# **Supporting Information**

## Photochemical Regioselective C(sp<sup>3</sup>)–H Amination of Amides

## Using N-haloimides

Lei Pan, Joseph Elmasry, Tomas Osccorima, Maria Victoria Cooke, Sébastien Laulhé\* Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.

## **Table of Contents**

| General Information                                                                      | <b>S1</b>  |
|------------------------------------------------------------------------------------------|------------|
| Procedure for Preparation of Starting Materials                                          | S2         |
| General Procedure for the Synthesis of C(sp <sup>3</sup> )–H Amination of Amides Product | <b>S</b> 3 |
| Table of Reaction Optimization                                                           | <b>S</b> 4 |
| Additional Substrate Scope Explored for the Transformation                               | <b>S</b> 5 |
| UV-vis Spectra                                                                           | <b>S6</b>  |
| Calculated Energy Reaction Pathway                                                       | <b>S</b> 7 |
| Analytical Data of Compounds                                                             | <b>S8</b>  |
| GC-MS Spectra from Radical Trapping Experiment                                           | S23        |
| Supplementary References                                                                 | S25        |
| <sup>1</sup> H and <sup>13</sup> C NMR Spectra                                           | S26        |
| Computational Methods                                                                    | S98        |

### **General Information**

All the solvents and commercially available reagents were purchased from commercial sources (Acros Organics,TCI, Alfa Aesar, Sigma-Aldrich, Oakwood) and used directly. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light or stains for TLC Plates. Column chromatography was performed on EMD Silica Gel 60 (200–300 Mesh) using a forced flow of 0.5–1.0 bar. The <sup>1</sup>H and <sup>13</sup>C NMR spectra were obtained on a Bruker AVANCE III-400 spectrometer. <sup>1</sup>H NMR data was reported as: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. <sup>13</sup>C NMR data was reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). High Resolution Mass Spectrometry (HRMS) analysis was obtained using Agilent Technologies 6520 Accurate-Mass Q-TOF LC/MS system. UV-Vis was obtained using GENESYS<sup>TM</sup> 10S UV-Vis Spectrophotometer and fisherbrand macro quartz cuvettes (cat. No. 14-958-112). Melting point was obtained using MPA160 Melting Point Apparatus. A Kessil broadband Blue LED lamp 34W (No. BL-20,391) was used for this light-promoted reaction. The vial was placed approximately 4 cm away from the Blue LED, with the LED shining directly at the side of the vial. 10ml microwave reaction vial secured by 20mm aluminum seals with 0.125-inch thick, blue PTFE / white silicone septa was used for the reaction.

**Procedure for Preparation of Starting Materials** 

1. The General Procedure for the Preparation of Amides 2:1

**Procedure A:** 



To a stirred solution of amine (a) (6 mmol) in dichloromethane (18 mL) were added triethylamine (6.6 mmol) and acyl chloride (b) (1.0 mmol) dropwisely under 0 °C. Then the mixture was stirred at r.t. overnight. Then the reaction mixture was poured into a separatory funnel and washed with saturated NaHCO<sub>3</sub> (aq) and extracted with 3\*40 mL CH<sub>2</sub>Cl<sub>2</sub>. The combined organic phases were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, concentrated under reduced pressure and purified by column chromatography to afford products **2**.

**Procedure B:** 



To a solution of carboxylic acid (c) (6 mmol, 1.0 equiv) and DMF (4 drops) in  $CH_2Cl_2$  (18 mL) at 0 °C was added (COCl)<sub>2</sub> (2 equiv) dropwise. After completion of addition, the solution was stirred for 5 minutes at 0 °C and then stirred at rt for 1 h. The solution was concentrated in vacuo to obtain the crude acyl chloride (b), which will be used without purification. To a mixture of amine (a) (6 mmol) (1.0 equiv) and triethylamine (2.0 equiv) in  $CH_2Cl_2$  (18 mL) at 0 °C was added the solution of crude acyl chloride (b) in  $CH_2Cl_2$  dropwise. After stirred for 5 minutes at 0 °C, the mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with a saturated NaHCO<sub>3</sub> solution and extracted with  $CH_2Cl_2$ . The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was purified by column to give compounds **2**.

#### 2. The General Procedure for the Preparation of N-Boc amines 4:<sup>2</sup>



According to literature, the *N*-Boc amines can be synthesized by the condensation of corresponding amines with di-*tert*-butyl dicarbonate. The corresponding amines (1.0 equiv.) and

4-dimethylaminopyridine (10 mol %) were mixed in a flask with a magnetic stirring bar. DCM was added as solvent. Then a solution of di-*tert*-butyl dicarbonate (1.1 equiv.) in DCM was added slowly under ice bath conditions. The mixture was stirred 10 min at 0 °C and then 24 h at rt. The solution was washed with water and brine, then dried over MgSO<sub>4</sub> and concentrated. The crude product was purified by flash column chromatography, and corresponding *N*-Boc amines were obtained.

### 3. Synthesis of *N*-haloimides.<sup>3</sup>



To a mixture of imides (8 mmol), KBrO<sub>3</sub> (4 mmol) and sulphuric acid (97%, 0.33 mL, 7.58 g, 6 mmol) in aqueous acetic acid (70%, 5.6 mL), KBr(0.637g 5.4 mmol) was added portionwise at room temperature. The reaction mixture was stirred at room temperature overnight, the precipitate was filtered off, washed with water and dried to afford the crude product. The crude product was crystallized from acetic acid/water to get pure product which was thoroughly vacuum-dried at room temperature.

## General Procedure for the Synthesis of 3 or 5.



A 10 mL microwave vial was charged with *N*-halo saccharins or *N*-halo phthalimides or other nitrogen sources (0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl. Then amides (1 mmol) was added into the tube and capped with 20 mm microwave crimp caps with septa. The reaction mixture was stirred vigorously at room temperature for 3 mins and then put the vial approximately 4 cm away from the Blue LED lamp and then stirred overnight. After the completion of reaction, the product was determined by thin layer chromatography (TLC). The solvent was removed under vacuo, then the residue was purified by flash chromatography on silica gel to yield the desired product **3 or 5**.

#### 1 mmol scale detailed method included for one-step transformations



A 10 mL microwave vial was charged with *N*-chlorosaccharin (218 mg, 1 mmol), LiO*t*Bu (80 mg, 1 mmol), 3.0 ml PhCl. Then *N*,*N*-dimethylacetamide (435 mg, 5 mmol) was added into the tube and capped with 20 mm microwave crimp caps with septa. The reaction mixture was stirred vigorously at room temperature for 3 mins and then put the vial approximately 4 cm away from the Blue LED lamp and stirred 24h. After the completion of reaction, the product was determined by thin layer

chromatography (TLC). The solvent was removed under vacuo, then the residue was purified by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/5) on silica gel to yield the desired product **3ba** (164 mg, 61 %).

| Br— <mark>Np</mark> ł<br>1 <i>a</i>                                                                    | $\frac{1}{2a} = \frac{1}{2a}$                                                                                                                                                                          | 34 W Blue LED<br>Base<br>solvent, rt                                                                                                                                                                           |                                                                                                 |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Entry                                                                                                  | Base ( <i>equiv</i> .)                                                                                                                                                                                 | Solvent ( <i>mL</i> )                                                                                                                                                                                          | Yield (%) <sup>b</sup>                                                                          |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                      | LiOtBu (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)<br>NaOtBu (1.0)<br>KOtBu (1.0)<br>DBU (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)<br>LiOtBu (1.0)               | PhCF <sub>3</sub> (1.0)<br>PhCI (1.0)<br>Ch <sub>3</sub> CN (1.0)<br>PhH (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (0.5)<br>PhCI (0.75)<br>PhCI (0.75)<br>PhCI (2.0)<br>PhCI (2.5)<br>PhCI (3.0) | 42<br>67 (65) <sup>c</sup><br>10<br>49<br>24<br>2<br>2<br>8<br>53<br>57<br>62<br>59<br>54<br>47 |
| 14<br>15<br>16<br>17<br>18<br>19 <sup>d</sup><br>20 <sup>e</sup><br>21 <sup>f</sup><br>22 <sup>g</sup> | LiO <i>t</i> Bu (0.75)<br>LiO <i>t</i> Bu (1.25)<br>LiO <i>t</i> Bu (1.5)<br>LiO <i>t</i> Bu (2.0)<br>LiO <i>t</i> Bu (1.0)<br>LiO <i>t</i> Bu (1.0)<br>LiO <i>t</i> Bu (1.0)<br>LiO <i>t</i> Bu (1.0) | PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)<br>PhCI (1.0)                                                                                     | -<br>45<br>63<br>35<br>15<br>7<br>44<br>60<br>16                                                |

### **Full Table of Reaction Optimization**

*a*. Reaction conditions: *1a* (0.2 mmol, 1 eq.), *2a* (1.0 mmol, 5 eq.), base (1 eq.), solvent (1 mL), room temperature around reaction flask was 35 °C (heating caused by the LED lamp), reaction flask capped, overnight. *b*. <sup>1</sup>H-NMR yields using dibromomethane as internal standard. *c*. Isolated yield. *d*. The reaction performed at 60 °C without light. *e*. *2a* (2.5 eq.) was used instead of 5 eq. *f*. *2a* (4 eq.) was used intead of 5 eq. *g*. The reaction was performed by adding 20  $\mu$ L of H<sub>2</sub>O.



Additional Substrate Scope Explored for the Transformation

<sup>a</sup> Reaction conditions: **1** (0.2 mmol), **2** (1.0 mmol), LiO*t*Bu (0.2 mmol), 1.0 ml PhCl, 35 <sup>o</sup>C (Heating caused by the LED lamp.), overnight. <sup>b</sup> Isolated yields. n.d means no detected in TLC and NMR

#### **UV-vis Spectra**



UV-vis spectroscopic measurements on various combination of *1a*, *1b* and lithium *tert*-butoxide in PhCl. Spectra taken with 0.04mmol of substrate in 2mL of PhCl; concentration 0.02mmol/mL.

To further understand the role played by LiOtBu, we performed a series of UV-vis spectroscopic measurements on various combinations of 1a, 1b and lithium *tert*-butoxide in PhCl (Figure above). The combination of *N*-haloimides, LiOtBu and PhCl (yellow line) showed an increased in absorption throughout all waves lengths, but also shows that this combination can absorb blue light (380–500 nm) while the other combinations of reagents (blue, red, and grey lines) do not show significant light absorbing property in the blue light wavelength in this test. This indicates that LiOtBu is interacting with the *N*-haloimide, possibly via halogen bonding,<sup>1</sup> and generates a halogen-bonded adduct capable of absorbing blue light to initiate the radical reaction.

1 Weinberger, C.; Hines, R.; Zeller, M.; Rosokha, S. V. Continuum of Covalent to Intermolecular Bonding in the Halogen Bonded Complexes of 1,4-Diazabicyclo [2.2.2]octane with Bromine Containing Electrophiles. *Chem. Commun.* **2018**, *54*, 8060–8063.

#### **Calculated Energy Reaction Pathway**



Energy reaction pathways (kCal/mol) of *N*-bromophthalimide 1a with *tert*-butoxide through computational simulations using B3LYP/6-311+G(d,p)/MWB28 (Br) level of theory.

To further understand the process in which the reaction takes place, the energetic profile of the mechanism was explored through quantum calculations (Figure above, computational details can be found in S60). The formation of an electron-donor-acceptor (EDA) complex presents an exergonic energy profile (-14.6 kCal/mol), denoting that its formation is favored ( $I \rightarrow III$ ). The decomposition of the EDA complex to yield the radical anion is an endergonic process (36.1 kCal/mol) through However, through electronic excitation of the EDA complex conventional synthetic processes. (III $\rightarrow$ IV) this pathway becomes accessible, yielding t-BuO• and the radical anion B (IV $\rightarrow$ V) (see SI, S59). The latter is not stable and further decomposes to give the imidyl radical **D** and  $Br^-(V \rightarrow VI)$ . On the other hand, the generation of N,N-dimethylacetamide radical (C) can follow two possible mechanistic pathways, hydrogen atom transfer (HAT) and electron transfer/proton transfer (ET/PT). The first one can be categorized as the synchronized abstraction of a proton and an electron in a one-step reaction, while the second one refers to a sequential process in which first occurs a single electron transfer to give a radical cation as intermediary followed by a posterior proton transfer.<sup>1</sup> Exploration of both mechanistic pathways reveals that the reaction follows a classic HAT mechanism  $(VI \rightarrow X)$  since the ET/PT pathway  $(VI \rightarrow VIII)$  is energetically hindered. Lastly, the radical-radical coupling between **D** and **C** to yield the desired product (*3aa*) displays an exergonic outline ( $X \rightarrow XII$ ).

1 Hancock, A.N.; Tanko, J.M. Radical cation/anion and neutral radicals: a comparison. In *Encyclopedia of Radicals in Chemistry, Biology and Materials*, John Wiley & Sons, Chinchester, UK **2012**.



*N*-((1,3-dioxoisoindolin-2-yl)methyl)-*N*-methylacetamide (**3aa**)<sup>4</sup> (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylacetamide (87 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a white solid (30.2 mg, 65%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.87 – 7.57 (m, 4H), 5.19 (d, *J* = 36.1 Hz, 2H), 2.95 (d, *J* = 64.3 Hz, 3H), 2.18 (d, *J* = 147.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1 (s), 171.0(s), 167.8 (s), 167.6(s), 134.6 (s), 134.2 (s), 131.8 (s), 131.5 (s), 123.7 (s), 123.5 (s), 52.7 (s), 49.4 (s), 35.8 (s), 32.5 (s), 21.8 (s), 21.4 (s).



N-((1,3-dioxoisoindolin-2-yl)methyl)-N-methylpropionamide (**3ab**)<sup>4</sup> (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylpropionamide (101 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a colorless oil (32.5 mg, 66%).

<sup>1</sup>H NMR (400 MHz, CDCl3) δ 7.91 – 7.81 (m, 2H), 7.80 – 7.67 (m, 2H), 5.27 (d, *J* = 34.7 Hz, 2H), 3.03 (d, J = 56.3 Hz, 3H), 2.55 (dq, *J* = 197.5, 7.3 Hz, 2H), 1.15 (dt, *J* = 28.9, 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 174.4 (s),174.2 (s), 167.9 (s), 167.7(s), 134.6 (s), 134.2 (s), 131.9 (s), 131.6 (s), 123.8 (s), 123.6 (s), 51.8 (s), 50.1 (s), 35.2 (s), 32.8 (s), 26.8 (s), 26.0 (s), 9.4 (s), 8.8 (s).



3ac

*N*-((1,3-dioxoisoindolin-2-yl)methyl)propionamide (**3ac**)<sup>5</sup> (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl, *N*-methylpropionamide (87 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a white solid (20.9 mg, 45%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.82 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.1 Hz, 2H), 6.54 (s, 1H), 5.18 (d, *J* = 6.5 Hz, 2H), 2.20 (q, *J* = 7.6 Hz, 2H), 1.11 (t, *J* = 7.6 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 173.4 (s), 167.5 (s), 134.3 (s), 131.9 (s), 123.6 (s), 42.5 (s), 29.3 (s), 9.3 (s).



2-(1-methyl-5-oxopyrrolidin-2-yl)isoindoline-1,3-dione (3ad)<sup>4</sup> (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl, 1-methylpyrrolidin-2-one (99 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a white solid (25.9 mg, 53%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 – 7.67 (m, 4H), 5.78 (dd, *J* = 8.9, 1.5 Hz, 1H), 3.04 – 2.90 (m, 1H), 2.70 (s, 3H), 2.59 – 2.37 (m, 2H), 2.27 (ddd, *J* = 13.1, 7.7, 2.1 Hz, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.3 (s), 167.4 (s), 134.6 (s), 131.5 (s), 123.7 (s), 65.7 (s), 29.6 (s), 27.1 (s), 23.2 (s).



N-((1,3-dioxoisoindolin-2-yl)methyl)-N-phenylacetamide (3ae) (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiO*t*Bu (16 mg, 0.2 mmol), 1.0 ml PhCl, *N*-methyl-*N*-phenylacetamide (149 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a white solid (27.7 mg, 47%). m.p: 143-146 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (m, 2H), 7.73 – 7.64 (m, 2H), 7.37 – 7.28 (m, 3H), 7.15 (d, *J* = 6.6 Hz, 2H), 5.66 (s, 2H), 1.83 (d, *J* = 6.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.5 (s), 167.1 (s), 140.4 (s), 134.2 (s), 131.6 (s), 129.8 (s), 128.6 (2C), 123.6 (s), 49.7 (s), 22.8 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{17}H_{15}N_2O_3$  295.1077 ; found 295.1077.



3af

*N*-((1,3-dioxoisoindolin-2-yl)methyl)-*N*-methylisobutyramide (**3af**) (mixture of rotamers)

Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16 mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylisobutyramide (115 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/hexane= 1/1 to 3/1) as a pale yellow solid (25.0 mg, 48%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.90 – 7.65 (m, 4H), 5.27 (d, *J* = 14.6 Hz, 2H), 3.54 – 2.61 (dt, *J* = 13.1, 6.5 Hz, 1H), 3.04 (d, *J* = 79.8 Hz, 3H), 1.12 (dd, *J* = 33.6, 6.6 Hz, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 178.0 (s), 177.4 (s), 167.9(s),167.6 (s), 134.6 (s), 134.2 (s), 131.9 (s),
131.6 (s), 123.8 (s), 123.6 (s), 51.7 (s), 50.47 (s), 35.2 (s), 33.1 (s), 30.7 (s), 29.9 (s), 19.9 (s), 19.0 (s).
HRMS (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>14</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub> 283.1053; found 283.1041.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylacetamide (**3ba**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylacetamide (87 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a colorless oil (33.8 mg, 63% (X=Cl), 27.4 mg, 51%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 – 7.99 (m, 1H), 7.96 – 7.76 (m, 3H), 5.40 (d, *J* = 51.6 Hz, 2H), 3.03 (d, *J* = 38.3 Hz, 3H), 2.23 (d, *J* = 108.9 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.8 (s), 169.9 (s), 158.3 (s), 158.1 (s), 136.9 (s), 136.4 (s), 134.6 (s), 134.3 (s), 133.8 (s), 133.4 (s), 125.6 (s), 124.6 (s), 124.4 (s), 120.3 (s), 120.1 (s), 53.7 (s), 49.2 (s), 34.1 (s), 31.7 (s), 20.7 (s), 20.5 (s).

HRMS (ESI) m/z:  $[M+K]^+$  calcd for  $C_{11}H_{12}KN_2O_4S$  307.0149; found 307.0142.





*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylpropionamide (**3bb**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylpropionamide (101 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (40.66 mg, 72%(X=Cl), 28.8 mg, 51%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 – 8.02 (m, 1H), 7.97 – 7.79 (m, 3H), 5.43 (d, J = 52.7 Hz, 2H),

3.06 (d, *J* = 29.9 Hz, 3H), 2.52 (dq, *J* = 136.3, 7.3 Hz, 2H), 1.23 – 1.04 (m, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 173.8 (s), 173.1 (s), 158.2 (s), 158.1 (s), 136.9 (s), 136.5 (s), 134.5 (s),

134.2 (s), 133.8 (s), 133.4 (s), 125.7 (s), 124.6 (s), 124.4 (s), 120.2 (s), 120.0 (s), 52.8 (s), 49.7 (s), 33.4 (s), 32.0 (s), 25.65 (s), 25.2 (s), 8.4 (s), 7.8 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{12}H_{15}N_2O_4S$  283.0747; found 283.0752.



3bd'

2-((2-oxopyrrolidin-1-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (**3bd'**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 1-methylpyrrolidin-2-one (99 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a yellow oil (5.0 mg, 9%(X=Cl), 5.6 mg, 10%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 7.3 Hz, 1H), 7.96 – 7.81 (m, 3H), 5.36 (s, 2H), 3.50 (t, J = 7.0 Hz, 2H), 2.40 (t, J = 8.1 Hz, 2H), 2.09 – 1.97 (m, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 175.8 (s), 158.2 (s), 137.8 (s), 135.4 (s), 134.5 (s), 126.7 (s), 125.5 (s), 121.2 (s), 46.0 (s), 45.9 (s), 30.4 (s), 17.9 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{12}H_{13}N_2O_4S$  281.0591; found 281.0597.



3be

*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-phenylacetamide (**3be**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*-methyl-*N*-phenylacetamide (149 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (42.3 mg, 64%(X=Cl), 27.8 mg, 42%(X=Br)). m.p: 182-185 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.91 – 7.68 (m, 4H), 7.36 – 7.16 (m, 5H), 5.76 (s, 2H), 1.83 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.1 (s), 158.4 (s), 140.5 (s), 138.0 (s), 135.2 (s), 134.3 (s), 129.9 (s),

128.8 (s), 128.5 (s), 126.4 (s), 125.5 (s), 121.1 (s), 50.3 (s), 22.5 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{16}H_{15}N_2O_4S$  331.0747; found 331.0747.





*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylisobutyramide (**3bf**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylisobutyramide (115 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (40.9 mg, 69%(X=Cl), 31.4 mg, 53%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 – 8.03 (m, 1H), 7.99 – 7.75 (m, 3H), 5.47 (d, J = 41.4 Hz, 2H),

3.30-2.80 (dt, *J* = 13.4, 6.7 Hz, 1H), 3.10 (d, *J* = 52.1 Hz, 3H), 1.18 (dd, *J* = 22.9, 6.5 Hz, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 177.97 (s), 159.24 (s), 138.00 (s), 135.50 (s), 135.18 (s), 134.72 (s), 134.31 (s), 126.74 (s), 125.66 (s), 125.44 (s), 121.20 (s), 121.02 (s), 53.70 (s), 50.94 (s), 34.37 (s), 33.18 (s), 30.51 (s), 29.69 (s), 19.76 (s), 18.84 (s).



3bg

*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylbutyramide (**3bg**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylbutyramide (1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow solid (37.3 mg, 63%(X=Cl), 36.1 mg, 61%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 – 8.03 (m, 1H), 7.97 – 7.79 (m, 3H), 5.45 (d, J = 51.7 Hz, 2H), 3.20 – 2.95 (m, 3H), 2.48 (dt, J = 134.7, 7.4 Hz, 2H), 1.70 (dp, J = 14.8, 7.5 Hz, 2H), 0.97 (dt, J = 14.9, 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 173.0 (s), 172.3 (s), 158.3 (s), 158.1 (s), 137.0 (s), 136.5 (s), 134.5 (s), 134.2 (s), 133.7 (s), 133.3 (s), 130.5 (s), 128.2 (s), 125.7 (s), 124.6 (s), 124.4 (s), 120.2 (s), 120.0 (s), 34.2 (s), 33.7 (s), 33.5 (s), 31.9 (s), 17.6 (s), 17.0 (s), 12.9 (s), 128.8 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{13}H_{17}N_2O_4S$  297.0904; found 297.0889.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*,2,2-triphenylacetamide (**3bh**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiOtBu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*-methyl-*N*,2,2-triphenylacetamide (301 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (47.2 mg, 49%(X=Cl), 31.8 mg, 33%(X=Br)). m.p: 156-159 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.85 – 7.62 (m, 4H), 7.32 – 7.20 (m, 3H), 7.19 – 7.01 (m, 12H), 5.77 (s, 2H), 4.83 (s, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.4 (s), 158.5 (s), 139.7 (s), 139.1 (s), 138.0 (s), 135.2 (s), 134.3 (s), 129.8 (s), 129.1 (s), 129.0 (s), 129.0 (s), 128.4 (s), 127.0 (s), 126.4 (s), 125.5 (s), 121.1 (s), 54.7 (s), 50.9 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{28}H_{23}N_2O_4S$  483.1373; found 483.1373.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-ethylacetamide (**3bi**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*-ethyl-*N*-methylacetamide (101 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (25.4 mg, 45%(X=Cl), 20.9 mg, 37%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.11 – 8.02 (m, 1H), 7.88 (m, 3H), 5.42 (d, *J* = 60.3 Hz, 2H), 3.50 (dq, *J* = 21.4, 7.1 Hz, 2H), 2.27 (d, *J* = 93.8 Hz, 3H), 1.20 (dt, *J* = 38.8, 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.3 (s), 170.3 (s), 159.5 (s), 159.2 (s), 138.1 (s), 137.6 (s), 135.5 (s),

135.3 (s), 134.8 (s), 134.3 (s), 126.6 (s), 126.6 (s), 125.6 (s), 125.4 (s), 121.3 (s), 125.1 (s), 52.6 (s),

48.0 (s), 42.2 (s), 39.7 (s), 21.9 (s), 21.2 (s), 14.00 (s), 12.6 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{12}H_{15}N_2O_4S$  283.0747; found 283.0752.



2-chloro-*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylacetamide (**3bj**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiOtBu (16mg, 0.2 mmol), 1.0 ml PhCl, 2-chloro-*N*,*N*-dimethylacetamide (122 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow solid (24.8 mg, 41%(X=Cl), 26.0 mg, 43%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.13 – 8.06 (m, 1H), 8.02 – 7.81 (m, 3H), 5.47 (d, *J* = 38.8 Hz, 2H), 4.31 (d, *J* = 153.9 Hz, 2H), 3.15 (d, *J* = 49.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.4 (s), 159.2 (s), 137.9 (s), 137.4 (s), 135.7 (s), 135.4 (s), 134.9 (s), 134.5 (s), 126.6 (s), 125.8 (s), 125.6 (s), 121.4 (s), 121.2 (s), 54.03.95 (s), 50.8 (s), 41.0 (s), 40.9 (s), 34.7 (s), 33.6 (s).

HRMS (ESI) m/z: [M+K]<sup>+</sup> calcd for C<sub>11</sub>H<sub>11</sub>ClKN<sub>2</sub>O<sub>4</sub>S 340.9760; found 340.9764.



3bk

*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-phenylbenzamide (**3bk**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*-methyl-*N*-phenylbenzamide (211mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow solid (33.0 mg, 42%(X=Cl), 10.2 mg, 13%(X=Br)). m.p: 205-208 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.94 (d, *J* = 7.8 Hz, 2H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 7.3 Hz, 2H), 7.19 (m, 8H), 6.04 (s, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.0 (s), 158.5 (s), 141.0 (s), 138.0 (s), 135.2 (s), 134.8 (s), 134.2 (s), 130.1 (s), 129.3 (s), 128.9 (s), 128.3 (s), 127.7 (s), 127.6 (s), 126.4 (s), 125.5 (s), 121.0 (s), 52.0 (s). HRMS (ESI) m/z:  $[M+Na]^+$  calcd for C<sub>21</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>4</sub>S 415.0723; found 415.0726.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylbenzamide (**3bl**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylbenzamide (149 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (41.6 mg, 63%(X=Cl), 33.7 mg, 51%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 7.0 Hz, 1H), 7.96 – 7.78 (m, 3H), 7.45 (d, *J* = 30.7 Hz, 5H), 5.55 (d, *J* = 101.1 Hz, 2H), 3.06 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.3 (s), 159.1 (s), 137.8 (s), 135.5 (s), 135.1 (s), 134.6 (s), 130.2 (s), 128.5 (s), 127.3 (s), 126.6 (s), 125.5 (s), 121.1 (s), 50.6 (s), 36.5 (s).

HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub>S 331.0747; found 331.0747.





4-cyano-*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylbenzamide (**3bm**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 4-cyano-*N*,*N*-dimethylbenzamide (174 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (39.1 mg, 55%(X=Cl), 45.5 mg, 64%(X=Br)). m.p: 179-181 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.22 – 7.39 (m, 8H), 5.44 (d, *J* = 157.9 Hz, 2H), 3.01 (d, *J* = 45.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.3 (s), 159.0 (s), 139.4 (s), 137.8 (s), 135.5 (s), 134.7 (s), 132.4 (s), 127.8 (s), 126.5 (s), 125.7 (s), 121.2 (s), 118.1 (s), 114.0 (s), 50.2 (s), 36.3 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{17}H_{14}N_3O_4S$  356.0700; found 356.0699.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methyl-4-nitrobenzamide (**3bn**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethyl-4-nitrobenzamide (194 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (54.1 mg, 72%(X=Cl), 47.3 mg, 63%(X=Br)). m.p: 127-129 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.38 – 7.54 (m, 8H), 5.50 (d, *J* = 156.1 Hz, 2H), 3.07 (d, *J* = 49.9 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.0 (s), 159.0 (s), 148.7 (s), 141.2 (s), 137.8 (s), 135.6 (s), 134.7 (s), 128.9 (s), 128.1 (s), 126.5 (s), 125.7 (s), 123.9 (s), 121.2 (s), 54.6 (s), 50.1 (s), 36.3 (s), 32.2 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{16}H_{14}N_3O_6S$  376.0598; found 376.0585.



3bo

*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methyl-4-(trifluoromethyl)benzamide (**3bo**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethyl-4-(trifluoromethyl)benzamide (217 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (59.8 mg, 75%(X=Cl), 64.6 mg, 81%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (s, 1H), 7.99 – 7.81 (m, 3H), 7.64 (d, J = 27.8 Hz, 4H), 5.52 (d, J = 146.0 Hz, 2H), 3.02 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.84 (s), 159.03 (s), 138.66 (s), 137.75 (s), 135.50 (s), 134.61 (s),

132.00 (q, *J* = 32.7 Hz), 127.87 – 127.34 (m), 126.52 (s), 125.61 (s), 125.56 (s), 123.71 (q, *J* = 271 Hz), 121.15 (s), 54.76 (s), 50.22 (s), 36.32 (s), 31.89 (s).

<sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -62.91 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{17}H_{14}F_3N_2O_4S$  399.0621; found 399.0609.



4-bromo-*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylbenzamide (**3bp**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 4-bromo-*N*,*N*-dimethylbenzamide (228 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (59.8 mg, 73%(X=Cl), 41.7 mg, 51%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, *J* = 7.2 Hz, 1H), 7.99 – 7.79 (m, 3H), 7.56 (d, *J* = 6.8 Hz, 2H), 7.39 (s, 2H), 5.66 (s, 2H), 3.06 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.3 (s), 159.0 (s), 137.8 (s), 135.4 (s), 134.6 (s), 133.9 (s), 131.7 (s), 129.1 (s), 126.6 (s), 125.6 (s), 124.6 (s), 121.1 (s), 50.4 (s), 36.5 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{16}H_{14}BrN_2O_4S$  408.9852; found 408.9857.



3bq

3,5-dichloro-*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylbenzamide (**3bq**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 3,5-dichloro-*N*,*N*-dimethylbenzamide (218 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (62.3 mg, 78%(X=Cl), 39.9 mg, 50%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.09 (d, *J* = 7.0 Hz, 1H), 8.00 – 7.83 (m, 3H), 7.39 (d, *J* = 26.1 Hz, 3H), 5.51 (d, *J* = 126.2 Hz, 2H), 3.05 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.3 (s), 159.0 (s), 137.8 (s), 135.5 (s), 135.4 (s), 134.6 (s), 130.2 (s), 126.5 (s), 125.7 (s), 121.2 (s), 54.7 (s), 50.1 (s), 36.3 (s), 31.6 (s).

HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>13</sub>Cl<sub>2</sub>N<sub>2</sub>O<sub>4</sub>S 398.9968; found 398.9979.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-2,3,4,5,6-pentafluoro-*N*-methylbenzamide (**3br**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 2,3,4,5,6-pentafluoro-*N*,*N*-dimethylbenzamide (239 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (44.6 mg, 53%(X=Cl), 59.7 mg, 71%(X=Br)). m.p: 129-132 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 (dd, *J* = 21.1, 7.5 Hz, 1H), 8.00 – 7.83 (m, 3H), 5.44 (d, *J* = 160.6 Hz, 2H), 3.16 (d, *J* = 80.2 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.4 (d, *J* = 75 Hz), 159.2 (s), 159.0 (s), 144.8 (ddd, *J* = 12.8, 8.0, 3.9 Hz), 144.3 (ddd, *J* = 12.1, 8.2, 4.1 Hz), 142.5 – 142.1 (m), 141.8 (qd, *J* = 8.4, 3.9 Hz), 139.2 – 138.7 (m), 137.9 (s), 137.4 (s), 136.8 – 136.2 (m), 135.7 (s), 135.5(s), 134.9 (s), 134.6 (s), 126.5 (s), 126.3 (s), 125.8 (s), 125.6 (s), 121.3 (s), 121.3 (s), 110.3 (dd, *J* = 42.0, 20.2 Hz), 54.2 (s), 49.4 (s), 34.9 (s), 33.0 (s).

<sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -139.01 (tdd, J = 8.7, 5.8, 2.8 Hz), -139.94 (ddd, J = 11.6, 7.4, 3.4 Hz), -150.56 - -150.72 (m), -150.98 (tt, J = 20.6, 2.1 Hz), -159.62 (tt, J = 20.6, 5.8 Hz), -159.82 (ddd, J = 20.7, 16.1, 5.9 Hz).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{16}H_{10}F_5N_2O_4S$  421.0276; found 421.0282.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-4-methoxy-*N*-methylbenzamide (**3bs**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, 4-methoxy-*N*,*N*-dimethylbenzamide (179 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (31.7 mg, 44%(X=Cl), 25.9 mg, 36%(X=Br)). m.p: 223-227 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 7.4 Hz, 1H), 7.97 – 7.80 (m, 3H), 7.50 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 5.60 (s, 2H), 3.83 (s, 3H), 3.10 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.2 (s), 161.2 (s), 159.1 (s), 137.9 (s), 135.3 (s), 134.5 (s), 129.6 (s), 127.2 (s), 126.7 (s), 125.5 (s), 121.1 (s), 113.7 (s), 55.4 (s), 53.4 (s), 31.6 (s).

HRMS (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>5</sub>S 383.0672; found, 383.0669.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*,2,4-trimethylbenzamide (**3bt**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*,2,4-tetramethylbenzamide (177 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow solid (22.9 mg, 32%(X=Cl), 20.0 mg, 28%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (dd, J = 18.5, 7.3 Hz, 1H), 7.98 – 7.80 (m, 3H), 7.35 – 6.93 (m, 3H), 5.71 (s, 2H), 3.03 (d, J = 98.2 Hz, 3H), 2.42 – 2.24 (m, 6H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 172.4 (s), 172.0 (s), 159.3 (s), 158.9 (s), 139.6 (s), 139.1 (s), 138.0 (s), 137.(s), 135.5 (s), 134.4 (s), 134.6 (s), 134.6 (s), 134.5 (s), 132.4 (s), 131.8 (s), 131.9 (s), 131.5 (s), 131.2 (s), 127.3 (s), 126.7 (s), 126.4 (s), 126.0 (s), 125.5 (s), 121.1 (s), 54.5 (s), 49.7 (s), 35.4 (s), 31.1 (s), 21.2 (s), 19.1 (s), 18.8 (s).

HRMS (ESI) m/z: [M+K]<sup>+</sup> calcd for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>KO<sub>4</sub>S 397.0619; found, 397.0609.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylisonicotinamide (**3bu**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiOtBu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylisonicotinamide (150 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (23.2 mg, 35%(X=Cl), 34.5 mg, 52%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.73 (d, J = 18.7 Hz, 2H), 8.10 (s, 1H), 8.01 – 7.82 (m, 3H), 7.41 (d, J = 42.4 Hz, 2H), 5.50 (d, J = 156.8 Hz, 2H), 3.08 (d, J = 55.7 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.7 (s), 159.0 (s), 150.3 (s), 142.7 (s), 137.8 (s), 135.5 (s), 134.6 (s), 126.6 (s), 125.7 (s), 121.8 (s), 121.7 (s), 121.0 (s), 54.6 (s), 49.9 (s), 36.1 (s), 31.8 (s).

HRMS (ESI) m/z:  $[M+Na]^+$  calcd for  $C_{15}H_{14}N_3NaO_4S$  354.0519; found, 354.0515.



*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylthiophene-2-carboxamide (**3bv**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylthiophene-2-carboxamide (155 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (21.5 mg, 32%(X=Cl), 36.3 mg, 54%(X=Br)). m.p: 124-127 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.09 (d, *J* = 7.3 Hz, 1H), 7.97 – 7.80 (m, 3H), 7.50 (dd, *J* = 6.5, 4.4 Hz, 2H), 7.07 (dd, *J* = 4.8, 3.9 Hz, 1H), 5.67 (s, 2H), 3.31 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 165.2 (s), 159.2 (s), 137.9 (s), 136.5 (s), 135.4 (s), 134.5 (s), 130.4 (s), 130.0 (s), 126.9 (s), 126.6 (s), 125.6 (s), 121.1 (s), 52.7 (s), 35.9 (s).

HRMS (ESI) m/z:  $[M+H]^+$  calcd for  $C_{14}H_{13}N_2O_4S_2$  337.0311; found 337.0319.





*N*-((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)-*N*-methylethanesulfonamide (**3bw**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylethanesulfonamide (137 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (34.4 mg, 54%(X=Cl),35.7 mg, 56%(X=Br)). m.p: 144-147 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.07 (d, *J* = 7.5 Hz, 1H), 8.00 – 7.79 (m, 3H), 5.32 (s, 2H), 3.16 (q, *J* = 7.4 Hz, 2H), 3.07 (s, 3H), 1.34 (t, *J* = 7.4 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.6 (s), 137.6 (s), 135.7 (s), 134.8 (s), 126.5 (s), 125.7 (s), 121.3 (s), 53.8 (s), 46.9 (s), 34.8 (s), 7.9 (s).

HRMS (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>5</sub>S<sub>2</sub> 341.0236; found 341.0240.



*tert*-butyl ((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)(methyl)carbamate (**5ba**) (mixture of rotamers)

Conditions: N-chlorosaccharin (44 mg, 0.2 mmol) or N-bromosaccharin(52 mg, 0.2 mmol), LiOtBu

(16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl dimethylcarbamate (145 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (52.2 mg, 80%(X=Cl), 55.5 mg, 85%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (d, *J* = 7.4 Hz, 1H), 7.81 (m, 3H), 5.32 (d, *J* = 18.4 Hz, 2H), 2.90 (s, 3H), 1.45 (d, *J* = 25.2 Hz, 9H).

 $^{13}C \text{ NMR (101 MHz, CDCl_3)} \delta 159.3 \text{ (s)}, 154.4 \text{ (s)}, 138.1 \text{ (s)}, 135.3 \text{ (s)}, 134.3 \text{ (s)}, 126.7 \text{ (s)}, 125.4 \text{ (s)}, 138.1 \text{ (s)}, 135.3 \text{ (s)}, 134.3 \text{ (s)}, 126.7 \text{ (s)}, 125.4 \text{ (s)}, 138.1 \text{ (s)},$ 

121.0 (s), 81.6 (s), 81.0 (s), 53.0 (s), 52.8 (s), 33.7 (s), 33.3 (s), 28.1 (s).

HRMS (ESI) m/z:  $[M+Na]^+$  calcd for  $C_{14}H_{18}N_2NaO_5S$  349.0829; found 349.0840.



*tert*-butyl ((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)(ethyl)carbamate (**5bb**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl ethyl(methyl)carbamate (159 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (30.6 mg, 45%(X=Cl), 17.7 mg, 26%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.05 (d, *J* = 7.4 Hz, 1H), 7.94 – 7.78 (m, 3H), 5.37 (s, 2H), 3.41 (d, *J* = 6.7 Hz, 2H), 1.52 (d, *J* = 22.5 Hz, 9H), 1.17 (t, *J* = 7.0 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.4 (s), 153.9 (s), 138.2 (s), 135.2 (s), 134.3 (s), 126.6 (s), 125.4 (s), 120.9 (s), 81.6 (s), 51.1 (s), 41.6 (s), 40.8 (s), 28.2 (s), 13.8 (s), 13.2 (s).

HRMS (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>5</sub>S 363.0985; found 363.0977.



*tert*-butyl ((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)(phenyl)carbamate (5bc) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl methyl(phenyl)carbamate (207 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (24.1 mg, 31%(X=Cl), 10.1 mg, 13%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 – 7.74 (m, 4H), 7.37 – 7.23 (m, 5H), 5.76 (d, *J* = 10.1 Hz, 2H), 1.53 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 158.3 (s), 154.0 (s), 139.8 (s), 138.1 (s), 135.1 (s), 134.2 (s), 129.1 (s), 127.9 (s), 127.4 (s), 126.5 (s), 125.5 (s), 120.9 (s), 82.2 (s), 53.2 (s), 28.2 (s).

HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>S 389.1166; found 389.1167.



*tert*-butyl benzyl((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)carbamate (**5bd**) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiOtBu (16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl benzyl(methyl)carbamate (221 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (36.2 mg, 45%(X=Cl), 8.0 mg, 10%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (d, *J* = 7.4 Hz, 1H), 7.87 – 7.72 (m, 3H), 7.37 – 7.15 (m, 5H), 5.29 (d, *J* = 39.7 Hz, 2H), 4.49 (d, *J* = 9.5 Hz, 2H), 1.48 (d, *J* = 43.8 Hz, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.5 (s), 154.5 (s), 138.2 (s), 137.5 (s), 135.2 (s), 134.3 (s), 128.5 (s), 128.4 (s), 127.5 (s), 125.4 (s), 120.9 (s), 82.0 (s), 50.6 (s), 48.6 (s), 28.2 (s).

HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>20</sub>H<sub>23</sub>N<sub>2</sub>O<sub>5</sub>S 403.1322; found 403.1322.



*tert*-butyl ((1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl)methyl)(phenethyl)carbamate (5be) (mixture of rotamers)

Conditions: *N*-chlorosaccharin (44 mg, 0.2 mmol) or *N*-bromosaccharin(52 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl methyl(phenethyl)carbamate (235 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a pale yellow oil (20.0 mg, 24%(X=Cl), 10.0 mg, 12%(X=Br)).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.06 (d, *J* = 7.3 Hz, 1H), 7.93 – 7.79 (m, 3H), 7.32 – 7.13 (m, 5H), 5.27 (d, *J* = 29.0 Hz, 2H), 3.58 (dt, *J* = 14.7, 7.4 Hz, 2H), 2.91 (dd, *J* = 14.5, 7.2 Hz, 2H), 1.54 (d, *J* = 30.6 Hz, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.546 (s), 154.0 (s), 138.9 (s), 138.2 (s), 135.2(s), 134.3 (s), 132.0 (s), 130.2 (s), 129.9 (s), 129.1 (s), 128.5 (s), 128.4 (s), 126.6 (s), 126.4 (s), 126.3 (s), 125.4 (s), 81.8 (s), 81.1 (s), 51.8 (s), 51.5 (s), 48.656 (s), 48.2 (s), 35.2 (s), 34.4 (s), 28.2 (s).

HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>21</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub>S 417.1479; found 417.1467.



*tert*-butyl ((1,3-dioxoisoindolin-2-yl)methyl)(methyl)carbamate (**5aa**) (mixture of rotamers) Conditions: *N*-bromophthalimide (45 mg, 0.2 mmol), LiOtBu (16mg, 0.2 mmol), 1.0 ml PhCl, *tert*-butyl dimethylcarbamate (145 mg, 1 mmol), overnight.

The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a white solid (13.4 mg, 23%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.1 Hz, 2H), 5.22 (s, 2H), 2.96 (s, 3H), 1.51 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 167.8 (s), 155.0 (s), 134.2 (s), 131.9 (s), 123.6 (s), 80.7 (s), 51.4 (s), 33.9 (s), 28.3 (s).

HRMS (ESI) m/z:  $[M+Na]^+$  calcd for  $C_{15}H_{18}N_2NaO_4$  313.1159; found 313.1165.



3ca

*N*-methyl-*N*-((5-nitro-1,3-dioxoisoindolin-2-yl)methyl)acetamide (**3ca**)<sup>4</sup> (mixture of rotamers) Conditions: 2-bromo-5-nitroisoindoline-1,3-dione (54 mg, 0.2 mmol), LiO*t*Bu (16mg, 0.2 mmol), 1.0 ml PhCl, *N*,*N*-dimethylacetamide (87 mg, 1 mmol), overnight. The product was isolated by flash chromatography (ethyl acetate/dichloromethane=1/10 to 1/3) as a yellow solid (18.9 mg, 34%). m.p: 175-178 °C

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.74 – 8.54 (m, 2H), 8.08 (dd, *J* = 17.2, 8.1 Hz, 1H), 5.30 (d, *J* = 18.7 Hz, 2H), 3.06 (d, *J* = 82.5 Hz, 3H), 2.26 (d, *J* = 145.0 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 171.3 (s), 171.1 (s), 165.8 (s), 165.5 (s), 165.5 (s), 165.4 (s), 152.1 (s), 151.9 (s), 136.2 (s), 135.9 (s), 133.2 (s), 133.0 (s), 129.8 (s), 129.5 (s), 125.2 (s), 124.9 (s), 119.3 (s), 119.0 (s), 53.3 (s), 50.7 (s), 36.6 (s), 32.8 (s), 21.8 (s), 21.4 (s).



## **GC-MS Spectra from Radical Trapping Experiment**



## **Supplementary References**

(1) (a) John, J. M.; Loorthuraja, R.; Antoniuk, E.; Bergens, S. H. Catalytic hydrogenation of functionalized amides under basic and neutral conditions. Catal. Sci. Technol. **2015**, 5, 1181–1186. (b) Lu, K.; Han, X.-W.; Yao, W.-W.; Luan, Y.-X.; Wang, Y.-X.; Chen, H.; Xu, X.-T.; Zhang, K.; Ye, M. DMF-Promoted Redox-Neutral Ni-Catalyzed Intramolecular Hydroarylation of Alkene with Simple Arene. *ACS Catal.* **2018**, *8*, 3913-3917.

(2) Dong, J.- Y.; Xia, Q.; Lv, X.-L.; Yan, C.-C.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. Photoredox-Mediated Direct Cross-Dehydrogenative Coupling of Heteroarenes and Amines. *Org. Lett.* **2018**, *20*, 5661-5665.

(3) Song, L.; Zhang, L.; Luo, S.; Cheng, J. Visible - Light Promoted Catalyst - Free Imidation of Arenes and Heteroarenes. *Chem. - Eur. J.* 2014, 20, 14231-14234.

(4) Lao, Z.-Q.; Zhong, W.-H.; Lou, Q.-H.; Li, Z.-J.; Meng, X.-B. KI-catalyzed imidation of sp<sup>3</sup>C - H bond adjacent to amidenitrogen atom. *Org. Biomol. Chem.* **2012**, *10*, 7869-7871.

(5) Unterhalt, B. Preparation of N-phthalimidomethyl- and N-benzosulfimidomethyl-N-acyl amines. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft, **1967**, *300*(3), 247-249.















































































































































#### **Computational Methods**

The optimization of the reactants, products, intermediates and transition states was performed at the density functional theory level using the program suite Gaussian 09.<sup>1</sup> The B3LYP method<sup>2</sup> was employed for all calculations along with the 6-311+G(d,p) basis set for all atoms with the exception of Br, which was treated with the MWB28 relativistic Stuttgart-Dresden pseudopotential. The lithium counter ion was not taken into account in the calculations. The gradient threshold used for all geometry optimization was 4.5×10<sup>-4</sup> Hartree/Bohr. The implicit solvatation method employed for all calculations was the polarizable conductor calculation model (CPCM).<sup>3,4</sup> Frequency calculations were conducted to determine if each optimization was aa a minimum (reactants, products and intermediates) or a maximum (transition states) in the potential energy surface. Furthermore, each transition state was confirmed via intrinsic reaction coordinate (IRC) calculations. The excited state properties of the Br-phthalimide-LiOtBu adduct were obtained with the time-dependent density functional (TD-DFT) formalism.<sup>5,6</sup> The activation free energy for the single electron transfer (SET) was calculated through Marcus-Hush theory with equation S1,7

$$\Delta G_{SET}^{\neq} = \frac{\lambda}{4} \left( 1 + \frac{\Delta G_{rel}}{\lambda} \right)^2$$
(eq. S1)

where  $\Delta G_{rel}$  is the relative difference in free energies of the SET step and  $\lambda$  refers to the reorganization energy.

#### References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G .A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M, Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision E.01. Gaussian Inc. Wallingford CT 2009.
- A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 3. V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-2001.
- 4. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
- G. Scalamini, M. J. Frisch, B. Mennucci, J. Tomaso, R. Cammi, V. Barone, J. Phys. Chem., 2006, 124, 094107:1-15.
- 6. A. D. Laurent, C. Adamo, D. Jacquemin, Phys. Chem. Chem. Phys., 2014, 16, 14334-14356.
- C. Adouama, M. E. Budén, W. D. Guerra, M. Puiatti, B. Joseph, S. M. Barolo, R. A. Rossi, M. Médebielle, *Org. Lett.*, 2019, 21, 320-324.

### **Computational Data**

**Cartesian coordinates** 

N-bromophthalimide



| Center | Atomic | Atomic | Coo<br>x  | ordinates (A<br>Y | ngstroms)<br>7 |  |
|--------|--------|--------|-----------|-------------------|----------------|--|
|        |        |        |           |                   |                |  |
| 1      | 6      | 0      | -0.000116 | 1.388291          | 0.698062       |  |
| 2      | 6      | 0      | 0.000079  | 2.568095          | 1.422786       |  |
| 3      | 6      | 0      | 0.000297  | 3.766652          | 0.698758       |  |
| 4      | 6      | 0      | 0.000297  | 3.766652          | -0.698758      |  |
| 5      | 6      | 0      | 0.000079  | 2.568095          | -1.422786      |  |
| 6      | 6      | 0      | -0.000116 | 1.388291          | -0.698062      |  |
| 7      | 1      | 0      | 0.000094  | 2.563320          | 2.505628       |  |
| 8      | 1      | 0      | 0.000495  | 4.710635          | 1.230453       |  |
| 9      | 1      | 0      | 0.000495  | 4.710635          | -1.230453      |  |
| 10     | 1      | 0      | 0.000094  | 2.563320          | -2.505628      |  |
| 11     | 6      | 0      | -0.000367 | -0.022389         | -1.181666      |  |
| 12     | 6      | 0      | -0.000367 | -0.022389         | 1.181666       |  |
| 13     | 8      | 0      | -0.000141 | -0.452973         | -2.307655      |  |
| 14     | 8      | 0      | -0.000141 | -0.452973         | 2.307655       |  |
| 15     | 7      | 0      | -0.001039 | -0.792835         | 0.000000       |  |
| 16     | 35     | 0      | 0.000276  | -2.690236         | 0.000000       |  |

| Zero-point correction=                       | 0.104357 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.113865                    |
| Thermal correction to Enthalpy=              | 0.114810                    |
| Thermal correction to Gibbs Free Energy=     | 0.067932                    |
| Sum of electronic and zero-point Energies=   | -525.867773                 |
| Sum of electronic and thermal Energies=      | -525.858265                 |
| Sum of electronic and thermal Enthalpies=    | -525.857321                 |
| Sum of electronic and thermal Free Energies= | -525.904199                 |

## N,N-dimethylacetamide



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | -0.723894 | -0.291345    | -0.000089 |  |
| 2      | 6      | 0      | -1.774516 | 0.806918     | -0.000110 |  |
| 3      | 1      | 0      | -1.692941 | 1.444551     | 0.883495  |  |
| 4      | 1      | 0      | -1.693003 | 1.444543     | -0.883722 |  |
| 5      | 1      | 0      | -2.751956 | 0.329288     | -0.000065 |  |
| 6      | 7      | 0      | 0.587769  | 0.078553     | -0.000732 |  |
| 7      | 6      | 0      | 1.634749  | -0.937685    | -0.000046 |  |
| 8      | 1      | 0      | 2.264017  | -0.830604    | 0.889298  |  |
| 9      | 1      | 0      | 1.177741  | -1.922938    | -0.002441 |  |
| 10     | 1      | 0      | 2.267500  | -0.827776    | -0.886520 |  |
| 11     | 6      | 0      | 1.069770  | 1.454748     | 0.000341  |  |
| 12     | 1      | 0      | 1.683170  | 1.638042     | 0.888690  |  |
| 13     | 1      | 0      | 1.687802  | 1.637417     | -0.884874 |  |
| 14     | 1      | 0      | 0.248576  | 2.164249     | -0.002137 |  |
| 15     | 8      | 0      | -1.067743 | -1.477807    | 0.000353  |  |

| Zero-point correction=                       | 0.129189 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.137153                    |
| Thermal correction to Enthalpy=              | 0.138097                    |
| Thermal correction to Gibbs Free Energy=     | 0.095417                    |
| Sum of electronic and zero-point Energies=   | -287.797106                 |
| Sum of electronic and thermal Energies=      | -287.789142                 |
| Sum of electronic and thermal Enthalpies=    | -287.788197                 |
| Sum of electronic and thermal Free Energies= | -287.830877                 |

Recommended a0 for SCRF calculation = 4.18 angstrom

## *t*-butoxide anion



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |
|--------|--------|--------|-----------|--------------|-----------|
| Number | Number | Туре   | Х         | Y            | Ζ         |
|        |        |        |           |              |           |
| 1      | 6      | 0      | -0.000030 | -0.000049    | 0.132247  |
| 2      | 8      | 0      | -0.000882 | 0.000187     | 1.504169  |
| 3      | 6      | 0      | 0.891635  | -1.145588    | -0.432979 |
| 4      | 1      | 0      | 0.520717  | -2.110769    | -0.071025 |
| 5      | 1      | 0      | 0.915297  | -1.175680    | -1.530995 |
| 6      | 1      | 0      | 1.918322  | -1.022983    | -0.070956 |
| 7      | 6      | 0      | 0.546749  | 1.344531     | -0.433406 |
| 8      | 1      | 0      | 0.561718  | 1.379618     | -1.531410 |
| 9      | 1      | 0      | -0.072576 | 2.172772     | -0.071794 |
| 10     | 1      | 0      | 1.567996  | 1.505826     | -0.070847 |
| 11     | 6      | 0      | -1.437645 | -0.199111    | -0.434124 |
| 12     | 1      | 0      | -1.475223 | -0.204094    | -1.532192 |
| 13     | 1      | 0      | -1.845273 | -1.149573    | -0.072454 |
| 14     | 1      | 0      | -2.088175 | 0.604687     | -0.072107 |
|        |        |        |           |              |           |

| Zero-point correction=                       | 0.120428 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.126753                    |
| Thermal correction to Enthalpy=              | 0.127697                    |
| Thermal correction to Gibbs Free Energy=     | 0.091777                    |
| Sum of electronic and zero-point Energies=   | -233.107250                 |
| Sum of electronic and thermal Energies=      | -233.100925                 |
| Sum of electronic and thermal Enthalpies=    | -233.099981                 |
| Sum of electronic and thermal Free Energies- | -233.135901                 |

# *t*-butoxide *N*-bromophthalimide complex (S<sub>0</sub>)



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | -3.024903 | 0.706088     | 0.044589  |  |
| 2      | 6      | 0      | -4.184708 | 1.450390     | 0.184205  |  |
| 3      | 6      | 0      | -5.387410 | 0.748856     | 0.340738  |  |
| 4      | 6      | 0      | -5.408818 | -0.649085    | 0.354521  |  |
| 5      | 6      | 0      | -4.228277 | -1.390237    | 0.212085  |  |
| 6      | 6      | 0      | -3.046137 | -0.684866    | 0.058224  |  |
| 7      | 1      | 0      | -4.163223 | 2.533758     | 0.173004  |  |
| 8      | 1      | 0      | -6.316333 | 1.296267     | 0.453234  |  |
| 9      | 1      | 0      | -6.354093 | -1.165361    | 0.477548  |  |
| 10     | 1      | 0      | -4.240160 | -2.473772    | 0.222076  |  |
| 11     | 6      | 0      | -1.628911 | -1.154842    | -0.116107 |  |
| 12     | 6      | 0      | -1.594194 | 1.129305     | -0.138161 |  |
| 13     | 8      | 0      | -1.250389 | -2.314247    | -0.153225 |  |
| 14     | 8      | 0      | -1.181004 | 2.275958     | -0.196897 |  |
| 15     | 7      | 0      | -0.833029 | -0.025526    | -0.226210 |  |
| 16     | 35     | 0      | 1.197691  | -0.059382    | -0.462528 |  |
| 17     | 6      | 0      | 4.200941  | 0.028154     | 0.275216  |  |
| 18     | 8      | 0      | 3.327996  | -0.110369    | -0.826044 |  |
| 19     | 6      | 0      | 4.017953  | 1.392367     | 0.973369  |  |
| 20     | 1      | 0      | 3.007949  | 1.483640     | 1.381130  |  |
| 21     | 1      | 0      | 4.730033  | 1.522615     | 1.795704  |  |
| 22     | 1      | 0      | 4.168979  | 2.203620     | 0.254877  |  |
| 23     | 6      | 0      | 5.629043  | -0.055146    | -0.302029 |  |
| 24     | 1      | 0      | 6.385503  | 0.035425     | 0.485474  |  |
| 25     | 1      | 0      | 5.772850  | -1.012301    | -0.811328 |  |
| 26     | 1      | 0      | 5.788703  | 0.746385     | -1.028897 |  |
| 27     | 6      | 0      | 4.005260  | -1.109449    | 1.299950  |  |
| 28     | 1      | 0      | 4.724069  | -1.036476    | 2.123392  |  |
| 29     | 1      | 0      | 2.998375  | -1.077142    | 1.723996  |  |
| 30     | 1      | 0      | 4.137519  | -2.079552    | 0.811456  |  |
|        |        |        |           |              |           |  |

\_\_\_\_\_

```
0.227512 (Hartree/Particle)
Zero-point correction=
                                           0.244878
Thermal correction to Energy=
Thermal correction to Enthalpy=
                                           0.245822
                                            0.179765
Thermal correction to Gibbs Free Energy=
Sum of electronic and zero-point Energies=
                                                 -759.015660
Sum of electronic and thermal Energies=
                                                -758.998294
Sum of electronic and thermal Enthalpies=
                                                -758.997350
Sum of electronic and thermal Free Energies=
                                                 -759.063408
Excited State 1: 3.000-A
                            2.9816 eV 415.82 nm f=0.0000 <S**2>=2.000
   60A -> 63A
                 -0.24449
   61A -> 63A
                  -0.24700
   62A -> 63A
                  -0.59867
   60B -> 63B
                   0.24449
   61B -> 63B
                  0.24700
   62B -> 63B
                   0.59867
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-KS) = -759.133598719
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited State 2: 1.000-A
                             3.0008 eV 413.17 nm f=0.0001 <S**2>=0.000
   62A -> 63A
                   0.70557
    62B -> 63B
                   0.70557
                             3.0343 eV 408.61 nm f=0.0000 <S**2>=2.000
Excited State 3: 3.000-A
   57A -> 63A
                  -0.13212
   60A -> 63A
                  0.30839
   61A -> 63A
                  0.47915
   62A -> 63A
                  -0.36652
   57B -> 63B
                  0.13212
   60B -> 63B
                  -0.30839
   61B -> 63B
                  -0.47915
   62B -> 63B
                  0.36652
Excited State 4: 1.000-A
                             3.1696 eV 391.16 nm f=0.0007 <S**2>=0.000
   61A -> 63A
                   0.70059
                   0.70059
    61B -> 63B
Excited State 5: 3.000-A
                             3.1955 eV 387.99 nm f=0.0000 <S**2>=2.000
   55A -> 63A
                  0.11989
   57A -> 63A
                  -0.17302
   58A -> 64A
                  0.13197
   60A -> 63A
                   0.48343
```

```
61A -> 63A
                -0.42634
   55B -> 63B
                -0.11989
   57B -> 63B
                 0.17302
   58B -> 64B
                -0.13197
   60B -> 63B
                -0.48343
   61B -> 63B
                 0.42634
Excited State 6: 3.000-A
                           3.3458 eV 370.57 nm f=0.0000 <S**2>=2.000
   61A -> 65A
                 0.67895
   61A -> 67A
                 0.14228
   61B -> 65B
                 -0.67895
   61B -> 67B
                -0.14228
                           3.4077 eV 363.83 nm f=0.0000 <S**2>=2.000
Excited State 7: 3.000-A
   59A -> 63A
                 0.68700
   59B -> 63B
                -0.68700
Excited State 8: 3.000-A
                          3.4462 eV 359.77 nm f=0.0000 <S**2>=2.000
   62A -> 65A
                -0.68809
   62A -> 67A
                -0.12023
   62B -> 65B
                 0.68809
   62B -> 67B
                 0.12023
Excited State 9: 3.000-A
                           3.5362 eV 350.62 nm f=0.0000 <S**2>=2.000
   54A -> 63A
                -0.21742
   55A -> 63A
                -0.11422
   57A -> 63A
                 0.53064
   58A -> 64A
                -0.25262
   60A -> 63A
                 0.24861
   60A -> 68A
                -0.11694
   54B -> 63B
                 0.21742
   55B -> 63B
                 0.11422
   57B -> 63B
                 -0.53064
   58B -> 64B
                 0.25262
   60B -> 63B
                 -0.24861
   60B -> 68B
                 0.11694
Excited State 10: 1.000-A 3.7289 eV 332.49 nm f=0.0090 <S**2>=0.000
   60A -> 63A
                 0.69762
   60B -> 63B
                 0.69762
SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 LETran= 190.
```

# *t*-butoxide *N*-bromophthalimide complex (S<sub>1</sub>)



| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|--------|--------|--------|-------------------------|-----------|-----------|
| Number | Number | Туре   | Х                       | Y         | Z         |
|        |        |        |                         |           |           |
| 1      | 6      | 0      | 3.023950                | -0.697125 | 0.059072  |
| 2      | 6      | 0      | 4.232867                | -1.390701 | 0.216948  |
| 3      | 6      | 0      | 5.397644                | -0.651177 | 0.358378  |
| 4      | 6      | 0      | 5.372469                | 0.766489  | 0.342535  |
| 5      | 6      | 0      | 4.182069                | 1.460554  | 0.185060  |
| 6      | 6      | 0      | 2.999124                | 0.721037  | 0.040244  |
| 7      | 1      | 0      | 4.253289                | -2.474649 | 0.229352  |
| 8      | 1      | 0      | 6.345150                | -1.162813 | 0.484098  |
| 9      | 1      | 0      | 6.301278                | 1.314177  | 0.455093  |
| 10     | 1      | 0      | 4.163800                | 2.544546  | 0.172146  |
| 11     | 6      | 0      | 1.623216                | 1.119702  | -0.139343 |
| 12     | 6      | 0      | 1.662844                | -1.148031 | -0.109323 |
| 13     | 8      | 0      | 1.112078                | 2.268434  | -0.209648 |
| 14     | 8      | 0      | 1.193985                | -2.315851 | -0.161280 |
| 15     | 7      | 0      | 0.841187                | -0.029700 | -0.227383 |
| 16     | 35     | 0      | -1.189546               | -0.067141 | -0.463045 |
| 17     | 6      | 0      | -4.184729               | 0.032211  | 0.278703  |
| 18     | 8      | 0      | -3.312375               | -0.120917 | -0.821900 |
| 19     | 6      | 0      | -3.989168               | -1.095512 | 1.314263  |
| 20     | 1      | 0      | -2.982600               | -1.060002 | 1.738425  |
| 21     | 1      | 0      | -4.708389               | -1.011725 | 2.135974  |
| 22     | 1      | 0      | -4.123428               | -2.070072 | 0.835662  |
| 23     | 6      | 0      | -5.611829               | -0.053407 | -0.299048 |
| 24     | 1      | 0      | -6.367515               | 0.048023  | 0.487519  |
| 25     | 1      | 0      | -5.768937               | 0.740699  | -1.034386 |
| 26     | 1      | 0      | -5.758355               | -1.015652 | -0.797607 |
| 27     | 6      | 0      | -3.995309               | 1.403575  | 0.961036  |
| 28     | 1      | 0      | -4.708354               | 1.544072  | 1.780460  |
| 29     | 1      | 0      | -2.985774               | 1.495035  | 1.369489  |
| 30     | 1      | 0      | -4.142766               | 2.207192  | 0.233524  |
|        |        |        |                         |           |           |

| Zero-point correction=                       | 0.224176 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.241691                    |
| Thermal correction to Enthalpy=              | 0.242636                    |
| Thermal correction to Gibbs Free Energy=     | 0.176292                    |
| Sum of electronic and zero-point Energies=   | -758.902665                 |
| Sum of electronic and thermal Energies=      | -758.885150                 |
| Sum of electronic and thermal Enthalpies=    | -758.884206                 |
| Sum of electronic and thermal Free Energies= | -758.950549                 |

Structure comparison of SO(blue) and S1(red). RMSD: 0.169  $\,$ 



# N-bromophthalimide radical anion



| Center | Atomic | Atomic | Coo       | rdinates (A | ngstroms) |  |
|--------|--------|--------|-----------|-------------|-----------|--|
| Number | Number | Туре   | Х         | Y           | Z         |  |
|        |        |        |           |             |           |  |
| 1      | 6      | 0      | -0.000015 | 1.354431    | 0.717155  |  |
| 2      | 6      | 0      | 0.000011  | 2.568883    | 1.423669  |  |
| 3      | 6      | 0      | 0.000043  | 3.757271    | 0.711630  |  |
| 4      | 6      | 0      | 0.000043  | 3.757271    | -0.711630 |  |
| 5      | 6      | 0      | 0.000011  | 2.568883    | -1.423669 |  |
| 6      | 6      | 0      | -0.000015 | 1.354431    | -0.717155 |  |
| 7      | 1      | 0      | 0.000010  | 2.570834    | 2.508530  |  |
| 8      | 1      | 0      | 0.000069  | 4.703351    | 1.242054  |  |
| 9      | 1      | 0      | 0.000069  | 4.703351    | -1.242054 |  |
| 10     | 1      | 0      | 0.000010  | 2.570834    | -2.508530 |  |
| 11     | 6      | 0      | -0.000049 | -0.004763   | -1.200298 |  |
| 12     | 6      | 0      | -0.000049 | -0.004763   | 1.200298  |  |
| 13     | 8      | 0      | -0.000032 | -0.482400   | -2.347079 |  |
| 14     | 8      | 0      | -0.000032 | -0.482400   | 2.347079  |  |
| 15     | 7      | 0      | -0.000130 | -0.768045   | 0.000000  |  |

 16
 35
 0
 0.000039
 -2.673243
 0.000000

| Zero-point correction=                       | 0.101514 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.111219                    |
| Thermal correction to Enthalpy=              | 0.112163                    |
| Thermal correction to Gibbs Free Energy=     | 0.064346                    |
| Sum of electronic and zero-point Energies=   | -525.977509                 |
| Sum of electronic and thermal Energies=      | -525.967803                 |
| Sum of electronic and thermal Enthalpies=    | -525.966859                 |
| Sum of electronic and thermal Free Energies= | -526.014677                 |

### *t*-butoxide radical



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | 0.022851  | 0.000179     | 0.078789  |  |
| 2      | 8      | 0      | -0.158896 | -0.002651    | 1.449323  |  |
| 3      | 6      | 0      | 1.510957  | -0.002327    | -0.301056 |  |
| 4      | 1      | 0      | 2.002187  | -0.890228    | 0.104903  |  |
| 5      | 1      | 0      | 1.644441  | -0.000827    | -1.386032 |  |
| 6      | 1      | 0      | 2.005865  | 0.882234     | 0.107740  |  |
| 7      | 6      | 0      | -0.696373 | 1.268567     | -0.457782 |  |
| 8      | 1      | 0      | -0.590993 | 1.300435     | -1.544962 |  |
| 9      | 1      | 0      | -1.755717 | 1.247142     | -0.198646 |  |
| 10     | 1      | 0      | -0.243070 | 2.167942     | -0.036409 |  |
| 11     | 6      | 0      | -0.701359 | -1.264188    | -0.461263 |  |
| 12     | 1      | 0      | -0.596050 | -1.292875    | -1.548547 |  |
| 13     | 1      | 0      | -0.251355 | -2.166508    | -0.042715 |  |
| 14     | 1      | 0      | -1.760597 | -1.239502    | -0.202044 |  |
|        |        |        |           |              |           |  |
| Zero-point correction=                       | 0.120153 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.126406                    |
| Thermal correction to Enthalpy=              | 0.127350                    |
| Thermal correction to Gibbs Free Energy=     | 0.090751                    |
| Sum of electronic and zero-point Energies=   | -232.961837                 |
| Sum of electronic and thermal Energies=      | -232.955584                 |
| Sum of electronic and thermal Enthalpies=    | -232.954640                 |
| Sum of electronic and thermal Free Energies= | -232.991239                 |

Recommended a0 for SCRF calculation = 4.06 angstrom

## Phthalimide radical



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Z         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | 0.005697  | 0.143289     | 0.701016  |  |
| 2      | 6      | 0      | 0.008087  | 1.327886     | 1.427831  |  |
| 3      | 6      | 0      | 0.001286  | 2.518789     | 0.703829  |  |
| 4      | 6      | 0      | 0.001286  | 2.518789     | -0.703829 |  |
| 5      | 6      | 0      | 0.008087  | 1.327886     | -1.427831 |  |
| 6      | 6      | 0      | 0.005697  | 0.143289     | -0.701016 |  |
| 7      | 1      | 0      | 0.010775  | 1.324255     | 2.510532  |  |
| 8      | 1      | 0      | -0.005814 | 3.465910     | 1.229816  |  |
| 9      | 1      | 0      | -0.005814 | 3.465910     | -1.229816 |  |
| 10     | 1      | 0      | 0.010775  | 1.324255     | -2.510532 |  |
| 11     | 6      | 0      | 0.010888  | -1.272686    | -1.149464 |  |
| 12     | 6      | 0      | 0.010888  | -1.272686    | 1.149464  |  |
| 13     | 8      | 0      | -0.112315 | -1.720310    | -2.268322 |  |
| 14     | 8      | 0      | -0.112315 | -1.720310    | 2.268322  |  |
| 15     | 7      | 0      | 0.210804  | -2.094673    | 0.000000  |  |
|        |        |        |           |              |           |  |

| Zero-point correction=                      | 0.100994 (Hartree/Particle) |
|---------------------------------------------|-----------------------------|
| Thermal correction to Energy=               | 0.109031                    |
| Thermal correction to Enthalpy=             | 0.109975                    |
| Thermal correction to Gibbs Free Energy=    | 0.066815                    |
| Sum of electronic and zero-point Energies=  | -512.446220                 |
| Sum of electronic and thermal Energies=     | -512.438184                 |
| Sum of electronic and thermal Enthalpies=   | -512.437240                 |
| Sum of electronic and thermal Free Energies | = -512.480400               |

#### Bromo anion



| Center | Atomic | Atomic | Coo      | rdinates (Ar | ngstroms) |  |
|--------|--------|--------|----------|--------------|-----------|--|
| Number | Number | Туре   | Х        | Y            | Z         |  |
| 1      | 35     | 0      | 0.000000 | 0.000000     | 0.000000  |  |
|        |        |        |          |              |           |  |

| Zero-point correction= | 0.000000 (Hartree/Particle) |              |
|------------------------|-----------------------------|--------------|
| Thermal correction to  | Energy=                     | 0.001416     |
| Thermal correction to  | Enthalpy=                   | 0.002360     |
| Thermal correction to  | Gibbs Free Energy=          | -0.016176    |
| Sum of electronic and  | zero-point Energies=        | -13.557361   |
| Sum of electronic and  | thermal Energies=           | -13.555945   |
| Sum of electronic and  | thermal Enthalpies=         | -13.555001   |
| Sum of electronic and  | thermal Free Energies:      | = -13.573537 |

### N,N-dimethylacetamide radical



| 2  | 6 | 0 | -1.834516 | 0.631561  | 0.000071  |
|----|---|---|-----------|-----------|-----------|
| 3  | 1 | 0 | -1.821776 | 1.277216  | 0.882864  |
| 4  | 1 | 0 | -1.822464 | 1.276877  | -0.882966 |
| 5  | 1 | 0 | -2.751318 | 0.045880  | 0.000457  |
| 6  | 7 | 0 | 0.606554  | 0.222876  | -0.000097 |
| 7  | 6 | 0 | 1.730274  | -0.725516 | -0.000010 |
| 8  | 1 | 0 | 2.660449  | -0.162624 | -0.001826 |
| 9  | 1 | 0 | 1.687266  | -1.359783 | 0.885823  |
| 10 | 1 | 0 | 1.685189  | -1.362071 | -0.884057 |
| 11 | 6 | 0 | 0.875187  | 1.572965  | 0.000236  |
| 12 | 1 | 0 | 1.905603  | 1.885903  | 0.000234  |
| 13 | 1 | 0 | 0.066408  | 2.281773  | -0.001338 |
| 14 | 8 | 0 | -0.811544 | -1.547401 | -0.000002 |
|    |   |   |           |           |           |

| Zero-point correction=                       | 0.115499 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.123259                    |
| Thermal correction to Enthalpy=              | 0.124203                    |
| Thermal correction to Gibbs Free Energy=     | 0.082985                    |
| Sum of electronic and zero-point Energies=   | -287.154576                 |
| Sum of electronic and thermal Energies=      | -287.146816                 |
| Sum of electronic and thermal Enthalpies=    | -287.145872                 |
| Sum of electronic and thermal Free Energies= | -287.187091                 |

## *t*-butanol



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | -0.006713 | 0.00003      | 0.009767  |  |
| 2      | 6      | 0      | 0.676866  | -1.263408    | -0.527333 |  |
| 3      | 1      | 0      | 0.200974  | -2.157482    | -0.116916 |  |
| 4      | 1      | 0      | 0.614388  | -1.307901    | -1.618186 |  |
| 5      | 1      | 0      | 1.736241  | -1.279254    | -0.251590 |  |
| 6      | 6      | 0      | 0.676093  | 1.263934     | -0.527103 |  |

\_\_\_\_\_

| 7  | 1 | 0 | 0.613540  | 1.308614  | -1.617945 |  |
|----|---|---|-----------|-----------|-----------|--|
| 8  | 1 | 0 | 0.199685  | 2.157637  | -0.116480 |  |
| 9  | 1 | 0 | 1.735469  | 1.280358  | -0.251403 |  |
| 10 | 6 | 0 | -1.498422 | -0.000424 | -0.322665 |  |
| 11 | 1 | 0 | -1.650590 | -0.000380 | -1.404549 |  |
| 12 | 1 | 0 | -1.982235 | -0.887193 | 0.094473  |  |
| 13 | 1 | 0 | -1.982778 | 0.885980  | 0.094619  |  |
| 14 | 8 | 0 | 0.055619  | -0.000114 | 1.458739  |  |
| 15 | 1 | 0 | 0.983417  | -0.000092 | 1.722070  |  |
|    |   |   |           |           |           |  |

| Zero-point correction=                      | 0.134595 (Hartree/Particle) |
|---------------------------------------------|-----------------------------|
| Thermal correction to Energy=               | 0.141383                    |
| Thermal correction to Enthalpy=             | 0.142327                    |
| Thermal correction to Gibbs Free Energy=    | 0.105547                    |
| Sum of electronic and zero-point Energies=  | -233.622356                 |
| Sum of electronic and thermal Energies=     | -233.615568                 |
| Sum of electronic and thermal Enthalpies=   | -233.614624                 |
| Sum of electronic and thermal Free Energies | -233.651403                 |

# N,N-dimethylacetamide radical cation



| Center<br>Number | Atomic<br>Number | Atomic<br>Type | Coc<br>X  | ordinates (A<br>Y | ngstroms)<br>Z |  |
|------------------|------------------|----------------|-----------|-------------------|----------------|--|
| 1                | 6                | 0              | 0.785090  | -0.320787         | 0.000689       |  |
| 2                | 6                | 0              | 1.814695  | 0.759079          | -0.029004      |  |
| 3                | 1                | 0              | 1.633117  | 1.466370          | -0.840293      |  |
| 4                | 1                | 0              | 1.814390  | 1.312423          | 0.914221       |  |
| 5                | 1                | 0              | 2.786263  | 0.288885          | -0.161363      |  |
| 6                | 7                | 0              | -0.635144 | 0.101689          | -0.003952      |  |
| 7                | 6                | 0              | -1.663016 | -0.908388         | -0.034644      |  |
| 8                | 1                | 0              | -2.452310 | -0.585208         | -0.718047      |  |
| 9                | 1                | 0              | -1.241594 | -1.869921         | -0.307822      |  |

| 10 | 1 | 0 | -2.105656 | -0.971272 | 0.971026  |  |
|----|---|---|-----------|-----------|-----------|--|
| 11 | 6 | 0 | -1.022074 | 1.492470  | 0.034507  |  |
| 12 | 1 | 0 | -0.969954 | 1.890162  | -0.991128 |  |
| 13 | 1 | 0 | -2.046232 | 1.579206  | 0.390182  |  |
| 14 | 1 | 0 | -0.335841 | 2.067283  | 0.654608  |  |
| 15 | 8 | 0 | 0.984456  | -1.502999 | 0.035875  |  |
|    |   |   |           |           |           |  |

| Zero-point correction=                  | 0.127326 (Hartree/Particle) |
|-----------------------------------------|-----------------------------|
| Thermal correction to Energy=           | 0.135234                    |
| Thermal correction to Enthalpy=         | 0.136178                    |
| Thermal correction to Gibbs Free Energy | = 0.094665                  |
| Sum of electronic and zero-point Energi | es= -287.543283             |
| Sum of electronic and thermal Energies= | -287.535374                 |
| Sum of electronic and thermal Enthalpie | s= -287.534430              |
| Sum of electronic and thermal Free Ener | gies= -287.575943           |

# Radical-radical coupling product



| Center | Atomic | Atomic | Coc      | ordinates (A | ngstroms) |  |
|--------|--------|--------|----------|--------------|-----------|--|
| Number | Number | Туре   | Х        | Y            | Ζ         |  |
|        |        |        |          |              |           |  |
| 1      | 6      | 0      | 1.811709 | -0.776915    | -0.024080 |  |
| 2      | 6      | 0      | 2.794791 | -1.688401    | 0.325519  |  |
| 3      | 6      | 0      | 4.073067 | -1.185072    | 0.592893  |  |
| 4      | 6      | 0      | 4.342516 | 0.184492     | 0.507142  |  |
| 5      | 6      | 0      | 3.342836 | 1.097148     | 0.151293  |  |
| 6      | 6      | 0      | 2.080629 | 0.589146     | -0.110283 |  |
| 7      | 1      | 0      | 2.582296 | -2.748466    | 0.390071  |  |
| 8      | 1      | 0      | 4.868121 | -1.866594    | 0.871022  |  |
| 9      | 1      | 0      | 5.342356 | 0.543604     | 0.720161  |  |
| 10     | 1      | 0      | 3.547833 | 2.158501     | 0.083596  |  |
| 11     | 6      | 0      | 0.826118 | 1.287602     | -0.505263 |  |

| 12 | 6 | 0 | 0.378778  | -0.992284 | -0.367087 |  |
|----|---|---|-----------|-----------|-----------|--|
| 13 | 8 | 0 | 0.637006  | 2.467653  | -0.703421 |  |
| 14 | 8 | 0 | -0.244050 | -2.029518 | -0.437766 |  |
| 15 | 7 | 0 | -0.152401 | 0.282821  | -0.622767 |  |
| 16 | 6 | 0 | -1.538562 | 0.534160  | -1.021456 |  |
| 17 | 1 | 0 | -1.535341 | 1.496328  | -1.534878 |  |
| 18 | 1 | 0 | -1.833451 | -0.239537 | -1.722498 |  |
| 19 | 7 | 0 | -2.463205 | 0.578761  | 0.095121  |  |
| 20 | 6 | 0 | -2.295841 | 1.679393  | 1.048210  |  |
| 21 | 1 | 0 | -1.918959 | 2.553599  | 0.517357  |  |
| 22 | 1 | 0 | -3.257091 | 1.911195  | 1.500683  |  |
| 23 | 1 | 0 | -1.591904 | 1.419226  | 1.844781  |  |
| 24 | 6 | 0 | -3.409992 | -0.381384 | 0.357774  |  |
| 25 | 6 | 0 | -3.615947 | -1.493322 | -0.652784 |  |
| 26 | 1 | 0 | -3.922699 | -1.097291 | -1.624453 |  |
| 27 | 1 | 0 | -2.704947 | -2.078445 | -0.791366 |  |
| 28 | 1 | 0 | -4.404720 | -2.139920 | -0.274013 |  |
| 29 | 8 | 0 | -4.093315 | -0.321966 | 1.378910  |  |
|    |   |   |           |           |           |  |

| Zero-point correction=                       | 0.226319 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.241767                    |
| Thermal correction to Enthalpy=              | 0.242711                    |
| Thermal correction to Gibbs Free Energy=     | 0.182213                    |
| Sum of electronic and zero-point Energies=   | -799.735744                 |
| Sum of electronic and thermal Energies=      | -799.720296                 |
| Sum of electronic and thermal Enthalpies=    | -799.719352                 |
| Sum of electronic and thermal Free Energies= | -799.779850                 |



\_



| 2  | 6  | 0 | -4.246117 | 1.452931  | 0.183539  |  |
|----|----|---|-----------|-----------|-----------|--|
| 3  | 6  | 0 | -5.450255 | 0.752071  | 0.329820  |  |
| 4  | 6  | 0 | -5.473355 | -0.645761 | 0.340412  |  |
| 5  | 6  | 0 | -4.293076 | -1.388240 | 0.205237  |  |
| 6  | 6  | 0 | -3.109290 | -0.683735 | 0.061434  |  |
| 7  | 1  | 0 | -4.223102 | 2.536112  | 0.174766  |  |
| 8  | 1  | 0 | -6.379213 | 1.300277  | 0.436709  |  |
| 9  | 1  | 0 | -6.419944 | -1.161239 | 0.455248  |  |
| 10 | 1  | 0 | -4.305853 | -2.471610 | 0.212783  |  |
| 11 | 6  | 0 | -1.698718 | -1.161959 | -0.102777 |  |
| 12 | 6  | 0 | -1.660918 | 1.136380  | -0.121144 |  |
| 13 | 8  | 0 | -1.314492 | -2.315977 | -0.138322 |  |
| 14 | 8  | 0 | -1.238862 | 2.276423  | -0.174992 |  |
| 15 | 7  | 0 | -0.896278 | -0.026457 | -0.207646 |  |
| 16 | 35 | 0 | 0.989285  | -0.057569 | -0.416948 |  |
| 17 | 6  | 0 | 4.492316  | 0.022766  | 0.214233  |  |
| 18 | 8  | 0 | 3.602876  | -0.117627 | -0.859356 |  |
| 19 | 6  | 0 | 4.317511  | 1.389204  | 0.919008  |  |
| 20 | 1  | 0 | 3.307850  | 1.480338  | 1.328912  |  |
| 21 | 1  | 0 | 5.032082  | 1.522519  | 1.739769  |  |
| 22 | 1  | 0 | 4.464992  | 2.200593  | 0.199298  |  |
| 23 | 6  | 0 | 5.926469  | -0.059126 | -0.355488 |  |
| 24 | 1  | 0 | 6.686269  | 0.034454  | 0.429665  |  |
| 25 | 1  | 0 | 6.071782  | -1.017231 | -0.863720 |  |
| 26 | 1  | 0 | 6.085121  | 0.740119  | -1.085945 |  |
| 27 | 6  | 0 | 4.308602  | -1.108455 | 1.254012  |  |
| 28 | 1  | 0 | 5.029804  | -1.030956 | 2.076008  |  |
| 29 | 1  | 0 | 3.302011  | -1.075463 | 1.679985  |  |
| 30 | 1  | 0 | 4.440061  | -2.081979 | 0.771193  |  |
|    |    |   |           |           |           |  |

| Zero-point correction=                       | 0.226278 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.243296                    |
| Thermal correction to Enthalpy=              | 0.244240                    |
| Thermal correction to Gibbs Free Energy=     | 0.178517                    |
| Sum of electronic and zero-point Energies=   | -758.997338                 |
| Sum of electronic and thermal Energies=      | -758.980321                 |
| Sum of electronic and thermal Enthalpies=    | -758.979376                 |
| Sum of electronic and thermal Free Energies= | -759.045100                 |

Imaginary frequency (1): -44.37

# HAT TS



\_\_\_\_\_

| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
| 1      |        | •••••  | 2 730827  | -0 /12638    | 0 182421  |  |
| 2      | 6      | 0      | 2 489249  | -1 860245    | -0 183157 |  |
| 2      | 1      | 0      | 1 488364  | -2 181134    | 0 114249  |  |
| 1      | 1      | 0      | 2 597053  | _2 020016    | _1 250901 |  |
| -      | 1      | 0      | 3 228576  | -2 468222    | 0 333518  |  |
| 6      | ±<br>7 | 0      | 1 888461  | 0 539546     | -0 3/9561 |  |
| 7      | 6      | 0      | 2 053470  | 1 030577     | 0 052257  |  |
| 0      | 1      | 0      | 1 240760  | 2 105970     | 0.032237  |  |
| 8      | 1      | 0      | 1.348769  | 2.195879     | 0.848706  |  |
| 9      | 1      | 0      | 3.066680  | 2.088886     | 0.413038  |  |
| 10     | Ţ      | 0      | 1.86/113  | 2.582201     | -0.808343 |  |
| 11     | 6      | 0      | 0.719831  | 0.213567     | -1.087751 |  |
| 12     | 1      | 0      | 0.419366  | 1.038290     | -1.732669 |  |
| 13     | 1      | 0      | 0.804396  | -0.716793    | -1.642078 |  |
| 14     | 1      | 0      | -0.216735 | 0.043586     | -0.311237 |  |
| 15     | 8      | 0      | 3.671326  | -0.088573    | 0.912537  |  |
| 16     | 6      | 0      | -2.484793 | -0.067999    | 0.127930  |  |
| 17     | 8      | 0      | -1.168924 | -0.178812    | 0.639804  |  |
| 18     | 6      | 0      | -2.769979 | 1.365387     | -0.351221 |  |
| 19     | 1      | 0      | -2.123696 | 1.627594     | -1.193368 |  |
| 20     | 1      | 0      | -3.808201 | 1.470386     | -0.678911 |  |
| 21     | 1      | 0      | -2.587945 | 2.077827     | 0.457163  |  |
| 22     | 6      | 0      | -3.385251 | -0.407650    | 1.337772  |  |
| 23     | 1      | 0      | -4.436525 | -0.348918    | 1.041980  |  |
| 24     | 1      | 0      | -3.177807 | -1.417992    | 1.696576  |  |
| 25     | 1      | 0      | -3.211585 | 0.297557     | 2.153350  |  |
| 26     | 6      | 0      | -2.720881 | -1.084141    | -1.002281 |  |
| 27     | 1      | 0      | -3.758072 | -1.051369    | -1.347565 |  |
| 28     | 1      | 0      | -2.075091 | -0.866839    | -1.857861 |  |
| 29     | 1      | 0      | -2.502894 | -2.096906    | -0.654368 |  |

\_\_\_\_\_

| Zero-point correction=                       | 0.247960 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.262991                    |
| Thermal correction to Enthalpy=              | 0.263935                    |
| Thermal correction to Gibbs Free Energy=     | 0.203140                    |
| Sum of electronic and zero-point Energies=   | -520.753031                 |
| Sum of electronic and thermal Energies=      | -520.738001                 |
| Sum of electronic and thermal Enthalpies=    | -520.737057                 |
| Sum of electronic and thermal Free Energies= | -520.797851                 |

Imaginary frequency (1): -1050.53

# Radical-radical coupling TS



| Center | Atomic | Atomic | Coc       | ordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|--------------|-----------|--|
| Number | Number | Туре   | Х         | Y            | Ζ         |  |
|        |        |        |           |              |           |  |
| 1      | 6      | 0      | 1.993792  | -0.736850    | -0.043111 |  |
| 2      | 6      | 0      | 3.054067  | -1.581815    | 0.237122  |  |
| 3      | 6      | 0      | 4.288958  | -0.990026    | 0.533262  |  |
| 4      | 6      | 0      | 4.438611  | 0.399717     | 0.544368  |  |
| 5      | 6      | 0      | 3.358543  | 1.245278     | 0.259310  |  |
| 6      | 6      | 0      | 2.143245  | 0.649837     | -0.032456 |  |
| 7      | 1      | 0      | 2.935085  | -2.658706    | 0.227769  |  |
| 8      | 1      | 0      | 5.143194  | -1.618277    | 0.757416  |  |
| 9      | 1      | 0      | 5.406579  | 0.828156     | 0.777034  |  |
| 10     | 1      | 0      | 3.471477  | 2.322854     | 0.266839  |  |
| 11     | 6      | 0      | 0.808465  | 1.244781     | -0.378595 |  |
| 12     | 6      | 0      | 0.563430  | -1.031404    | -0.395608 |  |
| 13     | 8      | 0      | 0.527169  | 2.427352     | -0.495165 |  |
| 14     | 8      | 0      | 0.042953  | -2.129437    | -0.526026 |  |
| 15     | 7      | 0      | -0.063505 | 0.187505     | -0.548223 |  |
| 16     | 6      | 0      | -1.947894 | 0.454222     | -1.185087 |  |
| 17     | 1      | 0      | -1.703304 | 1.358876     | -1.721956 |  |

| 18   | 1 | 0 | -1.994461 | -0.457093 | -1.759655 |
|------|---|---|-----------|-----------|-----------|
| 19   | 7 | 0 | -2.798091 | 0.586364  | -0.143019 |
| 20   | 6 | 0 | -2.891184 | 1.879943  | 0.553990  |
| 21   | 1 | 0 | -2.441846 | 2.644025  | -0.075210 |
| 22   | 1 | 0 | -3.935632 | 2.116709  | 0.745285  |
| 23   | 1 | 0 | -2.356818 | 1.834268  | 1.504339  |
| 24   | 6 | 0 | -3.469384 | -0.512766 | 0.444434  |
| 25   | 6 | 0 | -3.355644 | -1.854575 | -0.229929 |
| 26   | 1 | 0 | -3.761615 | -1.818591 | -1.244379 |
| 27   | 1 | 0 | -2.313097 | -2.179810 | -0.291126 |
| 28   | 1 | 0 | -3.929972 | -2.569466 | 0.354996  |
| 29   | 8 | 0 | -4.119927 | -0.325174 | 1.452584  |
| <br> |   |   |           |           |           |

| Zero-point correction=                       | 0.223655 (Hartree/Particle) |
|----------------------------------------------|-----------------------------|
| Thermal correction to Energy=                | 0.238938                    |
| Thermal correction to Enthalpy=              | 0.239883                    |
| Thermal correction to Gibbs Free Energy=     | 0.179647                    |
| Sum of electronic and zero-point Energies=   | -799.698534                 |
| Sum of electronic and thermal Energies=      | -799.683251                 |
| Sum of electronic and thermal Enthalpies=    | -799.682307                 |
| Sum of electronic and thermal Free Energies= | -799.742542                 |