
© 2022 Powell M et al. JAMA Network Open. 

Supplementary Online Content 

Powell M, Clark C, Alyakin A, Vogelstein JT, Hart B. Exploration of residual confounding in 

analyses of associations of metformin use and outcomes in adults with type 2 diabetes. JAMA 

Netw Open. 2022;5(11):e2241505. doi:10.1001/jamanetworkopen.2022.41505 

 

eAppendix. Supplemental Literature Review 

 

This supplementary material has been provided by the authors to give readers additional 

information about their work. 

 

  



© 2022 Powell M et al. JAMA Network Open. 

eAppendix. Supplemental Literature Review 

A central claim of this study is that the various design and modeling choices used in this study are 

reflective of what is commonly seen in the literature, including in high-impact medical journals.  A 

literature review was performed to support this claim and was conducted as follows: 

1. We searched the British Medical Journal (BMJ) network, Journal of the American Medical 
Association (JAMA) network, Lancet family, and New England Journal of Medicine (NEJM) 
webpages for all studies including “metformin” in the article title. 

2. We limited the results to observational studies of humans from 2015 to present; we excluded 
RCTs, meta-analyses, research letters, and animal/non-human studies. This returned 26 studies 
(N = 5 JAMA; N = 18 BMJ; N = 3 Lancet; N = 0 NEJM). 

3. We further excluded studies of endpoints/indications/outcomes listed as on-label indication 
and/or contra-indication per the metformin package insert (N = 6).1 

4. This left 20 studies for review (N=4 JAMA; N=14 BMJ; N = 2 Lancet; N = 0 NEJM).  A high-level 
summary of these studies is below, followed by a more detailed listing of all 20 studies in table 
form. 

o Incident user design was specified in 25% (N=5). 
o The most common comparators were no metformin (with a background of any non-

metformin diabetes drugs, N=3; without specification if a background of other diabetes 
drugs were permitted, N=13;), other non-metformin diabetes drug monotherapy (N=3 
[sulfonylureas (N=2) and DPP-4i (N=1)] or no drugs (N=1).  

o The off-label outcomes evaluated by these studies were oncology-related outcomes, 
including incidence, recurrence, or treatment response (N=7), ocular-related diseases 
(N=4), cardiovascular-related events (N=3), post-operative 
complications/mortality/readmission (N=2), neurodegenerative disease (N = 1), benign 
prostatic hyperplasia (N = 1), infectious disease (N=1), and in-hospital COVID-19 
mortality (N=1). 
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eTable 1. Summary of 20 observational studies of metformin for off-label outcomes (2015 to 2022) 

from the BMJ, JAMA, Lancet, and NEJM journal families. 

 
Article Journal 

Family 

Design Population Intervention Comparison Outcome Covariates 

Chang 

(2015) 

Lancet Retrospective 

cohort study 

with uni- and 

multivariate 

Cox 

proportional 

hazards 

model 

N = 2,003 veterans 

with type 2 diabetes 

and monoclonal 

gammopathy of 

undetermined 

significance (MGUS) 

Metformin; 

prevalent use 

No metformin Progression 

to multiple 

myeloma 

Age, sex, race, 

comorbidities, 

MGUS type, BMI, 

and level of HbA1c, 

serum M-protein, 

creatinine 

 

Lin 

(2015) 

JAMA Retrospective 

Cohort w/ 

uni-and 

multivariate 

Cox 

proportional 

regression 

models 

N = 150,016 people 

with diabetes 

mellitus age >= 40 

years 

metformin (by 

dosage 

quartiles); 

prevalent use 

No metformin incident open 

angle 

glaucoma 

Vary by model. 

Age, sex, race, 

region, SES, type of 

diabetes, ocular 

comorbidities, other 

comorbidities, 

Charlson 

comorbidity index 

score,* cataract and 

retinal surgery, 

diabetes medication 

classes, HbA1c 

Soffer 

(2015) 

BMJ Retrospective 

cohort study 

with 

multivariable 

Cox 

regression 

model 

N = 66,778 women 

with type 2 diabetes 

Metformin 

(monotherapy, 

in combination) 

Non-

metformin 

diabetes 

drugs, no 

drugs 

Incidence of 

breast, 

endometrial, 

and ovarian 

cancer 

Age, race/ethnicity, 

income, prior 

estrogen 

replacement 

therapy, statin use, 

Charlson 

comorbidity index, 

number of outpatient 

visits, maximum 

HbA1c 

Hall 

(2016) 

BMJ Retrospective 

cohort study 

with 

descriptive 

analysis 

N = 351 women with 

endometrial cancer 

and obesity 

Metformin; 

prevalent use 

No metformin Type I 

endometrial 

cancer 

recurrence 

None 

Mor 

(2016) 

BMJ Retrospective 

cohort study 

with Cox 

regression 

 

 

N = 131,949 people 

with type 2 diabetes 

initiation glucose-

lowering 

pharmacotherapy >= 

30 years 

Metformin; 

incident use 

Other 

glucose-

lowering 

drugs; 

incident use 

Community-

based 

antibiotic use, 

hospital-

treated 

infection 

Charlson 

comorbidity index 

score, micro- and 

macrovasular 

complications, 

diabetes duration, 

alcohol-related 

disorders, obesity, 

medications 

(immuno-

suppressives, oral 

corticosteroids, 

statins), marital 

status, calendar 

period. 

Hanpra-

sertpong 

(2017) 

BMJ Retrospective 

cohort study 

with uni- and 

multivariate 

Cox 

proportional 

hazards 

regression. 

N = 248 women with 

cervical cancer and 

type 2 diabetes 

Metformin No metformin Disease-free 

survival and 

overall 

survival 

Age, BMI, 

hypertension, 

diabetes treatment, 

tumor features (size, 

histology, stage), 

cancer treatment, 

recurrence status, 

hemoglobin. 

Takiuchi 

(2017) 

BMJ Retrospective 

cohort study 

with 

N = 785 women with 

cervical cancer 

Metformin, 

stratified by 

diabetes status 

No metformin Progression-

free survival, 

cervical 

Age (<60 vs ≥60 

years), histologic 

subtype (squamous 
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univariate 

analysis and 

multivariate 

Cox 

Proportional 

hazards 

model 

cancer-

specific 

overall 

survival 

cell, 

adenocarcinoma, 

adenosquamous, 

and others), and 

stage (early, locally 

advanced, and 

distant metastasis). 

 

Afzal 

(2018) 

BMJ Retrospective 

cohort study 

with Cox 

regression 

 

N = 55 people with 

metastatic malignant 

melanoma and 

treated with an 

immune checkpoint 

inhibitor (ICI; ipilim-, 

nivol- and/or 

pembrolizumab) 

Metformin, 

prevalent use, 

concurrent with 

ICI 

No metformin Objective 

response rate 

(partial + 

complete 

response) 

Age at diagnosis, 

sex, any other 

malignancy, prior 

cancer therapy. 

Roumie 

(2019) 

JAMA Retrospective 

cohort with 

adjusted Cox 

proportional 

hazards 

models 

N = 49,478 veterans 

with new-onset type 

2 diabetes and 

reduced kidney 

function (eGFR < 60 

mL/min/1.73m2) age 

>= 18 years 

Metformin; 

incident users, 

persisting with 

treatment after 

reduced renal 

function 

sulfonylurea; 

incident 

users, 

persisting 

with 

treatment 

after reduced 

renal function 

incident 

Major 

Adverse 

Cardiovascu-

lar Events 

(MACE) 

Age, sex, race, fiscal 

year, number of 

months from initial 

antidiabetic 

medication to kidney 

threshold (diabetes 

duration), body mass 

index, blood 

pressure, HbA1c, 

low-density 

lipoprotein, 

hemoglobin, 

proteinuria, 

creatinine, 

healthcare 

utilization, smoking 

status, 

comorbidities, select 

non-diabetes 

medications (statins, 

anti-hypertensives, 

other CVD, 

antipsychotics, oral 

glucocorticoids) 

Shi 

(2019) 

BMJ Retrospective 

cohort study 

with 

multivariate 

Cox 

proportional 

hazards 

model 

N = 5528 veterans 

aged>= 50 years 

with type 2 diabetes 

taking insulin 

Metformin; 

prevalent use, 

stratified by 

duration of use 

No metformin Incident 

neurode-

generative 

disease 

(dementia, 

Alzheimer’s, 

Parkinson’s, 

Huntington’s, 

mild cognitive 

impairment) 

Age, sex, race, 

medication history 

(diabetes drugs, 

antihypertensives, 

lipid-lowering), 

microvascular 

comorbidities, 

macrovascular 

comorbidities, 

hypertension, 

hyperglycemia, 

hyperlipidemia, 

kidney disease, 

mental health, 

obesity, tobacco use 

status. 

Lin 

(2020) 

BMJ Retrospective 

cohort study 

with multiple 

logistic 

regression 

N = 91,356 people 

with diabetes 

undergoing major 

surgery >= 20 years 

Metformin; 

prevalent use 

No metformin Post-

operative 

septicemia, 

renal failure, 

and 30-day 

in-hospital 

mortality 

Age, sex, low 

income, volume of 

the hospital, types of 

surgery, types of 

anesthesia, 

hypertension, mental 

disorders, ischemic 

heart disease, 

chronic obstructive 

pulmonary disease, 

hyperlipidemia, liver 

cirrhosis, heart 

failure, alcohol-
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related illness, renal 

dialysis, Parkinson’s 

disease, and 

Charlson 

comorbidity index 

 

Matsuo 

(2020) 

BMJ Retrospective 

cohort study 

with Cox 

proportional 

hazard model 

N = 245 women with 

obesity and complex 

atypical hyperplasia 

treated with oral or 

intrauterine 

progesterone 

Metformin; 

prevalent use 

No metformin Time to 

treatment 

response 

determined 

by 

endometrial 

biopsies, 

stratified by 

oral vs 

intrauterine 

progesterone 

Diabetes status, 

hyperlipidemia, 

polycystic ovarian 

syndrome, BMI, 

infertility. 

Nørgaard 

(2020) 

 

BMJ Retrospective 

cohort study 

with 

cumulative 

incidence 

rate 

 

N = men with type 2 

diabetes age >= 30 

initiating 

monotherapy with 

metformin or 

sulfonylurea 

Metformin, 

incident use 

Sulfonylurea, 

incident use 

Incident 

benign 

prostatic 

hyperplasia 

Diabetes duration, 

micro- and 

macrovascular 

comorbidities, 

HbA1c, Charlson 

comorbidity index, 

other comorbidities, 

medications 

(immunosup-

pressants, oral 

corticosteroids, 

statins), marital 

status, calendar 

period. 

Reitz 

(2020) 

JAMA Retrospective 

cohort with 

uni- and 

multivariable 

Cox 

proportional 

hazards 

regression 

model 

N = 10088 people 

with type 2 diabetes 

age >= 18 years 

undergoing major 

surgical intervention 

Metformin; 

prevalent use 

No metformin Postoperative 

mortality and 

readmission 

Age, sex, 

race/ethnicity, 

insurance coverage, 

index surgical 

intervention, 

American Society of 

Anesthesiologists 

score and 

associated emergent 

status for the index 

operation, markers 

of operative 

complexity, length of 

stay, and discharge 

disposition, 

comorbidities, 

medications (insulin, 

statins, blood 

thinners, other CV), 

operative year, 

surgical specialty, 

HbA1c, eGFR, 

hemoglobin, prior 

year visit with 

primary care 

physician, 

endocrinology, 

cardiology, for 

colonoscopy*, 

surgeon specialty, 

operative year. 

Sutton 

(2020) 

BMJ Retrospective 

cohort study 

with adjusted 

Cox 

proportional 

hazards 

model 

N = 123,440 people, 

with and without type 

2 diabetes, 

diagnosed with 

abdominal aortic 

aneurysm 

Metformin No 

metformin, 

stratified by 

diabetes 

status 

Abdominal 

aortic 

aneurysm 

progression 

to surgery 

and/or death. 

Age, race, Charlson 

comorbidity index 

score, comorbidities 

(hyper-

cholesterolemia, 

lipidemia, 

triglyceridemia, 
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hypertension), 

smoking status, 

body mass index, 

HbA1c, index year. 

Blitzer 

(2021) 

JAMA Retrospective 

case-control 

study with 

uni- and 

multivariable 

logistic 

regression 

312,404 people age 

>= 55 years with 

newly diagnosed 

age-related macular 

degeneration. 

Metformin; 

prevalent use, 

and stratified 

by dose 

No metformin Incident age-

related 

macular 

degeneration 

Age, sex, 

geographic region, 

select comorbidities 

(hypertension, 

hyperlipidemia, 

obesity, diabetes), 

diabetic retinopathy, 

smoking status, 

Charlson 

comorbidity index 

score, diabetes 

medications, statins. 

 

Bramante 

(2021) 

Lancet Retrospective 

cohort study 

with Cox 

proportional 

hazards 

model 

N = 6256 people 

with type 2 diabetes 

or obesity with 

inpatient admission 

for COVID-19 

Metformin; 

prevalent use 

No metformin In-hospital 

COVID-19 

mortality 

Comorbidities, 

medications. 

Gokhale 

(2022) 

BMJ Retrospective 

cohort study 

with extended 

Cox 

proportional 

hazards 

regression 

N = 173,689 people 

with newly 

diagnosed type 2 

diabetes aged >= 40 

Metformin, with 

or without 

other T2D 

drugs; incident 

use 

All other 

diabetes 

medications 

Incident age-

related 

macular 

degeneration 

Age, sex, ethnicity, 

SES, smoking 

status, body mass 

index, blood 

pressure, HbA1c, 

Charlson 

comorbidity index 

conditions, diabetes-

related 

complications, 

Jiang 

(2022) 

BMJ Retrospective 

cohort study 

with uni- and 

multivariate 

logistic 

regression 

models 

N = 324 people with 

type 2 diabetes for at 

least 10 years, aged 

>= 50 

Metformin, 

prevalent use 

No metformin 

(+/- other 

T2D meds) 

Incident age-

related 

macular 

degeneration 

Age, sex, diabetes 

duration, 

hypertension, 

hyperlipidemia, 

smoking status, 

diabetic retinopathy, 

body mass index, 

HbA1c, fasting blood 

glucose, cholesterol, 

triglycerides, HDL, 

LDL, uric acid, 

Creatinine. 

Nishimura 

(2022) 

BMJ Retrospective 

cohort study 

used Cox 

proportional 

hazards 

N = 8775 (database 

1), 5141 (database 

2) people diagnosed 

with type 2 diabetes 

at age >= 18 having 

no prior history of 

heart attack or 

cerebrovascular 

disease 

Metformin 

(first-line), 

incident use 

DPP-4 

inhibitor (first-

line), incident 

use 

Hospitaliza-

tion for 

myocardial 

infarction or 

stroke 

Age, sex, Charlson 

comorbidity index, 

hypertension, 

dyslipidemia, 

antithrombotic drugs, 

HbA1c, eGFR. 
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Data Sources 

Standardization of Data Entry and Data Structure  

Medical and pharmacy claims data are captured, predominantly electronically, from sites of care seeking 

third-party reimbursement for both Medicare and commercial plans using the industry standard data 

collection forms HCFA/CMS-1500 for facility claims, UB04/CMS-1450 for professional services and 

outpatient claims, and NCPDP for pharmacy claims or their electronic equivalents. Structured data from 

these standardized forms are coded using the International Classification of Diseases, Tenth Revision, 

Clinical Modification (ICD-10-CM), National Drug Codes (NDC), Current Procedural Terminology (CPT) 

codes, and Logical Observation Identifiers Names and Codes (LOINC) codes, and Diagnosis Related 

Groups (DRG). This nomenclature ensures consistency of data collection across geographic regions, 

health systems, and payers throughout the United States. 
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Other Drugs for Type 2 Diabetes Treatment 

Beyond metformin, there are many other drug classes used to treat type 2 diabetes.  The places in therapy 

for these pharmacologic treatment options are well characterized in randomized controlled trials, with 

treatment recommendations largely standardized among national and international diabetes care 

organizations.15–17  Notably, diabetes guidelines typically recommend using pharmacologic therapies 

additively, rather than substitutively, and differential recommendations for second-line diabetes drug 

classes exist for certain subpopulations of people with type 2 diabetes, including for people with or at high 

risk for atherosclerotic cardiovascular disease (ASCVD), those with heart failure, and those with chronic 

kidney disease.15–17  While the variety of available diabetes drug class options may give an appearance of 

a suite of active comparators for consideration in observational studies, this conclusion ignores the 

connections to disease severity that certain drug classes may have, as well as the consistency of metformin 

as a guideline-recommended, first-line therapy in the background of most treatment regimens as other 

drugs are added over time.  A full list of diabetes medications appears in Supplemental eTable 7. 

Validation Tools 

Covariate Balance Diagnostics 

Observational studies often attempt to demonstrate that acceptable covariate balance has been achieved 

between the exposure groups.  Whether it comes through matching, inverse propensity weighting, or some 

other method seeking covariate balance, a demonstration that balance has been achieved is necessary to 

convince the reader that two groups that are clearly different (as expected by their different prescribed 

treatments) have been manipulated in such a way that a weighted or reduced sample shows similar 

covariate distributions on a set of covariates deemed important for minimizing confounding.  Figure 1 

presents a diagnostic plot showing the pre- and post-adjustment covariate balance achieved in models for 

the two example outcomes; acceptable covariate balance generally requires the standardized mean 

differences for all covariates to have absolute values <0.1.  An additional step that can help illustrate 

whether or not the various comparison groups are appropriate for comparison is to look at the propensity 

distribution plots for each group.  Below we show examples of the propensity distribution plots for the 

primary analysis.  The approach described in the main text ensures overlap in the propensity score 

distributions by trimming observations with extremely low probabilities of metformin treatment. 

Metformin Propensity Distributions in Prediabetes and Type 2 Diabetes Cohorts 

 

    Prediabetes (Metformin vs. Nonusers)         Type 2 Diabetes (Metformin vs. Insulin)  

                      
  

https://www.zotero.org/google-docs/?os7eAa
https://www.zotero.org/google-docs/?vrl7cP
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Negative Control Experiments 

A negative control experiment is one where there exists no causal relationship between the treatment and 

the outcome.24  In particular, negative control outcomes, also known as falsification endpoints, preserve the 

same treatment/control group designations as the primary outcome for each individual in the study, but they 

are outcomes that cannot reasonably be impacted by the exposure.  In our metformin study, outcomes like 

dry eye syndrome and low back pain are candidate negative control outcomes because there is no known 

mechanism by which metformin could directly impact these events.  Importantly, negative control outcomes 

should be subject to the same residual confounding as the primary outcomes, which our study assumes to 

be exclusively related to overall health.   

By looking at a wide range of outcomes with no direct, mechanistic connection to the treatment, we seek 

to expose differences in overall health not accounted for by the treatment or the other observed covariates.  

For a comparison of metformin and insulin users in a type 2 diabetes cohort, a pattern of nonzero treatment 

effects for metformin on the negative control outcomes is evidence that we have not adequately controlled 

for the underlying differences in the overall health status of these two groups.   

Negative Control Outcome Criteria 

 

The objective in a negative control outcome experiment is to detect significant relationships between the 

treatment of interest (e.g., metformin) and a mechanistically unrelated outcome (e.g., low back pain); 

detecting such a relationship raises serious concerns about residual confounding related to the study 

design.  Importantly, these negative control outcomes should be evaluated against these five criteria: 

 

1. There is no mechanistic connection to the treatment under investigation (i.e., no established 

mechanism of action for this treatment to affect the negative control outcome). 

2. Negative control outcomes must be reasonably prevalent; the statistical power associated with the 

negative control experiment increases as the prevalence of the outcome increases in the population 

under study.  As a rule of thumb, consider giving preference to negative control outcomes at least 

as prevalent as the primary outcome.  A rare negative control outcome will likely be less informative, 

typically returning a null result even in the presence of significant residual confounding.  The noisy 

results of a large collection of rare negative control outcomes can still be informative, however, 

even if an individual outcome occurs too rarely to confidently estimate a treatment effect. 

3. Negative control outcomes are suspected of being subject to the same residual confounding as the 

primary outcome under investigation (e.g., does not require a different level of health care access, 

health insurance benefit design, etc.).  This is unverifiable due to the nature of residual confounding, 

but the point is that whatever may introduce bias in the outcome of interest should be a potential 

source of similar bias (expected to be the same direction and magnitude) for the negative control 

outcome. 

4. (Optional) There is no causal relationship to disease severity (e.g., not a known indicator of disease 

severity for the disease indicating this medication). 

5. (Optional) The negative control outcome is not an indicator of health-seeking behavior (e.g., some 

of the most common recorded “diagnoses” in claims data are screenings or exams that could be 

sex-specific or age-specific).  Exceptions are appropriate when the primary outcome is a health-

seeking behavior. 

 

Of these five criteria, (1), (2), and (3) are required, and (4) and (5) are desirable in order to further distance 

the negative outcomes from obvious group differences in disease severity or health care utilization.  The 

entire collection of negative control outcomes will be used to identify meaningful ways in which the 

https://www.zotero.org/google-docs/?CuFJKF
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comparison groups differ even after adjustments are made for observed covariates. Negative control 

experiments -- well-accepted and commonly recommended -- remain infrequently conducted components 

of observational study designs.23  One explanation for the lack of widespread adoption is that identifying 

the perfect negative control experiment is often quite challenging. In practice, however, a wide range of 

negative control experiments do not have to individually be perfect to collectively reveal the residual 

confounding we seek to expose.  For this reason, one might empirically determine a host of acceptable 

negative control outcomes by reviewing the most frequently observed diagnoses among individuals in the 

cohort.  The focus of this approach is using the collective body of evidence from many possibly imperfect 

negative experiments rather than relying on any single negative experiment’s ability to survive heavy 

scrutiny.   

Negative Control Outcome Selection Algorithm 

 

In a randomized trial, thoughtful selection of negative controls is necessary because that data must be 

intentionally collected, possibly at significant cost.  In an observational study, we must draw candidate 

negative controls from data that has already been collected as acquiring new data on the selected 

individuals is highly unlikely.  To find outcomes present in our data that meet the criteria for negative 

controls, we proceed as follows (example results depicted in eTable 2): 

1. Identify the 500 most common diagnosis codes in 2018 in terms of affected individuals in the 

primary cohort, ignoring multiple diagnoses for the same condition for the same individual.  Repeat 

for the complementary cohort. 

2. Filter the observed diagnoses to only retain diagnoses observed in both cohorts. 

3. Rank the diagnosis codes in each cohort and then sum the ranks for a composite rank sum (e.g., 

low back pain is #13 in prediabetes and #15 in type 2 diabetes for a rank sum of 28). 

4. Order the diagnosis codes by rank sums from smallest to largest. 

5. Take the top 10/20/50/etc. outcomes that meet the criteria for negative control outcomes.  This 

requires domain expertise to individually consider each outcome for potential mechanistic 

connections to the treatment, disease severity, and health-seeking behavior.  Additionally, a power 

analysis can help establish a prevalence minimum. 

It is likely that these negative control outcomes will span a variety of body systems and will not all be highly 

correlated, reducing the impact of a single negative control outcome in the group that may have an 

unrecognized connection to the drug or disease under investigation.  Other approaches to identifying 

negative control outcomes have been developed, including the ATLAS tool created by the Observational 

Health Data Sciences and Informatics (OHDSI) organization, which also uses a combination of automated 

discovery and expert review to identify 50-100 negative controls.23 

  

https://www.zotero.org/google-docs/?XdwTML
https://www.zotero.org/google-docs/?d3AD54
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Observed Condition Empirical Prevalence Expert Review 

ICD 
Code 

ICD Code Description 
T2D 
Rank 

T2D 
Total 

Cases 

Prediabete
s Rank 

Prediabete
s Total 
Cases 

Prediabete
s and T2D 

Ranks 
Summed 

well-
established 
mechanistic 

connection to 
metformin 

impacted 
by 

diabetes 
severity 

general 
health-
seeking 
behavior 

negative 
control 

candidat
e 

i10 
essential (primary) 
hypertension 

2 1419426 2 146023 4 N Y N N 

e785 
hyperlipidemia 
unspecified 

3 755895 4 90418 7 N Y N N 

z0000 

encounter for general 
adult medical 
examination without 
abnormal findings 

4 679139 3 124587 7 N N Y N 

z23 
encounter for 
immunization 

5 575125 5 83550 10 N N Y N 

e782 mixed hyperlipidemia 7 479440 7 55719 14 N Y N N 

z1231 

encounter for 
screening 
mammogram for 
malignant neoplasm 
of breast 

8 369026 6 68582 14 N N Y N 

e039 
hypothyroidism 
unspecified 

10 301838 9 36737 19 N N N Y 

r05 cough 12 271000 14 30625 26 N N N Y 

e7800 
pure 
hypercholesterolemia 
unspecified 

17 248728 11 34292 28 N Y N N 

m545 low back pain 15 262643 13 31102 28 N N N Y 

eTable 2.  Negative control outcomes were selected through an automated generation of candidate 

outcomes followed by an expert review.  Prevalence of outcomes in both the primary and complementary 

cohorts is emphasized in this approach, resulting in an ordering of candidates from which experts can 

identify the first 10/20/50/etc. candidates that satisfy multiple negative control outcome criteria.  Here we 

find three acceptable negative control outcomes in the 10 most common diagnoses.  We found 50 suitable 

negative control outcomes in the ~100 most prevalent diagnoses in our data set. 

Complementary Cohorts 

Complementary cohorts provide a second tool to stress test the primary results by nullifying or reversing 

any overall health advantage the treatment group has in the primary cohort.  If we suspect the treatment 

group may be healthier in some unmeasurable way than the comparison group (aside from the possible 

effect of the treatment), we construct another cohort in which the treatment group is expected to be less 

healthy than the comparison group (aside from the possible effect of the treatment). The construction of 

this cohort requires relevant domain expertise in order to satisfy the following criteria: 

 

1. The primary treatment of interest must be reasonably prevalent in the complementary cohort.  If 

there are too few users of the primary treatment in the complementary cohort, there will be limited 

power to detect an effect. 

2. If treatment is concentrated among the healthiest members of the primary cohort (in both 

measurable and unmeasurable ways), use of the treatment in the complementary cohort should be 
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concentrated among individuals with worse overall health relative to the rest of the cohort, and vice 

versa.  This creates a mirror image of the primary cohort and is critical if the goal is to nullify or 

reverse the overall health advantage (or disadvantage) suspected in the treated group in the 

primary cohort. 

3. There should be no unnecessary differences in the cohort-identifying disease.  This is easiest to 

satisfy in diseases with a commonly diagnosed “predisease” stage (e.g., prediabetes/type 2 

diabetes, albuminuria/chronic kidney disease, osteopenia/ osteoporosis), a framework that best 

ensures that any residual confounding present in the complementary cohort will be of the same 

nature as that of the primary cohort (i.e., related to overall health).  Introducing a complementary 

cohort from a completely different disease is still possible, but it may introduce complicated disease 

differences that must be addressed. 

 

In a study of individuals diagnosed with type 2 diabetes, there is a natural complementary cohort in the 

population of individuals diagnosed with prediabetes.  Critically, the drug metformin is prescribed to 

individuals in both cohorts -- extensively in type 2 diabetes and more modestly in prediabetes.  What makes 

this primary/complementary cohort specification ideal is where the concentration of metformin users exists 

in each cohort.  In the American Diabetes Association’s (ADA) published “Pharmacologic Approaches to 

Glycemic Treatment: Standards of Medical Care in Diabetes—2020,” metformin monotherapy is 

recommended as the first-line treatment for type 2 diabetes along with comprehensive lifestyle 

modifications.15  If comorbidities like atherosclerotic cardiovascular disease, heart failure, or chronic kidney 

disease are present, other drugs may augment or replace metformin.  If metformin and/or other drugs 

cannot effectively control blood glucose, an individual may ultimately be prescribed insulin.  Thus, 

individuals with a metformin claims history, but no history of insulin use, are earlier in the spectrum of type 

2 diabetes severity than those who have progressed to using insulin.   

 

In prediabetes, the ADA Standards of Medical Care recommend considering treatment with metformin for 

individuals at risk for developing type 2 diabetes, particularly for high-risk individuals, including those with 

a history of gestational diabetes, BMI >= 35 kg/m2, or age less than 60 years old.14  Whereas the metformin 

users were the least severe cases in the type 2 diabetes cohort, they hold the opposite position in the 

prediabetes cohort.  As depicted in eFigure 1, prediabetes thus presents an ideal complementary cohort by 

eliminating or potentially reversing any metformin exposure group advantage that could be attributable to 

overall patient health in the primary cohort. 

 

 
 

eFigure 1. Based on guideline-driven treatment recommendations, metformin users diagnosed with 

prediabetes are assumed to be on the opposite end of their respective diabetes severity spectrum 

compared to metformin users diagnosed with type 2 diabetes.  The prediabetes cohort thus reverses the 

overall health advantage enjoyed by the metformin users in the type 2 diabetes cohort, which makes it an 

ideal candidate for a complementary cohort aiming to expose residual confounding related to overall health. 

 

https://www.zotero.org/google-docs/?xKcdQn
https://www.zotero.org/google-docs/?o7SNPv
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The role of this complementary cohort is to validate whether the covariate selections and method choices 

in the primary cohort analysis are indeed effective at addressing confounding related to disease severity 

and overall health. If they are, we should expect to reproduce the primary cohort finding in the 

complementary cohort.  Conflicting findings suggest that the result in the primary cohort may be a result of 

residual confounding and not a true treatment effect. Other explanations exist for conflicting findings, 

specifically a heterogeneous treatment effect, a possibility that goes unexplored when the entire focus is 

on the primary cohort.   

Negative Controls in Complementary Cohorts 

Negative control outcome results may reveal residual confounding in the primary cohort (e.g., through a 

pattern of protective associations between the treatment and the negative control outcomes), which further 

motivates the use of a complementary cohort to test the primary result.  These same negative control 

outcomes must also test the selection of the complementary cohort, ensuring it exhibits the most desired 

quality of a complementary cohort: no residual confounding-induced advantage in negative control outcome 

experiments.  The strength of a complementary cohort is defined by how much the negative control outcome 

associations are nullified or reversed in comparison with the primary cohort results. Larger reversals 

indicate that the complementary cohort provides a more robust validation of the initial results.  If the pattern 

of bias (i.e., nonzero negative control outcome effect sizes) is similar in the two groups, then the second 

analysis has little to add aside from validating the result in another population. 

 

When adequately powered, null results across all negative control outcome experiments in both the primary 

and complementary cohorts are a good indication that residual confounding may be fairly minimal in the 

identified cohorts and the results are likely trustworthy. When the primary and complementary cohorts yield 

conflicting results across a host of negative control outcomes, we attribute that difference to a difference in 

residual confounding in the two cohorts -- this is exactly what we hope to uncover if it exists.  In Figure 2, 

we capture these residual confounding differences in an easily digestible diagnostic plot; it is this diagnostic 

plot that provides the necessary backdrop to interpret a study’s primary result from a more informed 

position. 

Covariate Balance in Negative Control Outcome Experiments 

Covariate balance was demonstrated for the primary outcomes in the primary and complementary cohorts 

in the main text.  In eFigure 2 we show that acceptable covariate balance was achieved using IPW for 50 

negative control outcome experiments conducted in both cohorts. 
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eFigure 2.  Here we show 50 overlaid balance plots for the Medicare Advantage type 2 diabetes cohort 

(panel A) and the prediabetes cohort (panel B) where the only covariate changing from one negative control 

outcome experiment to the next is the history of each respective outcome.  The fact that adjusted balance 

changes negligibly with the exception of outcome history suggests that the sample under analysis (after 

propensity trimming) is largely the same from one experiment to the next.  The noticeable leftward shift in 

unadjusted balance in panel A reflects the healthier nature of the metformin group in the type 2 diabetes 

cohort (fewer inpatient days, lower Elixhauser in-hospital mortality score, lower prevalence of diabetes 

complications in every DCSI dimension despite being slightly older as a group).  In panel B, we see better 

unadjusted balance that appears to meaningfully reduce the metformin advantage.  Across both cohorts, 

the IPW approach achieved satisfactory balance after adjustment for every observed covariate of interest. 
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Final Results Plot Interpretation 

 

Figure 4 in the main text (as well as eFigure 7, eFigure 11, and eFigure 15 in the supplement) depicts the 

primary and complementary cohorts results for a primary outcome against a backdrop of negative control 

outcome experiment results.  The discussion surrounding these figures presents an interpretation for 

each figure, but not all possible scenarios were observed in the real data example.  In eFigure 3 we 

explore a more comprehensive set of possible findings that may appear in a main results figure, and we 

provide a recommended interpretation for each set of results.  The interpretation of each scenario centers 

on examining each cohort’s primary result in the context of its negative control outcome distribution; we 

then check for agreement between the cohorts. 

 

 
eFigure 3.  Possible Primary Outcome Results: In each of these scenarios, a primary cohort is depicted 

with a blue bar identifying the result for the primary outcome, and a light blue distribution of negative control 

outcome results appears behind it.  The complementary cohort results are depicted in the same manner.  

The discussion in the supplement text examines each row A-F for the level of evidence it provides to support 

a claim of a beneficial treatment effect. 

 

In eFigure 3 row A, we see a strong primary result and no pattern of bias in the negative control outcome 

experiments.  With no evidence of bias, there is no requirement to have a complementary cohort, and we 

have reason to trust the primary result.  We would similarly trust a result indicating harm the farther right it 

is from the null.  Our confidence in either result would decrease as it moves toward the null.   
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In eFigure 3 row B, we observe a strong primary result, but there is a clear pattern of bias in the negative 

control outcome experiments, which weakens the evidence supplied by the primary result.  In the 

complementary cohort (validated by observed bias reversal), we see a more modest primary result, but it 

is quite strong compared to the negative control outcome experiments.  Taken together, all the evidence 

from both cohorts points to a beneficial treatment effect.  In this case, the complementary cohort analysis 

strengthened our confidence in the primary cohort result. 

 

In eFigure 3 row C, a strong primary result is nullified by the negative control outcome experiments.  An 

unfavorable result in the complementary cohort is also nullified by negative control outcome experiments.  

Taken together, there is no strong evidence of any effect. 

 

In eFigure 3 row D, we see a modest primary result in the primary cohort, and this result exceeds a large 

majority of the negative control outcome experiments.  In the complementary cohort, everything is reversed 

such that the primary result is now harmful and exceeds a similarly large majority of the negative control 

outcome experiments.  Taken together, these conflicting findings present no strong evidence of any effect.  

In this case, the complementary cohort analysis erased our confidence in the primary cohort result. 

 

In eFigure 3 row E, a modest primary result in the primary cohort actually appears harmful compared to the 

distribution of negative control outcome experiments.  In the complementary cohort, the result indicating 

harm is worse than a large majority of the negative control outcome distribution.  Taken together, these 

results suggest there may be a harmful effect.  In this case, the complementary cohort analysis 

strengthened our confidence in the primary cohort result. 

 

In eFigure 3 row F, a strong primary result in the primary cohort exceeds a large majority of the negative 

control outcome results, indicating a potentially beneficial treatment effect.  In the complementary cohort, a 

result indicating harm is squarely in the middle of the negative control outcome results, effectively indicating 

a null effect.  Taken together, these results are inconclusive.  There’s some evidence supporting benefit 

and other evidence suggesting no effect.  In this case, the complementary cohort analysis lessened our 

confidence in the primary cohort result.  
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Supplementary Analyses 

The main text focused on a comparison group of insulin users, but nonusers are also a frequent comparison 

group in studies of metformin and other drugs.  Nonusers are a difficult group to conceptualize when virtually 

every stage of treatment for a condition involves prescription medication (as seen in the type 2 diabetes 

treatment recommendations).  The “nonuser” population can also be hard to describe when the drug under 

investigation is available inexpensively without using insurance (e.g., metformin).  Since metformin is so 

widely prescribed in the type 2 diabetes population, there is a reasonable chance that some “nonusers” are 

taking metformin; they are simply purchasing it outside the visibility of their insurance plans, making them 

only appear as nonusers in our study despite obtaining the medication through alternate means such as 

cash pay.  This has the effect of biasing any effect estimate toward the null and was the primary reason we 

selected insulin users as the comparison group for the main analysis.   

 

In eTables 3-5 and eFigures 4-15 we show three supplemental analyses not presented in the main text.  

Each of the three analyses is presented in one results table and four figures.  eTable 3, eFigure 4, eFigure 

5, eFigure 6, and eFigure 7 present a metformin analysis in the Medicare Advantage population with a 

comparison group of nonusers (different comparison group from the main text).  eTable 4, eFigure 8, 

eFigure 9, eFigure 10, and eFigure 11 present a metformin analysis in the commercially insured population 

with a comparison group of insulin users (different population from the main text).  eTable 5, eFigure 12, 

eFigure 13, eFigure 14, and eFigure 15 present a metformin analysis in the commercially insured population 

with a comparison group of nonusers (different population and comparison group from the main text).  Each 

four-figure group shows two Love plot figures (one for the example outcomes and one for the 50 negative 

control outcome experiments) depicting acceptable covariate balance, a residual confounding plot, and 

finally the primary outcome results plotted on a distribution of negative control outcome effect estimates in 

both the primary and complementary cohorts.  We see bias in the same direction emerge in the distributions 

of negative control outcome effect estimates in every combination of population and comparison group 

definition.  In summary, none of the populations and comparison groups we explored appear immune to a 

concerning amount of residual confounding. 
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Medicare Advantage Beneficiaries (metformin users vs. nonusers) 

 

Examining the nonuser comparison group in the Medicare Advantage population produced favorable 

results supporting a metformin benefit (see eTable 3).  The large Medicare Advantage population makes 

these conservative results highly confident.  The pre-adjustment covariate balance in eFigure 4 and 

eFigure 5 indicates a slightly healthier metformin user population, and eFigure 6 confirms once again 

through the negative control outcome experiments that a strong bias exists favoring metformin in type 2 

diabetes while also showing a weaker bias against metformin in the prediabetes cohort.  Interestingly, 

eFigure 7 shows that the example outcome effect estimates in type 2 diabetes are at best as strong as 

those seen for an average negative control outcome experiment, but they are far worse than an average 

negative control outcome experiment in the prediabetes cohort.  Thus, while eTable 3 may indicate a 

favorable treatment effect estimate, no such conclusion can be supported by the total evidence supplied 

by the complementary cohort design. 

 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -0.39 (-0.41, -0.36) <10-216 1.94 

inpatient days IPW logistic -0.09 (-0.12, -0.06) <10-10 1.33 

medical spend unadjusted -0.55 (-0.58, -0.53) <10-323 2.30 

medical spend IPW logistic -0.17 (-0.20, -0.14) <10-23 1.50 

 

eTable 3.  Treatment effect estimates for metformin: this study was conducted in a Medicare Advantage 

type 2 diabetes population comparing metformin users to a control group of nonusers.  The outcomes 

represent >0 inpatient admission days in 2019 and a total medical spend (insurance payouts to health 

care providers) exceeding the 90th percentile of all type 2 diabetes patient expenditures (>$25,793).  

Metformin appears associated with fewer inpatient admission days and lower health care costs, even 

after adjustment for a range of relevant covariates. 
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eFigure 4.  Covariate Balance in Example Outcomes: Medicare Advantage Beneficiaries (metformin users 

vs. nonusers).  This is a different comparison group compared to Figure 1, and in both the prediabetes and 

type 2 diabetes cohorts, there appears to be a slight health advantage among the metformin users (pre-

adjustment standardized mean differences <0).  In all cases, the post-adjustment balance is excellent. 
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eFigure 5.  Covariate Balance in Negative Control Outcome Experiments: Medicare Advantage 

Beneficiaries (metformin users vs. nonusers).  This is a different comparison group compared to eFigure 2, 

and in both the prediabetes and type 2 diabetes cohorts, there appears to be a slight health advantage 

among the metformin users (pre-adjustment standardized mean differences <0).  In all cases, the post-

adjustment balance is excellent. 
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eFigure 6.  Residual Confounding Plot: Medicare Advantage Beneficiaries (metformin users vs. nonusers 

of any diabetes drug).  This is a different comparison group compared to Figure 2 in the main text.  The 

residual confounding again appears consistent with the primary analysis, strongly favoring metformin users 

in the type 2 diabetes cohort while maintaining a smaller bias against metformin in the prediabetes cohort. 
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eFigure 7.  Primary Outcome Results: Medicare Advantage Beneficiaries (metformin users vs. nonusers of 

any diabetes drug).  This is a different comparison group compared to Figure 4 in the main text.  We see 

adjusted treatment effect estimates that are at best on par with an average effect size for a negative control 

outcome in type 2 diabetes and considerably worse in prediabetes; together, these observations should 

elicit doubt about any claims of a real effect in the primary analysis.  
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Commercial Insurance Beneficiaries (metformin users vs. insulin users) 

 

In an alternate population of commercially insured beneficiaries, we see strong results in eTable 4 

favoring metformin usage that are quite confident despite the much smaller population under study.  

eFigure 8 and eFigure 9 show excellent covariate balance, but we continue to see in eFigure 10 negative 

control outcome effect estimates biased in favor of metformin in the type 2 diabetes population and 

biased against metformin in the prediabetes population.  Interestingly, while the adjusted effect estimates 

for the example outcomes indicate a potential treatment effect that appears relatively strong compared to 

the negative control outcome effect estimates in eFigure 11, one effect goes to 0 while the other 

substantially reverses in the prediabetes population.  Together, these results suggest that the findings in 

eTable 4 are likely products of significant residual confounding. 

 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -1.49 (-1.62, -1.36) <10-106 5.07 

inpatient days IPW logistic -0.71 (-0.89, -0.52) <10-13 2.65 

medical spend unadjusted -1.51 (-1.63, -1.40) <10-134 5.15 

medical spend IPW logistic -0.65 (-0.82, -0.48) <10-13 2.51 

 

eTable 4.  Treatment effect estimates for metformin: this study was conducted in a commercially insured 

type 2 diabetes population comparing metformin users to a control group of insulin users.  The outcomes 

represent >0 inpatient admission days in 2019 and a total medical spend (insurance payouts to health 

care providers) exceeding the 90th percentile of all type 2 diabetes patient expenditures (>$21,433).  

Metformin appears strongly associated with fewer inpatient admission days and lower health care costs, 

even after adjustment for a range of relevant covariates. 
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eFigure 8.  Covariate Balance in Example Outcomes: Commercially Insured Beneficiaries (metformin users 

vs. insulin).  This is a different population compared to Figure 1.  In the type 2 diabetes cohort, the metformin 

users have a noticeable health advantage that essentially disappears in the prediabetes population.  In 

both the prediabetes and type 2 diabetes cohorts, the post-adjustment balance is excellent. 
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eFigure 9.  Covariate Balance in Negative Control Outcome Experiments: Commercial Insurance 

Beneficiaries (metformin users vs. insulin users).  This is a different population compared to eFigure 2.  

Here we show 50 overlaid balance plots for the type 2 diabetes cohort (panel A) and the prediabetes cohort 

(panel B) where the only covariate changing from one negative control outcome experiment to the next is 

the history of each respective outcome.  Excellent post-adjustment covariate balance is achieved for all 

negative control outcome experiments. 
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eFigure 10.  Residual Confounding Plot: Commercially Insured Beneficiaries (metformin users vs. insulin 

users).  This is a different population compared to Figure 3 in the main text.  The residual confounding 

again appears consistent with the primary analysis, strongly favoring metformin users in the type 2 diabetes 

cohort while appearing to work against metformin users in the prediabetes cohort. 
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eFigure 11.  Primary Outcome Results: Commercially Insured Beneficiaries (metformin users vs. insulin 

users).  This is a different population compared to Figure 4 in the main text.  We see adjusted treatment 

effect estimates that exceed a large majority of the estimated effect sizes from the negative control outcome 

experiments in type 2 diabetes.  In prediabetes, however, these effect estimates become null in one case 

and substantially reverse in the other, which together should elicit some doubt about any claims in the 

primary analysis.  
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Commercial Insurance Beneficiaries (metformin users vs. nonusers) 

 

In an alternate comparison group of nonusers of any diabetes drugs among the commercially insured, we 

see more conservative results favoring metformin usage in eTable 5.  While the nonusers may be hard to 

completely explain, we can be relatively confident they are not insulin users (and thus more advanced 

type 2 diabetes cases) due to the generally high list price of insulins.  eFigure 12 and eFigure 13 show 

excellent covariate balance, but we continue to see in eFigure 14 negative control outcome effect 

estimates biased in favor of metformin in the type 2 diabetes population and biased against metformin in 

the prediabetes population.  Interestingly, while the adjusted effect estimates for the example outcomes 

indicate a potential treatment effect with varying levels of confidence, neither type 2 diabetes effect 

estimate is stronger than even half of the negative control outcome effect estimates in eFigure 15.  This 

observation strongly challenges the results in eTable 5 as nothing more than products of significant 

residual confounding. 

 

outcome model log OR (base 2) 95% CI p E-value 

inpatient days unadjusted -0.39 (-0.49, -0.29) <10-13 1.95 

inpatient days IPW logistic -0.15 (-0.26, -0.04) <0.01 1.45 

medical spend unadjusted -0.26 (-0.35, -0.17) <10-7 1.69 

medical spend IPW logistic -0.09 (-0.19, 0.01) 0.08 1.33 

 

eTable 5.  Treatment effect estimates for metformin: this study was conducted in a commercially insured 

type 2 diabetes population comparing metformin users to a control group of nonusers.  The outcomes 

represent >0 inpatient admission days in 2019 and a total medical spend (insurance payouts to health 

care providers) exceeding the 90th percentile of all type 2 diabetes patient expenditures (>$21,433).  

Metformin appears strongly associated with fewer inpatient admission days and lower health care costs, 

even after adjustment for a range of relevant covariates. 
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eFigure 12.  Covariate Balance in Example Outcomes: Commercial Insurance Beneficiaries (metformin 

users vs. nonusers).  This is the same analysis as Figure 1 in the main text, but it considers a different 

population and comparison group.  Compared to Figure 1, the unadjusted balance in the type 2 diabetes 

population indicates metformin users are much more comparable to nonusers than insulin users.   
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eFigure 13.  Covariate Balance in Negative Control Outcome Experiments: Commercial Insurance 

Beneficiaries (metformin users vs. nonusers).  This is a different population and comparison group 

compared to eFigure 2.  The type 2 diabetes metformin users and nonusers are considerably better 

balanced pre-adjustment here compared to eFigure 2, but that is not enough to eliminate the bias we see 

in eFigure 14. 
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eFigure 14.  Residual Confounding Plot: Commercial Insurance Beneficiaries (metformin users vs. 

nonusers of any diabetes drug).  This is the different population and comparison group compared to Figure 

3 in the main text.  The effect sizes are more conservative with this comparison group (though still biased 

to favor metformin in type 2 diabetes and oppose metformin in prediabetes), possibly due to the number of 

metformin users mixed into the nonuser population. 
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eFigure 15.  Primary Outcome Results: Commercial Insurance Beneficiaries (metformin users vs. nonusers 

of any diabetes drug).  This is a different population (commercially insured) compared to Figure 4 in the 

main text, and it considers a different type 2 diabetes comparison group: nonusers.  In this population and 

comparison group setting, the adjusted effect estimates in the type 2 diabetes setting are not even as 

favorable as what we observe for an average negative control outcome, which is an immediate indicator 

that the observed association may be spurious.   
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Deviations from Preregistration 

 

The preregistered analysis plan for this study can be found at https://osf.io/qf49p. 

 

Deviations from this plan are listed and explained below: 

 

1. Covariates - The preregistration states that “health-seeking behavior will be indicated by the 

presence of at least one immunization (typically a flu shot).”  We instead used only flu shots 

because of the widespread eligibility and anticipated annual frequency of flu shots not common to 

all vaccinations. 

2. Outcomes - We did not specify any primary outcomes for the example analysis in the 

preregistration.  We realized after conducting all the negative control experiments that we were 

missing the opportunity to illustrate interpreting a real result.  We only ever tried two example 

outcomes, and both are reported in the four analyses spanning the main text and supplement.   

As the stated criteria in the supplement state, the negative control outcomes should not be known 

indicators of type 2 diabetes severity.  We thus removed “essential (primary) hypertension” and 

“hyperlipidemia/hypercholesterolemia” from our list of negative control outcomes due to their known 

association with cardiovascular comorbidities, an index component of the Diabetes Complications 

and Severity Index.  We replaced those two negative control outcomes with the two next-most 

prevalent outcomes satisfying our criteria: “syncope and collapse” and “unspecified asthma 

uncomplicated.”  

https://osf.io/qf49p
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Supplementary Tables to Support Replication 

 

eTable 6. Cohort Criteria 

 

Cohort ICD-10 Codes 

Prediabetes R73% 

Type 2 Diabetes E11% 
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eTable 7. Drug Class Members 

 

Medication Class Generic Name 

Biguanides (metformin)  alogliptin-metformin hcl, canagliflozin-metformin hcl, dapagliflozin-

metformin hcl, empagliflozin-metformin hcl, ertugliflozin-metformin hcl, 

glipizide-metformin hcl, glyburide-metformin, linagliptin-metformin hcl, 

metformin hcl, pioglitazone hcl-metformin hcl, repaglinide-metformin hcl, 

rosiglitazone maleate-metformin hcl, saxagliptin-metformin hcl, 

sitagliptin-metformin hcl 

Insulins insulin aspart, insulin aspart (with niacinamide), insulin aspart protamine 
& aspart (human), insulin glulisine, insulin lispro, insulin lispro protamine 
& lispro, insulin lispro-aabc, insulin nph isophane & reg (human), insulin 
reg (human) buffered,insulin regular, insulin regular (human), insulin 
regular (human) in sodium chloride, insulin regular (pork), insulin 
degludec, insulin degludec-liraglutide, insulin detemir, insulin glargine, 
insulin glargine-lixisenatide, insulin isophane, insulin isophane (pork), 
insulin nph (human) (isophane), insulin zinc, insulin zinc (human), 
insulin zinc (pork), insulin zinc extended (human) 

Other Diabetes Drugs pioglitazone hcl/glimepiride, glyburide, chlorpropamide, glipizide, 
glimepiride, tolbutamide, tolazamide, pioglitazone hcl, rosiglitazone 
maleate, miglitol, acarbose, pramlintide acetate, bromocriptine 
mesylate, sitagliptin phosphate, linagliptin, alogliptin benzoate, 
saxagliptin hcl, ertugliflozin/sitagliptin, dapagliflozin/saxagliptin hcl, 
empagliflozin/linagliptin, alogliptin benz/pioglitazone, dulaglutide, 
exenatide microspheres, lixisenatide, exenatide, albiglutide, liraglutide, 
semaglutide, nateglinide, repaglinide, empagliflozin, canagliflozin, 
dapagliflozin propanediol, ertugliflozin pidolate 
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eTable 8. Covariate Logic 

 

Covariate Logic 

Influenza Vaccination American Hospital Formulary Service (AHFS) therapeutic class code 
80120000 and generic name containing “flu” (pharmacy claims) 
-OR- 
any of the following procedure codes: 90630, 90653, 90656, 90662, 
90673, 90674, 90682, 90685, 90686, 90687, 90688, 90756, Q2039, 
Q2035, Q2037 (medical claims) 

Physician Visit / Wellness 
Visit 

either of the following health care encounter service type descriptions: 
“physician visits” or “wellness visits” (medical claims) 

Elixhauser In-hospital 
Mortality Score 

The Elixhauser In-Hospital Mortality Score follows the guidelines 
presented by Moore et al.18 

Diabetes Complications 
Severity Index (DCSI) 

The DCSI component scores follow logic presented by Glasheen et al. 
(appendices A1-A7, B).19  In addition to standard insurance claims data, 
the database used for the study also had the necessary lab results to 
compute the nephrology component score per the indicated reference. 

  

https://www.zotero.org/google-docs/?RM2KQ1
https://www.zotero.org/google-docs/?GzJBnR
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eTable 9. Negative Control Outcomes (50 total) 

 

Numbe
r 

ICD 
Code(s) 

Condition 

1 b351 tinea unguium 

2 d485 neoplasm of uncertain behavior of skin 

3 e039 hypothyroidism unspecified 

4 f329 major depressive disorder single episode unspecified 

5 f419 anxiety disorder unspecified 

6 g8929 other chronic pain 

7 h04123 dry eye syndrome of bilateral lacrimal glands 

8 i517 cardiomegaly 

9 j0190 acute sinusitis unspecified 

10 j029 acute pharyngitis unspecified 

11 j069 acute upper respiratory infection unspecified 

12 j209 acute bronchitis unspecified 

13 j309 allergic rhinitis unspecified 

14 j449 chronic obstructive pulmonary disease unspecified 

15 j45909 unspecified asthma uncomplicated 

16 k219 gastro-esophageal reflux disease without esophagitis 

17 k5730 diverticulosis of large intestine without perforation or abscess without bleeding 

18 k5900 constipation unspecified 

19 k635 polyp of colon 

20 l570 actinic keratosis 

21 l814 other melanin hyperpigmentation 

22 l821 other seborrheic keratosis 

23 m170 bilateral primary osteoarthritis of knee 

-- m1711 unilateral primary osteoarthritis right knee 

-- m1712 unilateral primary osteoarthritis left knee 

24 m1990 unspecified osteoarthritis unspecified site 

25 m25511 pain in right shoulder 

-- m25512 pain in left shoulder 

26 m25561 pain in right knee 

-- m25562 pain in left knee 
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-- m25569 pain in unspecified knee 

27 m47816 spondylosis without myelopathy or radiculopathy lumbar region 

28 m5136 other intervertebral disc degeneration lumbar region 

29 m5416 radiculopathy lumbar region 

30 m542 cervicalgia 

31 m545 low back pain 

32 m6281 muscle weakness (generalized) 

33 m79671 pain in right foot 

-- m79672 pain in left foot 

34 m7989 other specified soft tissue disorders 

35 m810 age-related osteoporosis without current pathological fracture 

36 n390 urinary tract infection site not specified 

37 r002 palpitations 

38 r05 cough 

39 r0600 dyspnea unspecified 

40 r0789 other chest pain 

41 r109 unspecified abdominal pain 

42 r300 dysuria 

43 r42 dizziness and giddiness 

44 r51 headache 

45 r531 weakness 

46 r5383 other fatigue 

47 r55 syncope and collapse 

48 r600 localized edema 

49 r918 other nonspecific abnormal finding of lung field 

50 r9431 abnormal electrocardiogram [ecg] [ekg] 

 

 

 

 

 


