size 100kb, out of which ~59% 
changed sub-compartment label, not 80% as stated in the rebuttal document.. Am I misinterpreting something? 
There might be version differences of the tool, not sure, but the differences seem quite big.. 
 
We thank the reviewer for catching the issue. We are deeply sorry with this mishap of numbers. Due to a wrong file 
usage, our sub-compartment overlapping statistics left out a large chuck of the genome and that resulted in the 
mismatch mentioned by the reviewer. The results did not change the overall conclusions about subcompartment 
analysis being unsuitable for a direct differential compartment analysis. We also saw only a minimal change in the 
number of dcHiC differential bins overlapping with Calder labels (1862 instead of 1820).  
 
We have now corrected this and the results we updated in the manuscript are in line with the numbers reported by 
the reviewer’s analysis. The new numbers are highlighted in blue in the main text. Briefly: 

• Calder retrieved a total of 24,546 100Kb bins (~2.4 GB), instead of ~800Mb reported before, with sub-
compartment assignments for both ESC and NPC. 

• Out of 1,981 dcHiC bins, for 1,862, instead of 1,820, we had Calder labels on both cell types and among 
those 97.5% (1,816 bins), instead of 97.6% (1777 bins), overlapped with differential sub-compartments.  

• For the remaining 22,684 bins, instead of 7,967, with Calder labels that do not overlap with dcHiC 
differential calls, still a high but smaller percentage (57.5%), instead of 74.8%, corresponded to differences 
in sub-compartment labels. 

• In terms of being able to do a differential analysis directly from sub-compartments, however, a large 
percentage (~60.5% or 14,866 out of 24,546 100kb bins), instead of  (~80% or 6,377 out of 7,967 100kb 
bins), of sub-compartment transitions/flips suggest that this approach may lead to low specificity in 
detecting important differences and would need to be coupled with additional filters and/or supplemented 
by further statistical assessments.   



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

My comments have been addressed. 

Reviewer #3: 

Remarks to the Author: 

The reviewers addressed my last few requests, happy to recommend this manuscript for 

publication.
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