

Supplementary Figure 1. Inactive lever responding for *in vivo* imaging, PCA-based spectral clustering silhouette scores and within-cluster response dynamics.

a-d, Inactive lever pressing remained unchanged after TMT exposure (**a**; n=13 mice; two-tailed t-test, $t_{12}=1.08$, P=0.30), yohimbine administration (**b**; n=13 mice; two-tailed t-test, $t_{12}=0.63$, P=0.54), extinction learning (**c**; n=13 mice; two-tailed t-test, $t_{12}=1.32$, P=0.21) and cue-induced reinstatement (**d**; n=13 mice; two-tailed t-test, $t_{12}=1.09$, P=0.29; data are presented as mean values +/- SEM). **e**, **f**, Principal components analysis (**e**) and silhouette plot (**f**) show the relative fit for each neuron for each cluster formed by spectral clustering during late acquisition. **g**, Heatmaps for each neuronal ensemble reveals within-cluster neuronal responses during an active lever press for sucrose. **h**, **i**, Principal components analysis (**h**) and silhouette plot (**i**) show the relative fit for each neuron for each cluster during cue reinstatement. **j**, Heatmaps for each neuronal ensemble during an active lever press, with no sucrose reward. Rein., Reinstatement. Source data are provided as a Source Data file.

Supplementary Figure 2. Decoding reveals that $PVT \rightarrow NAc$ population dynamics predict active lever pressing, while cell tracking shows $PVT \rightarrow NAc$ clusters adapt across learning.

a, CDF plot showing that the activity of all PVT \rightarrow NAc neurons, not split by cluster, can predict active lever pressing during late acquisition (two-tailed t-test, t_{304} =9.30, *****P*<0.001). **b**, CDF plot showing all PVT \rightarrow NAc neurons, not split by cluster, can predict active lever pressing during cue reinstatement (two-tailed t-test, t_{123} =5.85, *****P*<0.001). **c**, Example FOVs for PVT \rightarrow NAc neurons which were tracked across sucrose self-administration days (*n*=6 mice, 45 tracked cells); early acquisition day (top), late acquisition day (bottom). **d**, Clustering of the tracked cells across each day revealed a change in ensemble dynamics for excitatory responders (20 cells), non-responders (12 cells), and inhibitory responders (13 cells). **e**, Mean responses for all tracked cells show a significant response adaptation for ensembles 1 and 3 across early and late acquisition days (two-way ANOVA, ensemble x time interaction: $F_{2,84}$ =10.08; *P*<0.001; Sidak's post-hoc: ensembles 1, 3 *P*-values<0.02). **f**, Correlation plot displaying mean responses (early vs. late) for all tracked neurons (Pearson-R value displayed in top right of graph, *P*=0.12). SA, self-administration; shuf., shuffled data; pop., population data; FOV, field of view. Group comparisons: **P*<0.05, ****P*=0.001, *****P*<0.001.

Supplementary Figure 3. Inactive lever pressing was unchanged by optogenetic manipulation of PVT \rightarrow NAc neurons.

a-e, Inactive lever pressing remained unchanged despite optogenetic manipulation of PVT \rightarrow NAc neurons for opto (**a**; *n*=8 eYFP, 8 eNpHR, 9 ChR2 mice; repeated-measures two-way ANOVA, *F*-values<1.37, *P*-values>0.28), TMT (**b**; *n*=8 eYFP, 9 eNpHR, 9 ChR2 mice; repeated-measures two-way ANOVA, *F*-values<2.82, *P*-values>0.08), yohimbine (**c**; *n*=8 eYFP, 9 eNpHR, 8 ChR2 mice; repeated-measures two-way ANOVA, group: *F*_{2,22}=3.93, *P*=0.04; post-hoc: *P*-values>0.71), and extinction (**d**; *n*=8 eYFP, 9 eNpHR, 9 ChR2 mice; repeated-measures two-way ANOVA, *F*-values<1.68, *P*-values>0.21). **e**, Optogenetic inhibition of PVT \rightarrow NAc neurons in eNpHR mice resulted in an increase of inactive lever pressing during cue-reinstatement, though other groups were unchanged (*n*=8 eYFP, 8 eNpHR, 9 ChR2 mice; repeated-measures two-way ANOVA, day: *F*_{1,22}=9.23, *P*=0.006; post-hoc: eNpHR ***P*=0.004). SA, self-administration; Base, baseline; Opto, optogenetics; Yoh, yohimbine. Data are presented as mean values +/- SEM. Source data are provided as a Source Data file.

Supplementary Figure 4. Heroin administration causes stimulation of PVT \rightarrow NAc neurons to be appetitive, rather than aversive.

a, Optogenetic stimulation of PVT \rightarrow NAc neurons resulted in a real-time place aversion in ChR2 mice, but not eYFP mice (*n*=5 mice/group; repeated-measures two-way ANOVA, side x group: *F*_{1,8}=12.89, *P*=0.007; post-hoc: ChR2 ***P*=0.002, eYFP *P*=0.99). **b**, Optogenetic stimulation of PVT \rightarrow NAc neurons did not affect locomotion, as there was not a significant difference in the number of chamber entries between eYFP and ChR2 mice (*n*=5 mice/group; two-tailed t-test, *t*₄=2.59; *P*=0.06). **c**, A single intraperitoneal injection of heroin resulted in stimulation-dependent real-time place preference in ChR2 mice, but not eYFP mice (*n*=5 mice/group; repeated-measures two-way ANOVA, side x group: *F*_{1,8}=10.85, P=0.01; post-hoc: ChR2 ***P*=0.007, eYFP *P*=0.82). **d**, Optogenetic stimulation of PVT \rightarrow NAc neurons did not affect locomotion in heroin-treated mice, as there was not a significant difference in the number of chamber entries between eYFP and ChR2 mice (*n*=5 mice/group; repeated-measures two-way ANOVA, side x group: *F*_{1,8}=10.85, P=0.01; post-hoc: ChR2 ***P*=0.007, eYFP *P*=0.82). **d**, Optogenetic stimulation of PVT \rightarrow NAc neurons did not affect locomotion in heroin-treated mice, as there was not a significant difference in the number of chamber entries between eYFP and ChR2 mice (*n*=5 mice/group; two-tailed t-test, *t*₄=2.59; *P*=0.06). RTPP, real-time place preference; IP, intraperitoneal injection; Opto, optogenetics. Data are presented as mean values +/- SEM. Source data are provided as a Source Data file.

Supplementary Figure 5. Identification of downstream PVT projection targets reveals synaptic innervation of D1-MSNs, D2-MSNs, and PV interneurons.

a, Surgical strategy wherein the anterogradely trafficked virus AAV1-Cre²⁷ was used to label downstream cellular targets of PVT \rightarrow NAc projection neurons. **b**, Example immunohistochemistry (IHC) for Cre, showing viral transduction of AAV1-Cre in posterior PVT (left); representative images of DIOeYFP labeling and NeuN IHC in NAc core and shell (middle); merged image of Cre-inducible eYFP and NeuN in NAc (right). **c**, Representative images showing anterogradely labeled eYFP⁺ neurons (left; neurons receiving strong PVT input), IHC for ppENK (putative D2 MSNs), PV, nNOS, and ChAT (middle), and overlayed images (right). **d**, Percentage of co-labeled eYFP⁺ and neuron subclass markers in neurons of the NAc core versus shell. Anterograde PV interneuron labeling was elevated compared to other striatal interneurons in NAc shell (*n*=3 mice, 68 cells; one-way ANOVA, effect of cell type: *F*_{3,64}=61.39, *P*<0.001; Sidak's post-hoc: PV vs nNOS ***P*=0.008; PV vs ChAT **P*=0.01), but only greater than one striatal interneuron subtype in NAc core (*n*=3 mice, 37 cells; one-way ANOVA, effect of cell type: *F*_{3,33}=41.42, *P*<0.001; Sidak's post-hoc: PV vs nNOS **P*=0.03; PV vs ChAT *P*=0.28). **e**, Pie-charts displaying a comparison of eYFP⁺/neuron subclass labeled markers in NAc core and shell; putative D1, D2-MSNs, and PV-interneurons had elevated anterograde labeling, suggesting strong synaptic connections with PVT. Data are presented as mean values +/- SEM.

Supplementary Figure 6. Selective DREADD-mediated inhibition of PV-interneurons, and inactive lever responding during pharmacological and chemogenetic manipulations.

a, Inactive lever pressing remained unchanged despite optogenetic activation of PVT \rightarrow NAc neurons with or without intra-NAc infusions of antagonists for D1 receptors, D2 receptors, and CP-AMPArs (*n*=7 mice/group; repeated-measures two-way ANOVA, *F*-values<3.61, *P*-values>0.07). **b**, Viral strategy (left) and example PV interneuron (right) waveform and expression. **c**, Waveforms (scale: 20mV/0.5s) and grouped data (*n*=4 cells, 2-4 mice/group) revealed that mCherry⁺ neurons spiked significantly less than neighboring mCherry⁻ neurons following bath application of CNO (repeated-measures two-way ANOVA, time x group interaction: *F*_{1,12}=7.68, P<0.01; Sidak's post-hoc: mCherry⁺ ****P*=0.0002). **d-g**, Inactive lever pressing remained unchanged despite optogenetic manipulation of PVT \rightarrow NAc neurons with or without chemogenetic inhibition of PV interneurons through intra-NAc infusions of CNO (**d**, Opto: *n*=8 mice/group; *F*-values<2.33, *P*-values>0.13; **e**, TMT: *n*=8 mice/group; repeated-measures two-way ANOVA, *F*-values<3.19, *P*-values>0.09; **f**, yohimbine: *n*=8 mice/group; repeated-measures two-way ANOVA, *F*-values<1.19, *P*-values>0.29; **g**, extinction: *n*=7 mice/group; repeated-measures two-way ANOVA, *F*-values<2.29, *P*-values>0.12). SA, self-administration; Base, baseline; Opto, optogenetics; Inf, infusion; Ant., antagonist; Yoh, yohimbine; Ext, extinction. Bar graphs are presented as mean values +/- SEM. Source data are provided as a Source Data file.

Supplementary Figure 7. Heroin administration modulates PVT-NAc neuronal ensemble dynamics, but not inactive lever pressing.

a-b, Heatmaps for each neuronal ensemble during sucrose self-administration following an intraperitoneal injection of saline (**a**; *n*=142 cells/4 mice) or heroin (**b**; *n*=105 cells/4 mice). **c-e**, Decoding scores for tracked cells in ensemble #1 (**c**), #2 (**d**), and #3 (**e**), show that heroin significantly reduces decoding for inhibited ensemble #3 (two-tailed t-test, *t*₇=5.89, *P*=0.001), but not other ensembles (two-tailed t-tests, *t*-scores<1.6, *P*-values>0.15). **f-h**, Inactive lever pressing remained unchanged across all conditions with or without a simultaneous systemic injection of heroin (**f**, Opto: *n*=8 mice/group; one-way ANOVA, *F*_{2,21}=1.59, *P*=0.23; **g**, TMT: *n*=8 mice/group; one-way ANOVA, *F*_{2,21}=1.22, *P*=0.32; **h**, yohimbine: *n*=7 mice/group; one-way ANOVA, *F*_{2,18}=2.25, *P*=0.13). SA, self-administration; Base, baseline; Opto, optogenetics, Yoh, yohimbine. Bar and line graphs are presented as mean values +/-SEM. Source data are provided as a Source Data file.

Supplementary Figure 8. Immunohistochemistry of PVT \rightarrow NAc µ-opioid receptor expression in WT and *Oprm1*^{fl/fl} mice.

Zoomed-out (top rows) and zoomed-in (bottom rows) images of PVT \rightarrow NAc μ -OR expression in WT and *Oprm1*^{fl/fl} mice following Cre-dependent knockout.

Supplementary Figure 9. DAMGO-induced suppression of PVT firing rates is prevented by knockout of PVT µ-opioid receptors.

a, Electrophysiological strategy for recording PVT neurons in naïve *Oprm1*^{fl/fl} mice. **b**, Example waveforms (scale: 50mV/0.5s) and grouped data from patched PVT neurons show a decrease in spiking following DAMGO (*n*=6 cells, 2 mice; two-tailed t-test, t_5 =7.89, *P*=0.001). **c**, Viral strategy for Credependent knockout of PVT µ-ORs in *Oprm1*^{fl/fl} mice. **d**, Example waveforms (scale: 50mV/0.5s) and grouped data show knockout of PVT µ-ORs prevents DAMGO-induced decrease of spiking (*n*=6 cells, 4 mice; two-tailed t-test, t_5 =1.29, *P*=0.26). µ-OR, µ-opioid receptor; Base, Baseline. Bar graphs are presented as mean values +/- SEM. Source data are provided as a Source Data file.

Supplementary Figure 10. Inactive lever pressing remains low after intraperitoneal heroin injection or intracranial DAMGO infusion in WT and *Oprm1*^{fl/fl} mice.

a-c, Inactive lever pressing remained unchanged across all conditions and groups with or without a simultaneous systemic injection of heroin (**a**, μ -OR KO Opto: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=0.54$, P=0.59; **b**, μ -OR KO TMT: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=1.35$, P=0.28; **c**, μ -OR KO yohimbine: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=1.35$, P=0.28; **c**, μ -OR KO yohimbine: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=0.15$, P=0.86). **d-i**, Inactive lever pressing remained unchanged across all conditions and groups with or without an intra-NAc infusion of DAMGO (**d**, Opto: $n=8 \ mice/group$; one-way ANOVA, $F_{2,21}=0.32$, P=0.73; **e**, TMT: $n=8 \ mice/group$; one-way ANOVA, $F_{2,21}=2.83$, P=0.08; **f**, yohimbine: $n=8 \ mice/group$; one-way ANOVA, $F_{2,21}=2.83$, P=0.08; **f**, yohimbine: $n=8 \ mice/group$; one-way ANOVA, $F_{2,24}=1.62$, P=0.23; **h**, μ -OR KO Opto: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=1.62$, P=0.23; **h**, μ -OR KO TMT: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=1.62$, P=0.23; **h**, μ -OR KO yohimbine: $n=6 \ Oprm1^{fl/fl}$, 8 WT mice; repeated-measures two-way ANOVA, $F_{2,24}=2.63$, P=0.045; **i**, μ -OR KO poind receptor; KO, knockout; WT, wild-type; Yoh, yohimbine; SA, self-administration. Bar graphs are presented as mean values +/- SEM. Source data are provided as a Source Data file.

Supplementary Table 1. Primary resources for immunohistochemistry.

Primary antisera	Host species	Concentration	Source	RRID (AB_)	Immunogen	Secondary antisera
Choline acetyltransferase	Mouse	1:1000	Millipore, AMAB91130	2665812	Peptide sequence	Anti-mouse 647
Parvalbumin	Mouse	1:1000	Millipore, MAB1572	2174013	Parvalbumin purified from frog muscle	Anti-mouse 647
Pre-pro Enkephalin	Rabbit	1:200	Neuromics, RA14124	2532106	Peptide sequence	Anti-rabbit 647
nNOS	Rabbit	1:1000	Millipore, AB5380	91824	Recombinant human nNOS	Anti-rabbit 647
µ-Opioid Receptor	Rabbit	1:500	Abcam, AB134054	N/A	Peptide sequence	Anti-rabbit 647
NeuN	Mouse	1:1000	Millipore, MAB377	2298772	Purified cell nuclei	Anti-mouse 647
Cre	Mouse	1:1000	Millipore MAB3120	2085748	Cre- recombinase fusion protein	Anti-mouse 647