Supplementary Information

Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity

Deyong Jia¹, Zhicheng Zhou¹, Oh-Joon Kwon¹, Li Zhang¹, Xing Wei¹, Yiqun Zhang², Mingyang Yi³, Martine P Roudier¹, Mary C Regier^{4,5}, Ruth Dumpit⁶, Peter S Nelson⁶, Mark Headley⁶, Lawrence True⁵, Daniel W Lin¹, Colm Morrissey¹, Chad J Creighton², Li Xin^{1,4,7}

Supplementary Fig. 1: Stromal FOXF2 expression inversely correlates with Gleason patterns.

(a) Western blot analyses of mouse prostate stromal cells and RM-1 cells that ectopically expressed a 3xFLAG-tagged Foxf2 and prostate tissues from tamoxifen-treated *R26-LSL-Foxf2* (*Foxf2*) and *Cola2-CreER^{T2};R26-LSL-Foxf2* (*Col1a2-Foxf2*) mice using sheep (AF6988 from R&D) and rabbit (MBS2523449 from MyBioSource) anti-Foxf2 antibodies. Experiments were repeated three times with similar observation. Source data are provided in Supplementary Fig. 13. (b) Immunostaining of Foxf2 in wild type (WT) and *Foxf2* null embryos. Areas framed by red dotted rectangle show staining of Foxf2 in eye tissue of WT but not null mouse. Bars = 25 μ m. Experiments were repeated twice with similar observation. (c) RNA-in-situ analysis of *FOXF2* in human prostate cancer specimens (Left panels) shows no sign of *FOXF2* expression in tumor cells (white arrow, lower left panel) where immunostaining display unspecific staining by anti-Foxf2 antibody (white arrows, lower middle and lower right panels). Bars = 25 μ m. Image represents staining obtained from 1 out of 7 specimens. (d) Dot plot shows positive correlation between intensity of immunostaining of stromal FOXF2 and that of RNA in Situ analysis for *FOXF2* in stromal cells of normal human prostate tissues by Person Correlation analysis. Each dot represents signal intensity of FOXF2 and *FOXF2* collected from the corresponding fields on sequential slides. N=30 region from 7 specimens. (e) qRT-PCR analysis of Foxf2 in laser-captured epithelial (benign and tumor, N=15 regions) and stromal cells (N=20 regions) from a total of 13 benign human prostate tissues and prostate cancer specimens. Data represent means ± s.d.

Supplementary Fig. 2: Stromal Foxf2 overexpression does not affect prostate cancer biology *in vitro* or in immunocompromised context *in vivo*.

(a) QRT-PCR of Foxf2 in control and Foxf2-expressing mouse prostate stromal cells (mPrSC) and WPMY-1 cells. Data represent means \pm s.d. from 4 independent experiments. (b) EdU incorporation assay. Data represent means \pm s.d. of percentages of EdU⁺ cells from 3 independent experiments. Two-sided unpaired t-test. (c) Western blot analysis of RM-1 and Pten/Kras cells. Experiments were repeated for three times with similar pattern. Source data are provided in Supplementary Fig. 13. (d) Boyden chamber assays to determine the capacity of RM-1 cells for migration and invasion when culturing with mouse prostate stromal cells infected with control (Ctrl) and Foxf2-expressing (Foxf2) lentiviruses. OD₅₉₅ values reflect number of cells that have migrated or invaded through chambers. Data represent means \pm s.d. from 3 experiments. Twosided unpaired t-test. (e) Image of subcutaneous tumors grown from PC3 cells cocultured with control and Foxf2-expressing WPMY-1 in SCID/Beige hosts. Bar = 1 cm. Dot plot shows means \pm s.d. of tumor weight. N=8 tumor per group. Two-sided unpaired t-test. (f) Image of subcutaneous tumors grown from LnCaP cells cocultured with control and Foxf2-expressing WPMY-1 in SCID/Beige hosts. Bar = 1 cm. Dot plot shows means \pm s.d. of tumor weight. N=8 per group. Two-sided unpaired t-test. (g) Immunostaining of CD31 in RM-1 xenografts grown in SCID/Biege hosts with control (Ctrl) and Foxf2-expressing (Foxf2) mouse prostate stromal cells. Dot plot shows means \pm s.d. of percentage of CD31 staining pixel per image field. Each dot represents average value of 10 images from each xenograft. Bars= 25µm. N=6 mice per group. Two-sided unpaired t-test. (h) QRT-PCR of EMT-related genes in RM-1 xenografts grown in SCID/Biege hosts with control (Ctr) and Foxf2-expressing (Foxf2) mouse prostate stromal cells. Data represent means \pm s.d. from 5 independent xenografts. Two-sided unpaired t-test. (i) QRT-PCR of cancer stem cell-related genes in RM-1 xenografts grown in SCID/Biege hosts with control (Ctrl) and Foxf2-expressing (Foxf2) mouse prostate stromal cells. Data represent means \pm s.d. from 5 independent xenografts. Two-sided unpaired t-test. (j) Image of subcutaneous tumors grown from Pten/Kras cells cocultured with control and Foxf2-expressing mouse prostate stromal cells (mPrSC) in male C57BL/6 hosts. Bar = 1 cm. Dot plot shows means \pm s.d. of tumor weight. N=5 xenografts. Two-sided unpaired t-test. (k) Image of subcutaneous tumors grown from Pten/Kras cells cocultured with control and Foxf2-expressing mouse prostate stromal cells (mPrSC) in SCID/Beige hosts. Bar = 1 cm. Dot plot shows means \pm s.d. of tumor weight. N=8 xenografts. Two-sided unpaired t-test.

Supplementary Fig. 3: Increasing stromal Foxf2 affects immuno-microenvironment in vivo.

(a-b) FACS analyses of immune cells in spleen (a) and blood (b) of C57BL/6 mice harboring subcutaneous RM-1 tumors grown with control and Foxf2-expressing stromal cells. Dot plots show means \pm s.d. of cell percentages. N=4 (spleen) or 5 (blood). Two-sided unpaired t-test. (c) FACS analysis of immune cells in Pten/Kras tumors grown with control and Foxf2-expressing stromal cells in C57BL/6 hosts. Dot plots show means \pm s.d. of cell percentages. N=4 xenografts per group. Two-sided unpaired t-test. (d) Representative image of RM-1 tumors grown subcutaneously with mouse prostate stromal cells expressing scrambled shRNA (shScramble) or shRNA against Foxf2 (shFoxf2) in male C57BL/6 hosts. Dot plot shows means \pm s.d. of tumor weight. N=8 per group. Two-sided unpaired t-test. Bar = 1 cm. (e) Dot plots show means \pm s.d. of percentages of T cells (CD3, CD8, CD4), myeloid derived suppressor cells (M- and PMN-MDSC), and macrophages (MØ, M1 and M2) in RM-1 tumors grown with mouse prostate stromal cells expressing scrambled shRNA (shScramble) or shRNA against Foxf2 (shFoxf2). N=5 per group. Two-sided unpaired t-test. (f) FACS analysis of immune cells in RM-1 tumors grown with control and Foxf2-expressing stromal cells in SCID/Beige mice. Dot plots show means \pm s.d. of cell percentages. N=6 per group. Two-sided unpaired t-test. (g) Image of subcutaneous RM-1 tumors grown with control and Foxf2-expressing mouse prostate stromal cells in male nude mice. Bar=1 cm. Dot plot shows means \pm s.d. of tumor weight. N=12 per group. Two-sided unpaired t-test.

Supplementary Fig. 4: Increasing stromal Foxf2 expression suppresses tumor progression in TRAMP mice.

(a) Schematic illustration of generation of R26-LSL-Foxf2 model. (b) Western blot analysis of Foxf2 using FACS isolated prostate stromal cells from tamoxifen treated 10-wk-old control (R26-

LSL-Foxf2) and *Col1a2-Foxf2* mice. Experiment was done once using 3 different specimens per group shown in the image. Source data are provided in Supplementary Fig. 13. (c) Transillumination images of anterior (AP), ventral (VP), and dorsolateral (DLP) prostates of 9-mth-old control (*Col1a2-TRAMP*) and *Col1a2-Foxf2-TRAMP* mice. Dot plot shows means \pm s.d. of prostate weight. N=9 mice for AP and DLP; N=7 for VP. Two-sided unpaired t-test. Bars = 2 mm. (d) Coimmunostaining of AR and SV40 T, K5 and K8, BrdU and K8, and Cleaved caspase 3 (CC3) and K8 in AP, DLP, and VP of 9-mth-old *Col1a2-TRAMP* and *Col1a2-Foxf2-TRAMP* mice. Bars = 25 µm. Experiments were performed on 5 different mice with similar observations.

Supplementary Fig. 5: Increasing stromal Foxf2 expression does not affect neuroendocrine prostate cancer (NEPC) frequency in TRAMP mice.

(a) Co-immunostaining of Keratin 8 (K8) ad Synaptophysin (Syp) shows a representative focal NEPC in ventral prostate of a 9-mth-old *TRAMP* mouse. Enlarged region highlight interface between NEPC and adenocarcinoma. Pie charts show quantification of NEPC frequency in 31 *Col1a2-Foxf2-TRAMP* and 37 control *Col1a2-TRAMP* mice. Bars = 100µm. Fischer's exact test. (b) Co-immunostaining of Keratin 8 (K8) and Synaptophysin (Syp) of adenocarcinoma in anterior (AP), dorsolateral (DLP) and ventral (VP) prostates of 9-mth-old *Col1a2-Foxf2-TRAMP* and control *Col1a2-TRAMP* mice. Bars = 25µm. Yellow arrows point to Syp staining. Experiments were performed on 5 different mice with similar observations. (c) QRT-PCR of NEPC-associated genes in adenocarcinoma in anterior (AP), dorsolateral (DLP) and ventral (VP) prostates of 9-mth-old *Col1a2-Foxf2-TRAMP* and control *Col1a2-TRAMP* mice. Data represent means ± s.d. from 3 tissues from different mice. Two-sided unpaired t-test.

Supplementary Fig. 6: Increasing stromal Foxf2 expression does not affect development of peripheral tolerance toward SV40 Tag in TRAMP mice.

11-wk-old and 6-mon-old *Col1a2-Foxf2-TRAMP* and control *Col1a2-TRAMP* mice were immunized with SV40 Tag-IV. Immunized and unimmunized age-match male C57BL/6 mice served as positive and negative controls, respectively. Splenocytes isolated from these mice were stimulated with SV40 Tag-IV. FACS plots show percentage of IFN γ -expressing CD8⁺ T cells. Data represent means \pm s.d. from 3 mice in positive control, 4 mice per group for 11-wk-old mice and 5 mice per group for 6-mon-old mice. One-way ANOVA with Tukey's multiple comparison test.

Supplementary Figure 7 continued

Supplementary Fig. 7: Single cell RNA-seq analysis of immune and stromal cells in *Col1a2-Foxf2-TRAMP* and control *Col1a2-TRAMP* mice.

(a) UMAP plot of FACS isolated CD45⁺ cells in prostates identifies 10 subpopulations. Panels on the right show expression of representative genes in specific subpopulations. (b) Expression profile heat map of immune cell signature genes for indicated cell clusters. (c) FACS analysis of immune cell subpopulations in dorsolateral prostate cancer tissues of 9-mth-old control (Colla2-TRAMP) and Colla2-Foxf2-TRAMP mice. Data represent means \pm s.d. of cell percentages from 4 Colla2-TRAMP and 5 Colla2-Foxf2-TRAMP mice. Two-sided unpaired t-test. (d) FACS analysis of immune cell subpopulations in ventral prostate cancer tissues of 9-mth-old control (Colla2-TRAMP) and Colla2-Foxf2-TRAMP mice. Data represent means \pm s.d. of cell percentages from 4 mice per group. Two-sided unpaired t-test. (e) UMAP plot of FACS isolated Lin⁻CD49f⁻CD24⁻ prostate stromal cells identifies 4 subpopulations. Panels on the right show expression of representative genes in specific subpopulations. (f) Expression profile heat map of CAF signature genes for indicated cell clusters. (g) Violin plots show expression of genes related to cancerassociated fibroblasts (CAFs) in single stromal cells isolated from 9-mth-old Colla2-TRAMP and Colla2-Foxf2-TRAMP mice compared using a Wilcoxon Rank Sum test within Seurat's "FindAllMarkers" function to identify differentially expressed genes. Adjusted p-value based on Bonferroni correction using all genes in the dataset.

Supplementary Fig. 8: Cxcl5 plays a crucial role in stromal Foxf2-mediated tumor suppression.

(a) QRT-PCR of *Foxf2* and *Cxcl5* in mouse prostate stromal cells infected with lentivirus expressing scrambled or *Foxf2* shRNA with or without ectopically expressed *Foxf2*. Data represent

means \pm s.d. of gene expression from 4 independent experiments. Two-sided unpaired t-test. (b) QRT-PCR of Cxcr2 in FACS-isolated myeloid, stromal, and RM-1 tumor cells from RM-1 xenografts grown subcutaneously in male C57BL/6 hosts. Data represent means \pm s.d. of gene expression from 4 independent experiments. (c) QRT-PCR of Foxf2 and Cxcl5 in mouse prostate stromal cells infected with lentivirus expressing scrambled or Cxcl5 shRNA with or without Foxf2. Data represent means \pm s.d. of gene expression from 4 independent experiments. Two-way ANOVA with Tukey's multiple comparison test. (d) ELISA of Cxcl5 in tumor lysates. Data represent means \pm s.d. of protein level from 4 tumors per group. Two-way ANOVA with Tukey's multiple comparison test. (e) gRT-PCR of Foxf2 and Cxcl9/10 in mouse prostate stromal cells infected with lentivirus expressing scrambled or Cxcl9/10 shRNAs with or without Foxf2. Data represent means \pm s.d. of gene expression from 4 independent experiments. Two-way ANOVA with Tukey's multiple comparison test. (f-g) Dot plots show means \pm s.d. of percentages of CD45⁺, CD3⁺, CD8⁺, MDSC, PMN-MDSC, M1- and M2-macrophages cells determined by flow cytometry in RM-1 tumors grown with control and Foxf2-expressing stromal cells with scrambled or Cxcl9/10 shRNAs. N= 5 to 6 per group. Two-way ANOVA with Tukey's multiple comparison test.

Supplementary Fig. 9: Stromal Foxf2 expression affects CAF phenotype.

QRT-PCR of 13 CAF-associated genes in control and Foxf2-expressing mouse prostate stromal cells. Data represent means \pm s.d. from 3 experiments. Two-sided unpaired t-test.

Supplementary Fig. 10: Correlation between expression of *FOXF2* with those of immune cell markers in human prostate cancer specimens.

Each dot represent result obtained by qRT-PCR analysis from one laser-captured stromal region in human prostate cancer specimen. A total of 20 regions were collected from 13 different patient specimens including benign and cancerous tissues with Gleason patterns ranging from 3 to 5. Data analyzed by Pearson correlation analysis.

Supplementary Fig. 11: Increasing lung stromal Foxf2 suppresses prostate cancer metastasis. FACS plots of pro-inflammatory (M1) and anti-inflammatory (M2) infiltrating macrophage (IM) and alveolar macrophage (AM) in lung metastases. Dot plots show means \pm s.d. of cell percentages from 4 (control) or 5 (Col1a2-Foxf2) tumors. Two-sided unpaired t-test.

Supplementary Fig. 12: Illustration of gating strategy for flow cytometric analyses and sorting.

(a) Single viable Lineage⁺ or CD45⁺ cells. (b) CD4 and CD8. (c) Ifnγ. (d) CD11b and Gr-1. (e) Ly6C and Ly6G. (f) CD206 and MHCII. (g) CD24 and CD49 staining of mouse prostate lineages. (h) EpCAM staining of cells in RM-1 xenograft.

Supplementary Fig. 13: Source data for Western Blot analyses in Supplementary Figs. 1A, 2C and 3B.

Cytokine/	Means ±	p-value,		
Chemokine	Primary stromal cells (Vector)	Primary stromal cells (Foxf2)	t-test)	
CCL11	18.23+1.3	42.79+7.08	0.0041	
GM-CSF	9.42+0.73	6.75+2.1	0.1058	
IL-1a	5.3+3.5	4.6+2.42	0.7907	
IL-15	6.07+3.28	5.35+3.88	0.8190	
LIF	88.6+4.96	9925+6.74	0.0923	
G-CSF	4.88+1.23	5.27+0.7	0.6575	
IFNy	2.43+0.42	1.41+0.76	0.1134	
IL-1B	6.77+2.54	9.07+1.91	0.2781	
MIP-1a (CCL3)	58.18+10.85	29.18+10.02	0.0272	
MCP-1	3689.72+369.62	4665.73+309.19	0.0247	
IL-2	2.78+1.49	2.08+0.41	0.4773	
IL-6	2812.77+99.49	1893.88+179.13	0.0015	
IL-9	15.24+3.95	13.24+4.82	0.6082	
KC (CXCL1)	162.54+34.33	138.84+12.35	0.3236	
M-CSF (CSF1)	31.22+2.55	27.69+2.35	0.1524	
TNFa	3.59+0.23	2.02+0.26	0.0014	
VEGF	468.23+45.84	718.54+94.61	0.0146	
MIP-2 (CXCL2)	44.02+13.34	38.18+15.33	0.6449	
RANTES (CCL5)	50.5+3.86	40.67+2.42	0.0201	
MIP-1b (CCL4)	96.24+17.23	43.17+8.33	0.0086	

Supplementary Table 1: Cytokine/Chemokine expression levels in Primary stromal cells(pg/ml)

LIX (CXCL5)	39.59+12.14	8.34+2.91	0.0087
MIG (CXCL9)	2.27+0.3	3.21+0.21	0.0043
IP-10 (CXCL10)	197.01+9.61	261.45+45.23	0.0305

Cytokine/Chemokine expression levels in tumor samples(pg/ml)

Cytokine/	Mean	p-value	
Chemokine	Tumor samples-Vector	Tumor samples-Foxf2	t-test)
CCL11	263.22+137.29	349.66+91.35	0.1603
GM-CSF	208.13+145.76	178.28+147.11	0.6897
IL-1a	92.40+25.84	109.91+41.51	0.3286
IL-15	38.82+10.77	67.06+22.11	0.0058
LIF	239.55+44.14	317.76+59.32	0.0097
G-CSF	971.28+230.6	999.62+487.98	0.8840
IFNy	15.26+8.99	38.22+28.26	0.0460
IL-1B	21.82+9.27	19.38+6.66	0.5553
MIP-1a (CCL3)	117.45+26.97	192.87+111.61	0.1078
MCP-1	6030.58+1873.84	7701.85+2835.69	0.1860
IL-2	15.59+3.19	16.11+4.22	0.7850
IL-6	48.11+25.65	24.69+7.25	0.0262
IL-9	77.80+22.47	71.49+9.38	0.4758
KC (CXCL1)	1456.16+748.39	1472.70+1172.77	0.9737
M-CSF (CSF1)	18.50+9.46	22.44+10.32	0.4387
TNFa	3.51+0.91	5.78+2.37	0.0243
VEGF	701.87+246.47	677.90+355.67	0.8778

MIP-2 (CXCL2)	5721.70+4587.96	5383.09+5141.65	0.8914
RANTES (CCL5)	17.62+10.03	33.57+18.97	0.0541
MIP-1b (CCL4)	66.58+28.22	131.93+96.49	0.0873
LIX (CXCL5)	666.95+188.51	510.27+108.05	0.0460
MIG (CXCL9)	829.01+257.34	1705.39+712.82	0.0099
IP-10 (CXCL10)	540.70+190.14	1534.17+823.16	0.0090

Primers	Sequences (5' to 3')	WT(bp)	TG(bp)
Cre forward	CATTTGGGCCAGCTAAACAT	208	NI/A
Cre reverse	ATTCTCCCACCGTCAGTACG	308	1N/A
<i>Tramp Wild type</i> forward	CTG TAC CAA TGG GCT TGA GG		
Tramp common reverse	GGC ATT CAG CTT GGA GAA GA	264	151
Tramp Mutant forward	TCA CAA ATT TCA CAA ATA AAG CA		
<i>Foxf2 Wild type</i> forward	TCCCAAAGTCGCTCTGAGTT		
Foxf2 Wild type reverse	TAAGCCTGCCCAGAAGACTC	219	300
Foxf2 ^{lox} forward	CCTACTGGTTGGAGCAGAGC		
Foxf2 ^{lox} reverse	GCGATGCAATTTCCTCATTT		
<i>eYFP</i> forward	CTCTGCTGCCTCCTGGCTTCT		
<i>eYFP</i> reverse 1	CGAGGCGGATCACAAGCAATA	330	250
eYFP reverse 2	TCAATGGGCGGGGGGTCGTT		

Supplementary Table 2: Genotyping Primers and expected band size

Antigen	Supplier	Cone number	Cat. Number	Dilution
CD45-FITC	Ebioscience	30-F11	11-0451-85	1:100
CD8- PECY7	Ebioscience	53-6.7	25-0081-82	1:100
Ly6C-PE	Ebioscience	HK1.4	12-5932-82	1:100
GR-1-APC	Ebioscience	RB6-8C5	17-5931-82	1:100
F4/80-PECY7	Ebioscience	BM8	25-4801-82	1:100
CD11B- eFluor 710	Ebioscience	M1/70	48-0112-82	1:100
Granzyme B-Pacific blue	Biolegend	GB11	515407	1:100
IFN-γ-PE	Biolegend	XMG1.2	505808	1:100
CD11C-PE	Biolegend	N418	117308	1:100
CD3-PE	Ebioscience	145-2C11	12-0031-83	1:100
CD3-APC	Biolegend	145-2C11	100312	1:100
CD4-PE	Biolegend	GK1.5	100408	1:100
CD206-APC	Ebioscience	MR6F3	17-2061-82	1:100
MHCII-PE	Biolegend	M5/114.15.2	107608	1:100
CD19-FITC	Biolegend	6D5	115506	1:100
MHCII-Pecy5.5	Biolegend	M5/114.15.2	107611	1:100
TNFα-FITC	Biolegend	MP6-XT22	506304	1:100
Ly-6G- PerCP- eFluor 710	Ebioscience	1A8-Ly6g	46-9668-82	1:100
IFNγ-APC	Biolegend	XMG1.2	505810	1:100
CD24-FITC	Ebioscience	M1/69	11-0242-85	1:100

Supplementary Table 3: Antibodies for Flow Cytometry or Sorting cells

CD49-APC	Ebioscience	GoH3	17-0495-82	1:100
CD45- eFluor 450	Ebioscience	30-F11	48-0451-82	1:100
CD31- eFluor 450	Ebioscience	390	48-0311-82	1:100
TER119- eFluor 450	Ebioscience	TER-119	48-5921-82	1:100
EpCAM(CD326)- PECY7	Biolegend	G8.8	118216	1:100
Ghost Dye Red 780	Cell Signaling		18452	1:1000

Primers Sequences (5' to 3') Gapdh forward TGTTCCTACCCCCAATGTGT Gapdh reverse GGTCCTCAGTGTAGCCCAAG *Foxf2* forward CCTACTCGTTGGAGCAGAGC GGAGTGGAGTGGTGCTGGTA Foxf2 reverse Cxcl5 forward TGCATTCCGCTTAGCTTTCT *Cxcl5* reverse CAGAAGGAGGTCTGTCTGGA *Cxcl9* forward GGAGTTCGAGGAACCCTAGTG GGGATTTGTAGTGGATCGTGC *Cxcl9* reverse *Cxcl10* forward CCAAGTGCTGCCGTCATTTTC *Cxcl10* reverse GGCTCGCAGGGATGATTTCAA Cd8a forward GACATCTCAGCCCCAGAGAC Cd8a reverse CAAGGGTGCCCAGATGTAAA *Lck* forward CGTGTGTGAAAACTGCCACT *Lck* reverse GAGATCCCTCATAGGTGACCAG *Syk* forward TCCAGAGATGAATCAGAGCAGA Syk reverse GCAGGCACAGAGCATAGGAG *Gzmb* forward ATGTGGGGGGCTTCCTTATTC *Gzmb* reverse TTGCTGGGTCTTCTCCTGTT *Ncf1* forward ACACCTTCATTCGCCATATTGC TCGGTGAATTTTCTGTAGACCAC *Ncf1* reverse *Ncf4* forward GTGAACTCGGCCTGGATCTG *Ncf4* reverse AAGCTGCTCAAAGTCGCTCT

Supplementary Table 4: mouse primers for qRT-PCR analysis

Cybb forward	CCTCTACCAAAACCATTCGGAG
Cybb reverse	CTGTCCACGTACAATTCGTTCA
<i>Il10</i> forward	ATCGATTTCTCCCCTGTGAA
<i>Il10</i> reverse	TGTCAAATTCATTCATGGCCT
Argl forward	TTTTTCCAGCAGACCAGCTT
Argl reverse	AGAGATTATCGGAGCGCCTT
<i>iNOS</i> forward	TTCTGTGCTGTCCCAGTGAG
<i>iNOS</i> reverse	TGAAGAAAACCCCTTGTGCT
Ifng forward	CGGCACAGTCATTGAAAGCCTA
Ifng reverse	GTTGCTGATGGCCTGATTGTC
<i>Tgfb1</i> forward	ATTCAGCGCTCACTGCTCTT
<i>Tgfb1</i> reverse	GGTTCATGTCATGGATGGTG
<i>Tnfa</i> forward	CCACCACGCTCTTCTGTCTA
<i>Tnfa</i> reverse	AGGGTCTGGGCCATAGAACT
Cxcl1 forward	ACTGCACCCAAACCGAAGTC
Cxcl1 reverse	TGGGGACACCTTTTAGCATCTT
Cxcl2 forward	CCAACCACCAGGCTACAGG
Cxcl2 reverse	GCGTCACACTCAAGCTCTG
Cxcl3 forward	GATTTTGAGACCATCCAGAGC
Cxcl3 reverse	CTCTTCAGTATCTTCTTGATG
Cxcl12 forward	GTAAACCAGTCAGCCTGAG
Cxcl12 reverse	GCTTTCTCCAGGTACTCTTG
<i>Il6</i> forward	TCACAAGTCGGAGGCTTAAT
<i>Il6</i> reverse	TTCTGCAAGTGCATCATCGT

<i>Pdgfrα</i> forward	ACGGATGAGAGTGAGATCGAA
Pdgfra reverse	CGATGACTAAGGAATCGGTCA
Acta2 forward	TGGAAGAAGGAAACCTGGAA
Acta2 reverse	GGAACTGCACACTGCTGGTA
<i>Ly6a</i> forward	CCATCAATTACCTGCCCCTA
<i>Ly6a</i> reverse	GGCAGATGGGTAAGCAAAGA
Thy1 forward	GGCGACTACTTTTGTGAGCTT
Thy1 reverse	GGAGGAGGGAGGGGGAAAG
Pdpn forward	CAACCACAGGTGCTACTGGA
Pdpn reverse	GCTGAGGTGGACAGTTCCTC
Lrrc15 forward	CTGCCCTGGAATGCTATGAG
<i>Lrrc15</i> reverse	CCAGCTCGTTCTTCTCCATC
Aspn forward	TTGGGTGCCAATGTTACTCTC
Aspn reverse	TTGAAGGTCAACCATTCGAGTA
<i>Cxcr2</i> forward	CCTTCTACAGCAGTGTTCTGCTAC
Cxcr2 reverse	TTGACCAAGTGTCTCTTCTGGA
Aldh1a1 forward	CCTGCAACTGAGGAGGTCAT
Aldh1a1 reverse	TGGAGAGCCAATCTGGAAAG
Pou5fl forward	GCTGGAGAAGTGGGTGGAG
Pou5f1 reverse	TGCTAGTTCGCTTTCTCTTCC
Syp forward	TGGTGTCAATAAGAACCAGACTGT
Syp reverse	TCCCAGTTCACGTCACACAC
Chga forward	CAGAAGTGTTTGAGAACCAGAGC
Chga reverse	TTGTCAGAATCCTTTCTCTTCTCC

Eno2 forward	TGGACAACCTGATGTTGGAA
Eno2 reverse	CTGCCCCAGCCTTACACAC
Vim forward	GAGGTGGAGCGGGACAAC
Vim reverse	GAATGACTGCAGGGTGCTTT
<i>Twist2</i> forward	GCAAGAAATCGAGCGAAGAT
Twist2 reverse	AGGCCTCGTTGAGCGACT
<i>Slug</i> forward	AACATTTCAACGCCTCCAAG
Slug reverse	TCTCTGGTTTTGGTATGACAGG
Zeb1 forward	TTACCAGGAGGCAGTGACAG
Zeb1 reverse	CCACATTCGGATCATGGTTT
Snail1 forward	TGGAAAGGCCTTCTCTAGGC
Snail1 reverse	GTCAGCAAAAGCACGGTTG
Mmp2 forward	AACTTCTTCCCCCGCAAG
<i>Mmp2</i> reverse	AAAGCATCATCCACGGTTTC
Cd44 forward	CATCAGTCACAGACCTACCCAAT
Cd44 reverse	GTTCTATACTCGCCCTTCTTGC
Myc forward	AGTGCTGCATGAGGAGACAC
<i>Myc</i> reverse	GGTTTGCCTCTTCTCCACAG

Primers Sequences (5' to 3') GAPDH forward ACGGGAAGCTTGTCATCAAT *GAPDH* reverse TGGACTCCACGACGTACTCA S18 forward TGAGGAAAGCAGACATTGACC S18 reverse TTGTACTGGCGTGGATTCTG FOXF2 forward ACTCGCTGGAGCAGAGCTAC *FOXF2* reverse GGACGAAATCTTTTCTGTCACAC CD3D forward CTGCCGACACACAAGCTCT CD3D reverse GTTCCGAGCCCAGTTTCCT CD8A forward ACTTGTGGGGGTCCTTCTCCT CD8A reverse GTCTCCCGATTTGACCACAG CD4 forward ATGCACTGTCTTGCAGAACC *CD4* reverse CACCTGTTCCCCCTCTTTCT CD163 forward GCTCTAGGTGCTTCATTATGTCC *CD163* reverse CCAAAGACGATGAATTGCAC CD206 forward TGCAGAAGCAAACCAAACCT *CD206* reverse AGGCCTTAAGCCAACGAAAC PDCD1 forward CGCACGAGGGGACAATAGG *PDCD1* reverse GGAAATCCAGCTCCCCATAG CXCL5 forward CTGTTGGTGCTGCTGCTG CXCL5 reverse GGTCTGTAAACAAACGCAACG *CXCL6* forward GCTGCTGCTCCTGCTGAC *CXCL6* reverse TCAGCGTAACGCGTAAACA

Supplementary Table 5: Human primers for qRT-PCR analysis

CXCL8 forward	GAACTGAGAGTGATTGAGAGTGGA
CXCL8 reverse	CTCTGCACCCAGTTTTCCTT
S100A8 forward	CGTCTACAGGGATGACCTGA
S100A8 reverse	AACTGCACCATCAGTGTTGA
S100A9 forward	ACCAGGGGGAATTCAAAGAG
S100A9 reverse	GTCCAGGTCCTCCATGATGT
ACTA2 forward	CCGACCGAATGCAGAAG GA
ACTA2 reverse	ACAGAGTATTTGCGCTCCGAA

Primers	Sequences (5' to 3')
Chr.15 forward	AGCGTGGCCTTGGCAGCAAA
Chr.15 reverse	TGCGATTGGCTTCCTCTCCCC
$mPDGF\alpha$ forward	CCCATCATCCTCTCTCTTTGC
mPDGFa reverse	GGTAGCCTTTAGAAATGTGTGCCAG
CXCL5 site1 forward	ТТСТТТСТТТСТТТСТТТСТТТС
CXCL5 site1 reverse	GGAAATGTAATCCCGGACTTG
CXCL5 site2 forward	GTCCGGGATTACATTTCCTG
CXCL5 site2 reverse	GATAAGCAGACATACACATGCTCA

Supplementary Table 6: qPCR Primers for ChIP assay

Primers	Sequences (5' to 3')
Foxf2 Site 1 mutagenesis F	TTTTTATCTTTTCAAGTCCGG
Foxf2 Site 1 mutagenesis R	AAAAGAAAGAAAGAAAGAAAGAAAGAAAG
Foxf2 Site 2 mutagenesis F	TTTGAGCATGTGTATGTCTGC
Foxf2 Site 2 mutagenesis R	AAAAAAATACATTTGAAATGTGTGTTTTTAAAAC
$NF\kappa B$ Site deletion F	GCATCTTCAAGCTCCGCT
$NF\kappa B$ Site deletion R	GACTTGGAGTTAGGAGGTG

Supplementary Table 7: Primers for cloning CXCL5 Luciferase Reporters

Antigen	Supplier	Cat. Number/Clone Number	Species	Dilution
AR	Santa Cruz	sc-816	Rabbit	1:1000
AR	Santa Cruz	sc-13062	Rabbit	1:200
К5	905501	Biolegend	Rabbit	1:1000
K8	Covance	MMS-162P/1E8	Mouse	1:1000
K8	Abcam	AB53280	Rabbit	1:500
CD31	Abcam	AB28364	Rabbit	1:300
GFP	Abcam	ab13970	Chicken	1:1000
BrdU	Abcam	ab6326	Rat	1:500
Cleaved Caspase 3	Cell Signaling	9661S	Rabbit	1:1000
SV40 T-antigen	Abcam	ab16879/PAb416	Mouse	1:300
Smooth Muscle Actin	Sigma	202M/1A4	Mouse	1:1000
Synaptophysin	Novocastra	NCL-L-SYNAP-299/27G12	Mouse	1:300
Flag	Sigma	F1804/M2	Mouse	1:1000
Foxf2	Abcam	ab198283	Rabbit	1:500
Foxf2	R&D	AF6988	Sheep	1:100
Foxf2	MyBioSource	MBS2523449	Rabbit	1:500
CTLA-4	Bio X Cell	BE0131	Hamster	200ug
Hamster IgG Isotype	Bio X Cell	BE0087	Hamster	200ug
PD-1	Bio X Cell	BE0146	Rat	200ug
rat IgG2a isotype	Bio X Cell	BE0089	Rat	200ug

Supplementary Table 8: Antibodies for IHC and Western Blot

β-actin	Sigma	A2228/AC-74	Mouse	1:1000
GAPDH	Cell Signaling	2118	Rabbit	1:1000
normal rabbit IgG	Santa Cruz	sc-2027	Rabbit	1:30
normal donkey Serum	Jackson Imm	017-000-121	Donkey	1:30
PTEN	Cell Signaling	9556/26H9	Mouse	1:1000
p-AKT	Cell Signaling	4060	Rabbit	1:1000
p-Erk1/2	Cell Signaling	4370	Rabbit	1:1000
p-P65	Invitrogen	MA5-15160/T.849.2	Rabbit	1:1000
P65	Cell Signaling	8242	Rabbit	1:1000
p-Stat3	Cell Signaling	4113	Rabbit	1:1000
Stat3	Cell Signaling	8768	Rabbit	1:1000
α-Mouse IgG Alexa Fluor 594	Life technologies	A11020	Goat	1:500
α-Mouse IgG Alexa Fluor 488	Life technologies	A11029	Goat	1:500
α-Rabbit IgG Alexa Fluor 594	Life technologies	A11037	Goat	1:500
α-Rat IgG Alexa Fluor 594	Life technologies	A11006	Goat	1:500
α-Sheep IgG Alexa Fluor 488	Life technologies	A11015	Donkey	1:1500
α-Rabbit HRP	Vector Lab.	PI-1000	Goat	1:5000
α-Mouse HRP	Vector Lab.	PI-2000	Goat	1:5000
α-Sheep IgG HRP	Invitrogen	A16041	Donkey	1:5000