
Supplementary Information

Supplementary Note 1: Model selection details
A finite normal mixture model is estimated with a modified EM algorithm which maximizes a
likelihood with a penalty applied to the mixing proportions. For finite bivariate normal mixture
model f(x; θ) = ∑9

m=1 πmϕ2(x | µm, Σm, hm), denoting by yim the indicator that observation
i arises from class m, the conditional expected complete data log-likelihood function1 given
parameters θ = {π1, µ1, Σ1, . . . , π9, µ9, Σ9} is

ℓ(x | θ) = E
[

log
n∏

i=1
f(xi; θ)

∣∣∣x]

= E
[

n∑
i=1

9∑
m=1

yim

{
log πm + log ϕ2(xi; µm, Σm, hm)

} ∣∣∣x]

=
n∑

i=1

9∑
m=1

ỹim log πm +
n∑

i=1

9∑
m=1

ỹim log ϕ2(xi; µm, Σm, hm)

(1)

where ỹim is the posterior probability that observation i belongs to class m given the observations.
We follow Huang et al. (2017)2, applying a penalty (in our case, SCAD3) to the term log πm, to
obtain the penalized log-likelihood function

ℓP (x | θ) = ℓ(x | θ)− nλ
9∑

m=1
γm

[
log

(
ϵ + pλ(πm)

)
− log ϵ

]
(2)

such that the mixing proportions of unlikely clusters are shrunk to zero during the estimation
process. Here, λ is the tuning parameter, γm is the number of free parameters in cluster m, pλ is
the SCAD penalty function applied with parameter λ, and ϵ is a small positive number introduced
for numerical stability. The SCAD penalty is well-suited for our application since in many genomic
applications the classes are not of homogeneous size. While Lp style penalties will over-penalize
large values of πm, the SCAD penalty yields an unbiased result and will not penalize values of πm

that are large enough.
A slight modification to the usual EM algorithm is used to iteratively maximize the penalized

likelihood (Equation 2). In the E-step, given current estimate θ̂ = {π̂0
1, µ̂0

1, Σ̂
0
1, . . . , π̂0

9, µ̂0
9, Σ̂

0
9},

we compute the posterior probability that each observation belongs to every class given the data as

ỹim = π̂0
mϕ2(xi; µ̂0

m, Σ̂
0
m, hm)∑M

m=1 π̂0
mϕ2(xi; µ̂0

m, Σ̂
0
m, hm)

(3)

by some abuse of notation for M , which is allowed to shrink during the algorithm’s progression.
In the M-step, we update (2), which is separable into a component concerning the mixing proportions,
and a component concerning the normal parameters. For the former, straightforward calculus with
a Lagrange multiplier used to impose a sum-to-one constraint yields a closed-form solution to the
maximization as
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π̂⋆
m = 1

Tm

n∑
i=1

ỹim, (4)

where

Tm = n + nλγm

[
p′

λ(π̂0
m)

ϵ + pλ(π̂0
m) −

M∑
m=1

p′
λ(π̂0

m)π̂0
m

ϵ + pλ(π̂0
m)

]
(5)

and p′
λ is the first derivative of the SCAD penalty. For the latter, since we impose application-

specific constraints on the model parameters, maximization must be done numerically.

Supplementary Note 2: MCMC details

Computing prior hyperparameters from pairwise fits

We recycle information from the
(

D
2

)
pairwise models on order to obtain more informative priors

in our model. Here, we detail how we compute the hyperparameters {µ1, . . . , µM , Σ1, . . . , ΣM}.
For simplicity, we describe only the computation of {µ1, . . . , µM , σ2

1, . . . , σ2
M}, which denote the

means and variances in just the first dimension of each of the M clusters. The computation for
other dimensions follows similarly.

In order to begin, we first obtain the pairwise association labels h(1d)
m , d ∈ {2, . . . , D} for each

observation. As discussed in Mixing weight-based class pruning, these labels are assigned via
multinomial sampling with weights equal to the observation’s posterior probability of belonging
to each class. Then, for a given cluster m and pairwise fit between dimension 1 and d, compute
the mean of the subset of data belonging to class m in the first dimension. Then µ1 equals the
average of this value across all D − 1 pairwise fits that contain the first dimension. Variances
are handled analogously; variance estimates for a fixed class m are combined across pairwise fits
not by averaging, but by taking the 75th quantile of the collection of estimates across fits, as
averaging often results in covariance estimates that are not positive definite. The off-diagonals of
the covariance matrices are computed on the relevant data subsets as well, but do not need to be
aggregated. This is because we do not obtain redundant estimates of the off-diagonal covariance
terms.

Metropolis-Hastings algorithm

Note that typically, since all full conditionals (Equation 12, below) are available for the model in
Equation 8, we could do inference using a Gibbs sampler. However, this requires making draws
from the truncated multivariate normal and constrained inverse-Wishart distributions. While
efficient methods for sampling truncated multivariate normal random variables are available4,5,
unfortunately it is not clear how to efficiently sample constrained inverse-Wishart random variables.
As an alternative, we introduce a fast algorithm that is useful for generating positive-definite
matrices with constraints on the off-diagonal elements. This algorithm enables us to implement
an efficient Metropolis-Hastings step in our MCMC to propose a new covariance drawn with the
correct support at each iteration.
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Our constrained matrix sampling algorithm modifies the procedure for generating Wishart-
distributed random matrices. That is, Wijsman6 proposed a method for sampling Wishart random
matrices based on the Bartlett decomposition of a positive-definite matrix. Consider Σ ∼ WD(ν, Ψ),
a Wishart distribution parameterized by D ×D positive-definite scale matrix Ψ and degrees of
freedom ν, ν > D − 1. To draw a random sample from this distribution, one computes U , the
upper-triangular Cholesky factor of Ψ, and simulates a D ×D lower-triangular matrix A as

A =


c1 0 . . . 0
z21 c2 . . . 0
... ... . . . ...

zD1 zD2 . . . cD


where c2

i ∼ χ2
ν−i+1 and zij ∼ ϕ1(0, 1). Then Σ = UT AAT U is a Wishart-distributed random

matrix.
We claim that we can modify Wijsman’s simulation procedure to produce positive-definite

matrices with the desired support. We notice that we cannot make changes to U without destroying
the desired covariance structure of Σ, nor can we change the diagonal elements of A without
risking simulating a matrix that is singular. However, we note that each off-diagonal element of
Σ = UT AAT U can be expanded as

Σpm = Σmp =


U11A11

(∑p
i=1 UipAi1

)
, for m = 1

∑m
k=1 Ukm

∑k
j=1 Akj

[∑p
i=j(AijUip)

], for m > 1
. (6)

This representation shows that, due to the triangular structure of both U and A, each off-
diagonal element Σpm computed using Equation 6 depends only on certain off-diagonal elements of
A (that is, A21 depends on no other off-diagonal element. A31 depends only on A21, A32 on A21 and
A31, and so forth, proceeding in a top-down, row-wise order). Further, each Σpm is a monotonic
function of Apm.

The monotonicity of Σpm in Apm guarantees that, when Apm is small (large) enough, then Σpm

will be negative (positive). Therefore, we can find a upper (lower) bound on zpm such that Σpm

will satisfy the given sign constraints. Moreover, given the dependence structure of the off-diagonal
elements of A, we observe that, conditional on obtaining a satisfactory value of A21, we can find a
satisfactory value for A31, then A32, and so on.

For m < p, solving Equation 6 for Apm gives

Apm =



Σp1−U11A11(
∑p−1

i=1 UipAi1)
UppU11A11

for m = 1

Σpm−
∑m−1

k=1 Ukm

{∑k

j=1 Akj

[∑p

i=j
(AijUip)

]}
UppUmmAmm

−
∑m−1

j=1 Amj

[∑p

i=j
(AijUip)

]
UppAmm

−
∑p−1

i=m
AimUip

Upp
for m > 1

. (7)
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This formula for Apm is used to find upper and lower truncation points for the univariate
standard normal random variables that comprise the off-diagonal elements of A such that Σ satisfies
the desired constraints. The constraint Σpm < 0 (Σpm > 0) is satisfied when Apm is greater (less)
than the result of Equation 7, setting Σpm equal to 0. The full simulation procedure is made
explicit in Algorithm 1. Fig. S27 shows some example data simulated using this Algorithm 1 with
ν = 25,

Ψ =


2 0.3 −0.6 −0.8

0.3 1.5 −0.75 −0.1
−0.6 −0.75 1.5 0.4
−0.8 −0.1 0.4 2

 (8)

,

Rmp = Rpm =

0, for Σmp > 0
−∞, for Σmp < 0

(9)

and

Smp = Spm =

∞, for Σmp > 0
0, for Σmp < 0

. (10)

Algorithm 1 Sampling D ×D positive-definite matrix Σ with desired support
1: Define fixed parameters Ψ, ν, R, and S, where R and S are symmetric D×D matrices of lower

and upper truncation points for each of the off-diagonal elements of Σ
2: Compute U , the upper-triangular Cholesky factor of Ψ
3: for i in 1 to D do
4: Aii ∼

√
χ2

ν−i+1

5: for p in 2 to D do
6: for m in 1 to p− 1 do
7: apm ← solution to Equation 7, setting Σpm = Rpm

8: bpm ← solution to Equation 7, setting Σpm = Spm

9: Apm ∼ TN(0, 1, apm, bpm)
10: return UT AAT U/ν

The MCMC proceeds as follows. Initialize all parameters θ = {µ1, . . . , µM , Σ1, . . . , ΣM , π} in
the model. At iteration t of the MCMC algorithm, we begin by proposing a constrained covariance
matrix cluster-at-a-time. For each cluster m, we propose a new covariance, drawn according to
Σ⋆

m ∼ Algorithm 1(Σt
m, νt

m, h), since covariances that do not meet the given constraints will have
zero likelihood. Σt

m is our current estimate of Σ at iteration t and νt
m is our current proposal

degrees of freedom, log adaptively tuned for each cluster7. The acceptance ratio for this proposal is
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∏nm
i=1 ϕc

D(X·i; µ⋆
m, Σ⋆

m, h)1(zi=m)∏nm
i=1 ϕc

D(X·i; µt
m, Σt

m, h)1(zi=m) ·
∏n

i=1 g(zi; X, θ⋆)∏n
i=1 g(zi; X, θ)

· ϕD(µt
m; µ0

m, Σ⋆
m)

ϕD(µt
m; µ0

m, Σt
m) ·

q(Σ⋆
m/(κm −D − 1); Ψ0

m, κm)
q(Σt

m/(κm −D − 1); Ψ0
m, κm)

· η(Σ⋆
m | Σt

m)
η(Σt

m | Σ⋆
m)

(11)

where g is a multinomial density with weights{
π1ϕ

c
(1)(x; µ1, Σ1)∑M

m=1 πmϕc
(m)(x; µm, Σm)

, . . . ,
πMϕc

(M)(x; µM , ΣM)∑M
m=1 πmϕc

(m)(x; µm, Σm)

}
,

q is an inverse-Wishart density, and η accounts for the asymmetric proposal, maintaining
detailed balance. The first line of Equation 11 captures the likelihood of the data given the
estimated cluster mean vector, covariance matrix, and cluster indicator and the likelihood of the
cluster indicators given the data and all estimated means, covariances and mixing weights. The
second line captures the priors on the mean and covariance. The final term is proportional the the
univariate χ2 and truncated normal densities that make up the samples from Algorithm 1. This
procedure conveniently sidesteps any expensive computation of intractable normalizing constants.

Following this Metropolis step, cluster indicators z, means µ, and mixing weights π are sampled
using standard Gibbs updates. The full conditionals are written

π | X, h ∼ Dir(α + n),

n an M -vector with entries nm =
n∑

i=1
1(h[i] = m)

(µh, Σh) | X, H = h ∼ NIWc
D

(
κhµ0

h + nhx̄h

κh + nh

, κh + nh, νh + nh,

Ψ0
h +

n∑
i=1

(Xi· − µi)(Xi· − µi)T
1(Hi = h)

+ κhnh

κh + nh

(x̄h − µh)(x̄h − µh)T

)
H | X, π, (µ1, Σ1), . . . , (µM , ΣM) ∼

Mult
(

π1ϕ
c
(1)(x; µ1, Σ1)∑M

m=1 πmϕc
(m)(x; µm, Σm)

, . . . ,
πMϕc

(M)(x; µM , ΣM)∑M
m=1 πmϕc

(m)(x; µm, Σm)

)
.

(12)

Supplementary Note 3: Simulation results

Simulation 1: ChIP-seq data

In simulation 1, based on ChIP-seq data, we assess the performance of each method by comparing
the identified consistent signals with the truth and computing the precision and recall at a series
of identification thresholds. As shown in Fig. S3, CLIMB outperforms mash and SCREEN across
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Figure S1: Pairwise plots of data used in simulation studies. a, Simulated data between two
different pairs of dimensions from simulation 1, resembling ChIP-seq data and b, simulation 2,
resembling differential analysis of RNA-seq data.
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Figure S2: 27 simulations were conducted to investigate the computational demand of each step
of CLIMB across different sample sizes, dimensions, and numbers of latent classes. Parameter
settings and association vectors were randomly generated in each simulation. The MCMC sampler
was run for 15,000 iterations in each simulation. The dimension of the dataset is the major source
of increased computational cost. Technically, the MCMC sampler could have a worst-case time
complexity of O(D5). However, the time complexity is also largely driven by how dense the latent
association vectors h are with non-zero elements, as this drives the number of parameters needing
estimation. In the context we study using this method, there are a large number of zeros in each
class (e.g. Supplementary Figs. S10, S18, and S29). Analyses were done on a machine (2.8 GHz
Intel Xeon Processor with 256 GB RAM) with 20 cores for parallel processing.
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Figure S3: Precision-recall curves for simulation 1, resembling a ChIP-seq dataset. The curves
assess CLIMB, mash, and SCREEN’s ability to identify genomic loci that are bound by the protein
of interest in at least u out of 18 cell types. The dashed black line is the baseline for a random
classifier.

all tested u, where u is the consistency threshold of the partial conjunction hypothesis (Section
Testing consistency of effects). We also examined the frequency of missigned signals (Table S1), and
found that CLIMB and SCREEN do not missign signals, while mash does. In fact, since SCREEN
assumes all signals have positive sign–an assumption that these data satisfy–SCREEN benefits in
this comparison. Mash, on the other hand, sometimes missigns effects as negative, and is especially
likely to do so for lower u. This is likely due in part to the fact that mash expects data to be
symmetric and unimodal, but ChIP-seq data do not in general display such structure. CLIMB,
on the other hand, can adapt to the ChIP-seq data structure. Indeed a closer examination of the
results after pairwise fitting shows that all candidate latent classes with a -1 label are removed
during the pairwise fitting step. These results collectively suggest that CLIMB’s pairwise fitting
step is well-suited to identify pairwise associations in the data, and that the final joint modeling
step boosts statistical power to identify consistent signals across u.

Simulation 2: differential RNA-seq data

Simulation 2, designed to resemble a differential RNA-seq dataset, reveals several contrasting
results. Here again, CLIMB outperforms mash and SCREEN (Supplementary Fig. S4). For these
data, we noticed that as u increases, accurate classification appears to become more difficult. This
is likely due to the fact that few observations are consistent at high thresholds, and the most
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u 2 4 6 8 10 12 14 16
CLIMB 0/10314 0/6735 0/5055 0/4539 0/4539 0/3211 0/2356 0/1844

mash 858/9300 326/9088 181/8917 123/7959 39/5752 9/4166 3/2814 0/1718
SCREEN 0/6602 0/4396 0/3656 0/3129 0/2519 0/1984 0/1468 0/930

Table S1: Proportion of effects identified as significant at level 0.05 that are true effects, yet
incorrectly signed by CLIMB, mash, and SCREEN, from simulation 1.
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Figure S4: Precision-recall curves for simulation 2, resembling a differential analysis of RNA-seq
dataset. The curves assess CLIMB, mash, and SCREEN’s ability to identify effects that are
consistent in at least u out of 11 tissues. The dashed black line is the baseline for a random
classifier.

consistent observations in this dataset are neither well-separated from inconsistent observations nor
strongly correlated across dimensions. For example, we find that a mere 480 observations (3.2% of
total sample size) are consistent at u = 5. The average signal overall is 2.05, and the average signal
for the observations that are consistent at u = 5 is only 1.61. These features of the data would
challenge any method, explaining the precipitous drop in performance of mash and SCREEN at
higher thresholds (u ≥ 4). Due to the stochastic nature of class pruning and modeling employed
by CLIMB, this challenging setting can affect CLIMB’s performance as well, yielding somewhat
differing results for u ≥ 4 across multiple runs. Still, CLIMB outperforms the other two methods
and all methods perform better than a random classifier.

We next investigated the frequency with which each method missigns signals (Supplementary
Table S2), and found that CLIMB performs the best according to this metric. Most notably,
SCREEN struggles to make accurate inference in this setting. This is because SCREEN does not
differentiate signs, thus it identifies many inconsistent effects that appear significant in both the
positive and negative directions, as consistent. Since CLIMB and mash model signals in both the
positive and negative directions, these methods missign signals far less frequently.

On the other hand, mash reports a very small estimated mixing weight of 2.02 × 10−3 for
the null class, resulting in almost all observations being called significant, a trend that CLIMB
and SCREEN do not exhibit (see Supplementary Fig. S9 for a comparison of null observations
across all methods). This indicates that mash is sensitive compared to other methods, rendering it
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u 2 3 4 5
CLIMB 9/6059 0/2771 0/786 0/2

mash 686/15000 188/15000 4/12425 0/5056
SCREEN 1289/5207 119/285 0/31 0/0

Table S2: Proportion of effects identified as significant at level 0.05 that are true effects, yet
incorrectly signed by CLIMB, mash, and SCREEN, from simulation 2. There are no truly
consistent effects at more than 5 (u > 5) conditions.
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Figure S5: Precision-recall curve for simulation 3, resembling a lineage-specific RNA-seq dataset.
The curves compare the performance of CLIMB and DESeq2 at identifying genes that are differen-
tially expressed along the lineage. The dashed black line is the baseline for a random classifier.

inappropriate for testing consistency of signals. CLIMB, meanwhile, demonstrates the strongest
performance, based on both the precision-recall curves (Fig. S4) and the proportion of missigned
effects (Table S2). Taken together, these results affirm that CLIMB’s flexible modeling framework
is essential to adapt to complex datasets, and the inclusion of latent association labels reduce
oversensitivity when identifying signals.

Simulation 3: RNA-seq data across cell differentiation

We set up simulation 3 to mimic an analysis whose goal is to understand how gene expression
levels change across cell developmental stages. It supports a claim that CLIMB shows better
precision than DESeq2 in the specific setting of multi-condition differential analysis. In particular,
though DESeq2 is known to be an effective tool for differential expression analysis between a pair
of conditions, the modeling and testing approach, which aggregates pairwise tests across conditions,
may weaken the analysis when there are additional conditions. This is a setting where CLIMB can
excel by cohesively capturing expression patterns across differentiation.
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Supplementary Note 4: Simulation details
In simulations 1 and 2, testing for consistency was carried out for each method using comparable,
but not exactly the same, procedures. For CLIMB, we tested for consistency using the procedure
described in the Methods (see Testing significance and replicability of effects). For SCREEN, we
used the test provided by Amar et al.8 in the SCREEN software. Both tests are similar, in that
they use binary (for SCREEN) and ternary (for CLIMB) vectors as class labels of association
patterns to determine the probability of a given effect being significant in a given dimension. They
are different in that SCREEN clusters the dimensions and thus does not produce D−dimensional
cluster labels, and that CLIMB requires the additional step of selecting the sign of each effect
(Equation 12). Mash, on the other hand, does not define its classes by association patterns dictating
the significance and direction of effects. Therefore, we designed a consistency test for mash to be
as close to the test used for CLIMB as possible.

The consistency test for mash begins with the quantitites p+
id and p−

id, i ∈ {1, . . . , n}, d ∈
{1, . . . , D}, the probability that effect i in dimension d is non-null positive or non-null negative,
respectively. These quantities are readily output by mash. We used these terms to compute P̃

u/D+
i

and P̃
u/D−
i , the probability that effect i is non-null positive or non-null negative, respectively, in at

least u out of D dimensions. These terms are analogous to those used by CLIMB (see Equation 13),
and are calculated with the equations

P̃
u/D+
i :=

D∑
d=u

∑
j∈({1,...,D}

d )

∏
p+

ij

P̃
u/D−
i :=

D∑
d=u

∑
j∈({1,...,D}

d )

∏
p−

ij

(13)

by minor abuse of notation as index j in fact refers to a whole set of dimension indices. Again,
analogous to the replicability test for CLIMB, we define P̃

u/D
i = max

{
P̃

u/D+
i , P̃

u/D−
i

}
as the

probability that effect i is replicable at level u. This test comes with the caveat that it assumes
the pij’s are independent.

When testing with SCREEN, the sign of the association is always positive. For both CLIMB
and mash, the sign of the association must match the direction of association that maximizes
P

u/D
i and P̃

u/D
i , respectively. Precision-recall curves for simulations 1 and 2 constructed without

considering the sign of association are presented in Supplementary Fig. S6 and S7.

Supplementary Note 5: Implementation details

Running CLIMB

Parameter constraints during pairwise fitting. During the pairwise fitting step of CLIMB, we
impose additional constraints on θrt which are relaxed in the final, D−dimensional model. For any
pairwise fit between dimensions r and t, these constraints are

1. all non-null elements of µh are equal in magnitude ∀h ∈ hrt,

2. all non-null variance terms of Σh are equal ∀h ∈ hrt, and
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Figure S6: Precision-recall curves analogous to those in Fig. S3, but which use the alterna-
tive definitions of FPR and TPR that do not account for missigned effects. Here, precision =
|significant effects∩true effects|

|significant effects| and recall = |significant effects∩true effects|
|true effects| .
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Figure S7: Precision-recall curves analogous to those in Fig. S4, but which use the alterna-
tive definitions of FPR and TPR that do not account for missigned effects. Here, precision =
|significant effects∩true effects|

|significant effects| and recall = |significant effects∩true effects|
|true effects| .
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Figure S8: Classification accuracy of the pairwise fitting step of CLIMB in simulation
studies. Each point in the figure represents the outcome of a pairwise fit. For each pairwise fit,
CLIMB estimates which latent classes are present in the model, and assigns each observation a
probability of belonging to each class. We assessed CLIMB’s classification accuracy by calculating
the proportion of times, for a given pairwise fit, the observations’ maximum a posteriori class
estimate matches the true class label. CLIMB was overall more likely to retain extra classes at the
pairwise level (# extra pairwise classes) than it was to remove classes from the model that truly
belonged (# missed pairwise classes). No more than one class was missed across all pairwise fits in
simulation. All triangles (that is, cases where 1 class was erroneously removed from the model) are
plotted in the top layer and are thus visible in the figure. Boxplot shows the 25th, 50th, and 75th
quantiles. Whiskers indicate the minimum and maximum of each set of points. Points represent
n = 153, 55, and 10 pairwise fits for simulations 1, 2, and 3 respectively.
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Figure S9: The proportion of effects that are deemed null by CLIMB, mash, and SCREEN at
significance level 0.05, as compared to the true proportion of null effects across various thresholds
u.

3. all off-diagonal covariance terms are equal in magnitude for h ∈ {(−1,−1), (−1, 1), (1,−1),
(1, 1)}.

Simulations indicated that, without these constraints, estimation is rendered inconsistent; simul-
taneous model selection and flexible parameter estimation tended to result in an underestimation
of the true number of classes. We maintain that in the pairwise fitting step of CLIMB, accurate
estimation of the number of latent classes is the most salient task. While imposing the above
parameter constraints results in some estimation bias, we find that the method is still able to
consistently estimate the number of latent classes. Thus, we imposed these constraints in all
analyses with CLIMB. It is important to note that the D−dimensional Bayesian normal mixture
model implemented in the last step of the CLIMB methodology does not impose these constraints.

The Overview of CLIMB section describes how CLIMB assumes the data model to follow a
constrained normal distribution ϕc (see Equation 2) such that for any class h, elements of µh

corresponding to non-null dimensions are non-zero. This assumption on the non-null elements
of µh can be modified to accomodate a more strict definition of the non-null dimensions of each
class. That is, we can assume that a non-null dimension must have a mean whose magnitude is
greater than or equal to some positive value, for example, the 95% quantile of a standard normal
distribution. Indeed, for all analyses presenting here we assumed the non-null elements of µh to be
non-zero.

Informativity of the prior. In An empirical Bayesian model, we state that the degree of freedom
parameters in the Bayesian mixture model, ν and κ, can be set approximately equal to nα̂, where
α is computed from the pairwise fitting results with Equation 6. For each class h, these parameters
control the concentration of the prior on the covariance around the Ψ0

h and the concentration of
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the prior on the mean around µ0
h, respectively. These terms can therefore be adjusted to tune

the informativity of the priors. That is, for smaller values, the priors will become more diffuse,
whereas for larger values, the priors will become more concentrated. In all simulations and VISION
ChIP-seq analyses, we left ν and κ equal to nα̂. In each VISION RNA-seq analysis, we set these
hyperparameters equal to 50 for all classes. We chose this path because the clusters were less
well-separated, and since n was large for these datasets, setting κ = nα̂ would possibly place
undue confidence in the priors. Deliberately making priors more diffuse is a good strategy for one
who is concerned with sensitivity to the prior.

MCMC implementation details. Setting up the MCMC for CLIMB requires some user intervention.
This is mainly through the selection of threshold δ (Equation 6), which determines the number M
of classes included in the final model. As with any MCMC, the user must also choose the number
of iterations for which to run the MCMC and discard initial iterations for a chain-specific burn-in
period. These values are reported in Table S3. Parameters for the MCMC were initialized by
drawing from the priors. Visual inspection of traceplots for a subset of model parameters was used
to assess convergence.

Inferring similarity between conditions with CLIMB. Output from CLIMB can be used to de-
termine a relationship among the dimensions in a dataset. To do this, we first compute pairwise
distances between dimensions based on the estimated mixture model by extending correlation-based
distances9. Letting Ĉm be the correlation matrix derived from the estimated covariance matrix
Σ̂m for cluster m, and (Y )ij be the (i, j)th element of matrix Y , the distance between dimensions
d and d′ is

dist(d, d′) =

√√√√1−
[ M∑

m=1
πm(Ĉm)dd′

]2
. (14)

Hierarchical clustering is used on the matrix of pairwise distances found via Equation 14 to
extract the association between dimensions.

Obtaining parsimonious characterization of condition-specificity by merging classes with CLIMB.
To merge classes with CLIMB’s output, we compute all pairwise distances between them. Noting
that each class is described parametrically by a multivariate normal distribution, we can compute
the distance between any two classes as

dist(m, m′) = KL(p||q) + KL(q||p)
2 (15)

where q and p are estimated multivariate normal densities corresponding to classes m and m′,
and KL is the Kullback-Leibler divergence. Equation 15 can be computed analytically. Then, one
can perform hierarchical clustering based on this distance, and cut the tree to produce the desired
number of groups. A group of merged classes inherits a new class mean as a weighted average of
the mean estimates of the member classes. That is, the mean estimate µ̂G of group G, comprised
of classes g ∈ G, is
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µ̂G =
∑
g∈G

πgµ̂g∑
g′∈G πg′

. (16)

Running SCREEN, mash, and NMF

SCREEN asks the user to select several input settings before running the model. These are

1. nH: the maximum number of binary latent class configurations to store in memory

2. lfdr_method: the algorithm used to estimate the two-groups model

3. use_power: whether or not to weight each dimension by the estimated quality of data in
that dimension

In all analyses, we ran SCREEN at the default settings, setting nH = 10,000, lfdr_method =
znormix, which is based on the EM algorithm for normal mixtures10, and use_power = True.

Mash asks the user to supply a matrix of standard errors for each observation if available, and
also to pre-specify a list of candidate covariance matrices. In all analyses, we used built-in functions
of the mashr R package to generate the list of candidate covariances. These include

1. canonical covariance matrices (e.g., the identity matrix or matrices that correspond to signals
specific to a single dimension) obtained using the cov_canonical function

2. data-driven covariances obtained from the subset of the data with the strongest signals

– strongest signals are selected by first running dimension-specific analyses separately for
each dimension, the applying the get_significant_results function on the results

– from these strongest signals, data-driven covariances based principal components analysis
with 5 components are found using the cov_pca function

– also from the strongest signals, data-driven covariances based on the Extreme Deconvo-
lution method11 are computed using the cov_ed function

We did not provide mash with standard error estimates as they were not available. All other
parameter settings were left at their defaults.

In implementing NMF, we followed the procedure used by Meuleman et al.12. To avoid
sensitivity to random initial conditions, we seeded the NMF algorithm with a singular value
decomposition. We examined the performance of the NMF from ranks 5 to 30, and selected the
optimal rank as the one to maximize the silhouette coefficient before that same metric began a
sharp decline. This NMF analysis completed in 36 hours.

Supplementary Note 6: Processing of empirical data
For the VISION ChIP-seq analysis, reads were aligned to reference genome mm10 and peaks
were called using MACS13 according to the ENCODE pipeline14. The peaks called across various
cell types were aligned using BEDTools15. CTCF peaks, reported from MACS using P -values,
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were normalized with S3norm across different samples to adjust for variation in both signal and
background regions16. Normalized values were converted to Z-scores by applying the standard
normal quantile transformation, then taking the negative such that strong peaks correspond to
positive Z-scores. For any locus for which a peak was called in at least one cell type but not all
others, there are not P -values available for the cell types without a called peak. We imputed
the Z-scores for these absent peaks by imputing a null signal that is randomly simulated from a
standard normal distribution. In doing so, this imputation introduces null signals for each cell type
at places where we do not have strong evidence for the presence of CTCF and avoids producing
ties in the data. The proportion of loci with imputed signals in a given cell type ranged from 0.25%
to 33.16%. The final data set is comprised of 10,141 binding sites.

For the VISION RNA-seq data, RNA abundances were quantified with RSEM17. For a given
lineage, genes whose estimated transcripts per million (TPMs) were equal to zero across all
experiments were removed from the analysis. Estimated TPMs were then averaged across two
replicates for each cell population. The data were then shifted by an offset to prevent infinities,
log2 transformed, and quantile normalized. Lastly, we applied a location shift to position the data’s
positive mode over the origin. The corresponding datasets for these lineages respectively contained
21,303, 20,995, and 22,940 genes.

For the DNase-seq data, we downloaded the peak significance data made available via Zenodo
(https://doi.org/10.5281/zenodo.3838751, file name dat_FDR01_hg38.RData). We subsetted the
samples to the 38 hematopoietic cell populations, and filtered out loci such that a peak was present
in two or more samples. As with the ChIP-seq data, we converted the P -values to Z-scores with a
standard normal quantile transformation, and imputed Z-scores in the case of absent peaks. A
small number of accessible signals were so large as to cause numerical issues for CLIMB. Thus, we
applied an upper threshold to the signals, thresholding any value that exceeded the 99.9th quantile
of all signals at that quantile.

Supplementary Note 7: Enrichment analyses
Each gene ontology genomic regions enrichment analysis was conducted with an appropriate
reference set. For the GREAT analysis described in the analysis of the VISION CTCF ChIP-seq
data, the set of all detected CTCF binding sites on chromosome 11, across all cell populations, was
used. For the VISION RNA-seq analyses, the set of input genes for each lineage was used as the
reference set for each lineage-specific gene ontology enrichment analysis. For the GREAT analyses
described in the analysis of the DNase-seq data, the set of all analyzed accessible sites across all
autosomes was used as the reference set.

Gene sets obtained by CLIMB and DESeq2 for the differential expression analysis of each of
the three lineages examined are presented in Supplementary Data 1. To select gene ontology terms
displayed in Fig. 4b, we searched for terms that were significantly enriched in at least one gene set
(i.e., CLIMB only, DESeq2 only, or their intersect for some lineage), and reported the terms with
distinct meanings.
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Supplementary Note 8: Analysis of CTCF ChIP-seq on chromosome 7
In order to understand the stability of CLIMB, we complemented our original VISION CTCF
ChIP-seq analysis with an examination of CTCF ChIP-seq data on chromosome 7. We prepared
these data in the same manner as with chromosome 11. The proportion of loci with imputed
signals in a given cell type ranged from 1.00% to 31.18%. The final data set is comprised of 8,983
loci. We identified 3 classes corresponding to constitutive binding behavior: the class of all ones,
the class of all ones except for in the CFUE cell population, and the class of all ones except for
in the CFUE and MONO cell populations. As in the previous analysis, these 3 classes make up
∼ 36% of all analyzed loci, and the average signal of the classes of constitutive loci is larger than
that of the loci that are not constitutive (one-sided t-test, P = 4.52× 10−4). In fact, similar to
the analysis of chromosome 11 which contained 15 non-empty classes, we estimated 14 non-empty
classes to be in the data from chromosome 7. Indeed, many of the classes are the same as those
previously identified (see Supplementary Fig. S29 for a full illustration of non-empty classes).
Further, CLIMB again returns a clustering of cell types that more closely resembles the expected
relationship among the cell populations when compared against mash and Pearson correlations
(Fig. S28). This clustering is quite similar to the one obtained from the analysis of chromosome 11,
suggesting that if CTCF binding patterns are similar across chromosomes, CLIMB’s inference is
fairly robust.

Supplementary Note 9: Proofs
Proposition 1. Assume the estimated pairwise association vectors are equal to or a superset of
the true pairwise association vectors. Then the graph-based enumeration and pruning algorithm is
conservative, in that it results in a collection of all the true latent labels, with the possibility of
additional, unsupported classes. That is, letting Htrue be the collection of true latent classes and
Halg be the collection of latent classes obtained from the enumeration and pruning algorithm, then
Htrue ⊆ Halg.

Proof. Assume to the contrary that ∃hm ∈ H but hm /∈ Halg. This implies ∃(i, j) ∈ {1, . . . , D}, i <
j, such that (ai, aj) /∈ hij. We obtain an immediate contradiction because Halg contains all paths
h̃′ such that h̃′ = {hm : (ai, aj) ∈ hij ∀i, j where i < j}. To show that Halg is not necessarily
equal to H, an explicit example of this, when pairwise labels are obtained exactly, is worked out in
Fig. 1.

Proposition 2. The graph-based enumeration and pruning algorithm provides a unique list of
latent classes up to permutation of dimension labeling.

Proof. Consider a list of valid paths produced by executing the path enumeration and pruning
algorithm, defined by edge set of the form{[

S, (1, a1)
]
,
[
(1, a1), (2, a2)

]
, . . . ,

[
(D − 1, aD−1), (D, aD)

]
,
[
(D, aD), T

]}

as in Equation 5, which produces latent classes of the form {a1, . . . , aD}. Then, ∀r, t ∈
{1, . . . , D}, r < t, we have that {ar, at} ∈ hrt. Define a bijection φ : A → A for some set A
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that forms the symmetric group SD under composition of permutations. Applying φ to each
{a1, . . . , aD} thus gives a reordering of the latent classes {a′

1, . . . , a′
d}, such that ∃h′

rt ∋ {a′
r, a′

t}.
This h′

rt is clearly obtained by applying φ to the set of ordered dimensions {1, 2, . . . , D} such that
the new edge set is of the form{[

S, (φ(1), φ(a1))
]
,
[
(φ(1), φ(a1)), (φ(2), φ(a2))

]
, . . . ,

[
(φ(D), φ(aD)), T

]}
corresponding to valid latent classes {φ(a1), . . . , φ(aD)}.

Proposition 3. For pairwise labels sampled according to Equation 7, and for some D and M ,
α̂m is a consistent estimator for the expected posterior mixing proportion of class m that could be
obtained from a D-dimensional mixture model of the same M classes.
Proof. We will prove the consistensy of α̂m inductively. For simplicity of notation, we replace
previous notation x(rt)

i with x(p)
i and h(rt)

m with h(p)
m for pair p. First, consider the base case, when

D = 2. We will show that for ϵ > 0,

lim
n→∞

lim
δ↓0

Pr(|α̂m − θ2| > ϵ)→ 0

where θD here is the true expected posterior probability of class membership output from a D-
dimensional mixture model. That is, for some class class m ∈ {1, . . . , M}, θD = 1

n

∑n
i=1 P (xi ∈ hm).

lim
n→∞

lim
δ↓0

Pr(|α̂m − θ2| > ϵ)

= lim
n→∞

lim
δ↓0

[
Pr(α̂m − θ2 > ϵ)1(α̂m > θ2) + Pr(α̂m − θ2 < −ϵ)1(α̂m < θ2)

]

= lim
n→∞

lim
δ↓0

[
P
( ∑n

i=1

{
1

[∑(D
2)

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D
2

)
− δ

]}
∑M

m′=1
∑n

i=1

{
1

[∑(D
2)

p=1 1
(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D
2

)
− δ

} − θ2 > ϵ

)
1(α̂m > θ2)

+ P
( ∑n

i=1

{
1

[∑(D
2)

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D
2

)
− δ

]}
∑M

m′=1
∑n

i=1

{
1

[∑(D
2)

p=1 1
(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D
2

)
− δ

} − θ2 < −ϵ

)
1(α̂m < θ2)

]

= lim
n→∞

[
P
( ∑n

i=1 1(xi ∈ hm)∑M
m′=1

∑n
i=1 1

(
xi ∈ hm′)

> θ2 + ϵ

)
1(α̂m > θ2)

+ P

( ∑n
i=1 1(xi ∈ hm)∑M

m′=1
∑n

i=1 1
(
xi ∈ hm′)

< θ2 − ϵ

)
1(α̂m < θ2)

((
D
2

)
= 1

)

= lim
n→∞

[
P
(

1
n

n∑
i=1
1(xi ∈ hm) > θ2 + ϵ

)
1(α̂m > θ2) + P

(
1
n

n∑
i=1
1(xi ∈ hm) < θ2 − ϵ

)
1(α̂m < θ2)

]

=P
(
E

{
1(xi ∈ hm)

}
> θ2 + ϵ

)
1(α̂m > θ2)
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+ P

(
E

{
1(xi ∈ hm)

}
< θ2 − ϵ

)
1(α̂m < θ2) (Dominated Convergence Theorem)

= P
(

P(xi ∈ hm) > θ2 + ϵ

)
1(α̂m > θ2) + P

(
P(xi ∈ hm) < θ2 − ϵ

)
1(α̂m < θ2)

= 0

The inductive hypothesis for generic D is

lim
n→∞

lim
δ↓0

Pr(|α̂m − θD| > ϵ) =

= lim
n→∞

lim
δ↓0

[
P
( ∑n

i=1

{
1

[∑(D
2)

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D
2

)
− δ

]}
∑M

m′=1
∑n

i=1

{
1

[∑(D
2)

p=1 1
(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D
2

)
− δ

} − θD > ϵ

)
1(α̂m > θD)

+ P
( ∑n

i=1

{
1

[∑(D
2)

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D
2

)
− δ

]}
∑M

m′=1
∑n

i=1

{
1

[∑(D
2)

p=1 1
(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D
2

)
− δ

} − θD < −ϵ

)
1(α̂m < θD)

]

→ 0

and we want to show that, for D + 1, we still have

lim
n→∞

lim
δ↓0

Pr(|α̂m − θD+1| > ϵ) =

= lim
n→∞

lim
δ↓0

[
P
( ∑n

i=1

{
1

[∑(D+1
2 )

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D+1
2

)
− δ

]}
∑3M

m′=1
∑n

i=1

{
1

[∑(D+1
2 )

p=1 1

(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D+1
2

)
− δ

} − θD+1 > ϵ

)
1(α̂m > θD+1)

+ P
( ∑n

i=1

{
1

[∑(D+1
2 )

p=1 1(x(p)
i ∈ h(p)

m ) ≥
(

D+1
2

)
− δ

]}
∑3M

m′=1
∑n

i=1

{
1

[∑(D+1
2 )

p=1 1

(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D+1
2

)
− δ

} − θD+1 < −ϵ

)
1(α̂m < θD+1)

]

→ 0

where 3M comes from the fact the if there are M classes in D dimensions, there can be no
more than 3M classes in D + 1 dimensions. Simply letting D⋆ = D + 1 and M⋆ = 3M , we get

lim
n→∞

lim
δ↓0

Pr(|α̂m − θD⋆| > ϵ) =

19



= lim
n→∞

lim
δ↓0

[
P
( ∑n

i=1

{
1

[∑(D⋆

2 )
p=1 1(x(p)

i ∈ h(p)
m ) ≥

(
D⋆

2

)
− δ

]}
∑M⋆

m′=1
∑n

i=1

{
1

[∑(D⋆

2 )
p=1 1

(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D⋆

2

)
− δ

} − θD⋆ > ϵ

)
1(α̂m > θD⋆)

+ P
( ∑n

i=1

{
1

[∑(D⋆

2 )
p=1 1(x(p)

i ∈ h(p)
m ) ≥

(
D⋆

2

)
− δ

]}
∑M⋆

m′=1
∑n

i=1

{
1

[∑(D⋆

2 )
p=1 1

(
x(p)

i ∈ h
(p)
m′

)]
≥
(

D⋆

2

)
− δ

} − θD⋆ < −ϵ

)
1(α̂m < θD⋆)

]

→ 0 (inductive hypothesis)
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Supplementary Note 10: Supplementary figures and tables

cells with h=1
1 CFUE CFU−MK CH12 CMP ER4 ERY ERY_fl G1E
  GMP LSK MEL MEP MK MONO NEU T−CD4 T−CD8
2 CFU−MK CH12 CMP ER4 ERY ERY_fl G1E GMP
  LSK MEL MEP MK MONO NEU T−CD4 T−CD8
3 ERY_fl T−CD4 T−CD8

4 CH12 ERY_fl G1E T−CD4

5 T−CD4

6 ERY_fl

7 CFUE GMP

8 CFUE CMP

9 CFUE

10 CMP GMP

11 CMP

12 ERY ERY_fl T−CD4

13 G1E

14 ERY ERY_fl G1E T−CD4

15 ERY_fl G1E T−CD4 T−CD8

Figure S10: Class sizes in the CTCF ChIP-seq data analysis of chromosome 11. The final model
estimated 15 non-empty classes, each described by association vectors with binary elements. The
legend shows which cell types in each class were assigned a 1, indicating presence of CTCF.

MEP LSKCMPCFUEERY_fl CFUMKiMKER4G1E ERYMEL NEUT-CD4 T-CD8 CH12 MON GMP

Figure S11: Assumed ground truth hierarchical tree among 17 hematopoietic cell populations. A
hierarchical tree capturing the ground truth is needed for quantification of a method’s performance
with respect to cell population clustering. This clustering is largely derived from the hierarchical
clustering of ATAC-seq data on mouse blood cell populations from previous work18.
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Bcl11a S3norm normalized signal

Peaks colored by CLIMB group

Figure S12: CLIMB uncovers interrelationships among hematopoietic cell populations
based on CTCF binding patterns. a, For ease of visualization, CLIMB facilitates merging
similar clusters. After merging 15 classes into 5 parent groups, the new group means show the most
salient CTCF binding patterns in the data. b, Genome browser track shot of 7 hematopoietic
cell types around the murine gene Bcl11a (chr11:24,014,641–24,190,463). Normalized peaks are
marked by group membership in a; exemplifying non-constitutively bound sites are circumscribed
by gray rectangles.
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Data M after step 2 M δ burn-in total iterations
Simulation 1 128 48 5 2,500 10,000
Simulation 2 57 38 14 2,500 10,000
Simulation 3 34 34 5 2,500 10,000
VISION–ChIP chr. 7 388 35 25 20,000 40,000
VISION–ChIP chr. 11 548 37 28 10,000 25,000
VISION–RNA:

Erythroid lineage 34 34 10 5,000 15,000
Megakaryocytic lineage 33 33 10 5,000 15,000
Myeloid lineage 34 34 10 5,000 15,000

ENCODE DNase-seq:
chr. 1 56 33 150 8,000 20,000
chr. 2 80 22 150 8,000 20,000
chr. 3 42 14 150 8,000 20,000
chr. 4 31 12 108 8,000 20,000
chr. 5 62 15 79 8,000 20,000
chr. 6 230 22 114 8,000 20,000
chr. 7 41 16 114 8,000 20,000
chr. 8 134 13 79 8,000 20,000
chr. 9 131 14 144 8,000 20,000
chr. 10 215 14 114 8,000 20,000
chr. 11 38 19 150 8,000 20,000
chr. 12 38 14 150 8,000 20,000
chr. 13 14 14 703 8,000 20,000
chr. 14 77 13 110 8,000 20,000
chr. 15 51 13 110 8,000 20,000
chr. 16 56 23 143 8,000 20,000
chr. 17 128 29 145 8,000 20,000
chr. 18 26 7 41 8,000 20,000
chr. 19 173 23 150 8,000 20,000
chr. 20 46 12 86 8,000 20,000
chr. 21 157 7 39 8,000 20,000
chr. 22 140 11 78 8,000 20,000

Table S3: MCMC details for all CLIMB analyses. M after step 2 refers to the number of candidate
latent classes after pruning by concordance with the non-adjacent pairs (step 2) and before pruning
by mixing weights (step 3). M is the number of classes included in the final model as determined
by threshold δ. Burn-in periods were determined based on each chain’s time to enter its stationary
distribution.
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Figure S13: CTCF ChIP-seq signals for binding sites on chromosome 11 in LSK, GMP, ERY, and
T-CD4 cells. The same data is clustered by CLIMB (left) and mash (right).

cluster num. 1 2 3 4 5 6 7 8 9 10 11
π 4.46E-02 2.37E-03 6.19E-03 1.38E-02 3.42E-03 6.44E-07 4.12E-07 9.00E-03 2.74E-02 1.77E-02 5.34E-03

cluster num. 12 13 14 15 16 17 18 19 20 21 22
π 6.12E-07 1.41E-06 7.04E-07 8.10E-03 7.22E-07 4.63E-03 6.46E-03 3.90E-03 8.69E-03 6.59E-03 2.33E-02

cluster num. 23 24 25 26 27 28 29 30 31 32 33
π 2.16E-07 4.76E-03 1.95E-02 4.78E-07 3.23E-03 8.91E-02 3.96E-02 3.90E-02 3.72E-02 2.24E-02 1.97E-02

cluster num. 34 35 36 37 38 39 40 41 42 43
π 3.48E-02 3.74E-02 3.83E-02 2.17E-02 7.74E-03 5.30E-02 1.39E-01 4.05E-02 1.46E-02 1.47E-01

Table S4: Mixing weights for each cluster used in simulation 1.
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Figure S14: ATAC-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP, ERY, and
T-CD4 cells. The same data is clustered by CLIMB (left) and mash (right).
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Figure S15: H3K4me1 ChIP-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP,
ERY, and T-CD4 cells. The same data is clustered by CLIMB (left) and mash (right).
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Figure S16: H3K4me3 ChIP-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP,
ERY, and T-CD4 cells. The same data is clustered by CLIMB (left) and mash (right).
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Figure S17: Comparison of classifications of CTCF binding sites using CLIMB and mash for the
chromosome 11 and chromosome 7 CTCF ChIP-seq data.
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Figure S18: Class labels and sizes in each of the VISION RNA-seq data analyses. The
gene expression classes obtained from CLIMB for the a, erythroid, b, megakaryocytic, and c,
myeloid lineages are represented as a series of blocks in each column, with one block for the genes
in that expession class for each cell types. The blocks are colored by the expression category, with
-1 for genes that are lowly expressed or off, 0 for moderately expressed genes, and 1 for highly
expressed genes. All genes were assigned to a class based on their maximum a posteriori class
estimate. The log (base 10) of the number of genes found in each class is plotted above the matrix
of blocks.
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Figure S19: Overlap of CLIMB’s differentially expressed genes across 3 lineages. Venn
diagram of the overlap in genes that CLIMB identified as differentially expressed across three
studied hematopoietic lineages.
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Figure S20: SCREEN’s differentially expressed genes across 3 lineages differ from
CLIMB’s. a, Venn diagram of the overlap in genes that SCREEN identified as differentially
expressed across three studied hematopoietic lineages. b, Overlap of differentially expressed genes
found by CLIMB and SCREEN across all three hematopoietic lineages.
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Figure S21: Lineage-specific differential gene expression. Some myeloid-specific gene ontology
(GO) terms were significantly enriched in the differentially expressed gene sets for the non-myeloid
lineages (Fig. 4b). To more closely examine this result, we collected the genes whose expression
patterns led to the myeloid-associated GO term enrichments in non-myeloid lineages. Three
genes driving these GO term enrichments were Aif1, C1qc, and Fcgr2b. We visualized the RNA-
seq patterns at these representative loci Aif1 (chr17: 35,169, 740 − 35,177,254), C1cq (chr4:
136,888,989 − 136, 893,881) and Fcgr2b (chr1: 170,954,239 − 170,980,505) for the a, erythroid
series, b, megakaryocyte series, and c, myeloid series. The RNA-seq data are shown only for the
minus strand (with respect to the reference genome) because the genes are oriented right to left in
the mouse genome assembly (mm10). In the conventions for this display of stranded RNA-seq data,
negative values indicate the density of reads mapping to the minus strand. Indeed, the raw data
support that these genes are differentially expressed across megakaryocyte and erythroid lineages,
though they are generally expressed at much lower levels than for the myeloid lineage.
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Figure S22: NMF applied to ENCODE DNase-seq data in 38 cell populations. a, Signals
for each of the 10 classes described by the coefficient matrix estimated via NMF. Each class
captures different patterns of chromatin accessibility across cell populations. For example, class
4 captures loci accessible in CD4+ T cells, classical monocytes, and dendritic cells, while class
5 describes loci that are accessible in K562 cells. Samples are ordered based on their similarity
according to NMF output. b, Transcription factor footprint signatures (log2[observed/expected
cleavage] for DNase-seq) for classes 1–6 in a subset of the examined cell populations. Within a
given cell population, footprint signatures are very similar across all classes.
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Figure S23: Graphical illustration of the construction of full association vectors from pairwise
vectors for the toy example in Fig. 1.
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class
num.

dim.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 13.41 13.94 5.57 11.02 8.90 5.87 13.13 17.05 16.49 15.45 6.56 17.42 7.03 14.28 6.27 8.41 7.63 7.55
2 13.75 13.47 5.41 10.64 8.86 5.57 12.68 17.43 16.63 15.54 6.25 17.12 6.64 14.01 0 8.25 7.42 7.27
3 14.36 14.27 4.66 10.78 8.17 5.45 13.25 18.96 18.45 16.52 6.11 19.80 0 14.51 5.73 7.50 8.05 7.08
4 9.76 11.06 3.99 7.29 4.38 3.95 8.67 15.83 14.28 12.88 4.89 17.10 0 9.29 0 4.38 6.04 4.14
5 13.73 13.49 5.37 10.61 8.68 0 12.89 17.03 16.45 15.48 6.28 17.24 6.72 14.06 6.01 8.03 7.45 7.33
6 14.10 14.71 5.68 11.01 9.08 0 16.16 19.64 18.02 16.72 6.66 19.88 7.31 16.18 0 8.72 9.68 8.62
7 13.83 14.21 5.73 11.26 9.18 0 16.81 19.55 17.66 17.08 6.97 20.35 0 15.88 7.95 9.25 8.96 8.21
8 11.39 15.61 4.99 11.83 0 6.37 12.64 19.37 17.58 15.19 7.21 20.71 6.23 12.03 5.79 7.67 8.32 7.24
9 13.67 13.86 0 10.95 8.81 5.81 12.56 16.38 16.29 15.33 6.49 17.52 6.94 13.93 6.14 8.20 7.55 7.47
10 15.68 13.18 0 9.41 5.98 3.33 9.07 11.85 16.65 16.39 4.73 22.28 4.07 10.15 3.52 0 5.93 5.17
11 13.90 13.31 0 10.68 8.53 5.70 12.06 16.07 15.93 15.42 6.16 17.07 6.61 13.32 0 7.93 7.34 7.21
12 13.67 14.32 0 14.26 10.45 6.73 15.72 19.26 18.10 17.46 7.74 20.05 8.21 16.59 0 0 9.15 9.62
13 13.65 14.29 0 14.14 10.44 6.61 15.71 19.56 18.08 17.09 7.61 20.01 0 16.34 8.25 10.29 9.86 8.50
14 13.91 14.55 0 14.31 10.22 6.75 15.66 19.42 18.19 16.89 7.93 20.13 0 16.21 0 11.15 9.51 9.59
15 9.98 10.15 0 7.60 4.10 5.40 6.67 10.81 12.82 12.28 4.23 19.78 0 7.71 0 0 6.10 3.22
16 13.68 14.02 0 13.57 10.10 6.37 15.32 19.13 17.79 16.91 0 18.95 9.04 16.04 6.99 10.19 9.54 8.47
17 14.08 13.57 0 10.87 8.96 0 12.66 17.26 16.54 16.13 6.31 17.19 6.66 14.16 6.05 8.00 7.20 7.27
18 16.39 13.60 0 10.72 8.13 0 11.05 16.83 16.54 17.90 5.41 17.31 6.07 13.07 0 7.07 6.00 6.65
19 14.81 13.74 0 10.14 8.26 0 12.06 17.03 16.92 15.58 5.60 17.75 0 13.94 5.76 7.46 7.25 6.78
20 15.51 12.42 0 9.69 7.01 0 9.74 15.51 15.60 16.19 5.62 17.17 0 12.17 0 6.48 6.24 5.89
21 13.19 11.50 0 8.66 6.35 0 9.93 14.12 14.75 14.22 6.01 17.52 0 11.79 0 0 6.57 6.66
22 11.25 6.92 0 4.38 5.89 0 4.81 8.77 10.22 12.53 1.66 13.73 0 6.97 0 0 2.67 0
23 13.26 13.45 0 13.13 10.06 0 14.23 20.81 17.77 17.25 0 18.46 7.95 17.21 0 9.56 8.42 7.92
24 14.99 10.87 0 8.52 5.98 0 9.06 15.39 14.93 15.53 0 14.93 0 12.81 0 6.07 4.26 5.38
25 12.15 9.15 0 5.31 4.33 0 6.47 10 12.41 13.07 0 17.26 0 7.39 0 0 4.71 5.82
26 13.54 13.95 0 13.97 0 6.70 17.40 21.50 19.03 17.43 7.84 19.17 8.17 17.07 7.17 9.76 9.65 8.56
27 13.79 14.68 0 10.72 0 5.26 10.61 15.60 16.62 13.93 6.29 21.38 0 12.04 4.67 7.21 8.27 7.09
28 6.95 4.77 0 2.97 0 0 2.72 6.02 7.70 8.16 1.62 12.76 0 3.52 0 0 2.68 0
29 3.20 4.92 0 0 0 0 0 6.34 4.27 3.37 0 12.27 0 0 0 0 4.32 0
30 4.33 6.22 0 0 0 0 0 0 2.73 3.23 0 6.39 0 0 0 0 0 0
31 3.27 0 0 0 0 0 0 6.58 4.65 3.88 0 6.40 0 0 0 0 0 0
32 3.98 0 0 0 0 0 0 0 4.01 4.90 0 8.07 0 0 0 0 5.68 0
33 7.54 0 0 0 0 0 0 0 6.75 5.58 0 8.88 0 0 0 0 0 0
34 7.12 0 0 0 0 0 0 0 0 7.55 0 7.21 0 0 0 0 0 0
35 6.25 0 0 0 0 0 0 0 0 0 0 8.72 0 0 0 0 0 0
36 5.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 5.01 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 7.82 8.51 0 9.07 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 4.73 0 0 6.11 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 3.07 0 5.86 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 10.47 0 0 0 0 5.20 0
42 0 0 0 0 0 0 0 0 0 0 0 15.15 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.51 0

Table S5: Mean vectors used for each cluster in simulation 1.
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class
num.

dim.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 86.14 102.03 8.99 55.22 27.63 9.40 88.46 171.81 155.10 125.12 14.16 154.87 11.25 91.43 7.80 19.68 35.63 13.41
2 82.62 82.97 6.87 43.26 26.88 7.79 71.21 159.69 139.34 109.76 11.28 134.98 8.91 75.92 1 16.94 29.70 11.95
3 84.21 73.62 9.71 36.54 22.27 8.06 64.75 144.97 123.36 96.42 11.50 138.75 1 71.04 6.00 15.97 30.30 13.02
4 100.60 76.69 11.91 32.29 19.68 10.36 60.23 151.95 132.23 93.69 12.62 176.36 1 74.07 1 12.84 27.34 14.01
5 83.43 85.67 7.91 45.87 25.68 1 75.75 153.81 138.65 114.60 12.26 142.19 9.98 80.97 7.13 17.81 31.26 11.76
6 91.96 119.80 5.88 32.63 19.63 1 62.32 132.34 142.50 90.38 8.27 106.01 7.05 78.77 1 11.95 19.61 8.79
7 82.79 82.37 7.96 46.86 24.89 1 73.59 151.39 126.46 118.88 13.58 130.97 1 79.20 8.01 19.03 30.74 12.00
8 79.53 94.77 12.29 47.40 1 11.29 84.83 150.70 120.32 126.56 15.92 156.64 11.42 79.15 9.50 19.44 32.86 13.71
9 84.04 95.87 1 49.26 25.74 8.76 79.18 150.99 140.75 115.76 13.25 149.44 10.39 84.58 7.24 18.24 33.93 12.76
10 61.44 52.69 1 16.84 25.75 10.71 50.73 73.40 66.68 75.85 12.73 106.37 10.16 54.82 7.27 1 28.54 14.28
11 85.33 82.84 1 43.11 23.75 7.65 69.31 137.69 126.49 106.37 11.93 141.01 9.93 79.97 1 17.13 30.10 12.86
12 71.77 87.22 1 48.61 26.59 9.67 74.68 144.17 128.24 102.40 13.67 138.80 12.02 78.57 1 1 30.58 14.26
13 79.43 94.20 1 48.24 27.06 9.53 80.88 157.11 136.86 109.78 13.43 140.99 1 85.50 8.15 19.00 32.55 12.79
14 83.47 97.27 1 52.15 26.07 9.48 84.15 167.18 135.79 119.70 14.28 142.58 1 83.68 1 19.96 30.71 13.13
15 56.30 50.15 1 16.03 19.51 1.57 32.01 63.65 42.99 67.42 9.83 110.40 1 47.43 1 1 15.46 10.54
16 70.60 69.80 1 33.03 19.66 6.92 60.55 117.78 111.83 101.34 1 140.73 8.81 67.63 7.22 16.34 26.52 10.39
17 77.57 81.80 1 43.00 24.27 1 70.22 143.41 130.14 113.10 11.80 134.24 9.48 76.07 6.55 16.15 30.67 11.93
18 67.07 60.84 1 26.77 22.28 1 51.32 115.23 84.95 78.48 12.00 118.60 6.27 59.58 1 11.96 30.33 12.69
19 78.27 77.16 1 34.97 20.68 1 66.77 124.46 117.87 98.09 13.29 132.79 1 69.24 6.16 15.42 29.24 13.95
20 61.55 53.64 1 27.36 23.32 1 53.39 108.14 73.76 71.32 9.49 80.86 1 58.45 1 12.43 24.03 13.26
21 63.88 61.95 1 35.67 24.00 1 55.69 115.05 97.60 81.28 8.19 110.31 1 67.68 1 1 25.24 9.11
22 52.59 27.41 1 15.76 7.32 1 23.23 54.24 39.81 46.00 6.24 59.83 1 36.75 1 1 12.87 1
23 56.51 58.71 1 31.04 18.74 1 53.71 83.76 90.97 77.88 1 73.61 8.86 51.04 1 12.38 30.58 6.43
24 62.64 36.83 1 17.24 18.67 1 27.86 74.57 61.36 65.30 1 59.36 1 28.08 1 7.96 15.17 9.24
25 60.75 47.10 1 20.27 18.11 1 33.73 67.60 51.29 66.94 1 77.07 1 45.69 1 1 19.05 4.78
26 71.30 80.95 1 44.81 1 8.22 77.33 154.82 118.33 87.39 11.78 123.39 10.50 81.11 7.50 15.91 34.66 10.80
27 64.18 63.03 1 23.62 1 7.92 64.74 119.51 96.42 86.99 12.07 139.27 1 56.62 9.26 11.32 25.53 10.95
28 42.48 25.22 1 10.48 1 1 12.66 39.49 35.74 39.42 6.63 80.89 1 16.62 1 1 12.68 1
29 22.68 17.49 1 1 1 1 1 26.21 21.53 19.10 1 55.34 1 1 1 1 11.37 1
30 23.49 11.78 1 1 1 1 1 1 13.34 16.78 1 31.06 1 1 1 1 1 1
31 18.16 1 1 1 1 1 1 13.53 23.42 22.08 1 31.15 1 1 1 1 1 1
32 15.68 1 1 1 1 1 1 1 19.04 18.53 1 28.96 1 1 1 1 2.83 1
33 20.07 1 1 1 1 1 1 1 23.73 28.80 1 38.57 1 1 1 1 1 1
34 21.40 1 1 1 1 1 1 1 1 31.42 1 44.20 1 1 1 1 1 1
35 29.86 1 1 1 1 1 1 1 1 1 1 44.17 1 1 1 1 1 1
36 4.16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 0.63 1 1 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 20.83 17.56 1 36.87 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 20.84 1 1 34.08 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 16.79 1 19.03 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1 1 66.84 1 1 1 1 18.69 1
42 1 1 1 1 1 1 1 1 1 1 1 130.41 1 1 1 1 1 1
43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10.22 1

Table S6: Variance vectors used for each cluster in simulation 1.

cluster num. 1 2 3 4 5 6 7 8 9 10
π 3.14E-02 2.84E-04 5.61E-02 2.02E-02 5.93E-04 1.98E-02 1.01E-01 7.33E-06 1.99E-06 1.26E-01

cluster num. 11 12 13 14 15 16 17 18 19 20
π 3.67E-06 3.92E-06 1.00E-04 2.71E-06 2.67E-04 6.47E-02 6.03E-04 2.23E-02 7.46E-04 5.41E-06

cluster num. 21 22 23 24 25 26 27 28 29 30
π 6.28E-02 9.49E-03 1.15E-02 2.30E-02 1.64E-06 2.58E-02 1.00E-04 3.25E-02 1.61E-02 1.16E-04

cluster num. 31 32 33 34 35 36 37 38 39 40
π 8.13E-02 5.87E-05 1.42E-01 1.50E-02 1.78E-02 9.24E-02 7.67E-03 3.43E-04 7.06E-03 1.11E-02

Table S7: Mixing weights for each cluster used in simulation 2.
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Figure S24: Correlations corresponding to the covariances used for each cluster in simulation 1.
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class
num.

dim.

1 2 3 4 5 6 7 8 9 10 11
1 0 0 1.25 1.44 2.18 0 0 0 0 1.91 1.27
2 0 0 1.88 2.30 2.31 0 0 0 0 2.18 0
3 0 0 0.62 2.23 2.00 0 0 0 0 0 0
4 0 0 1.24 1.41 0 0 0 0 0 1.89 1.26
5 0 0 1.80 2.17 0 0 0 0 0 2.14 0
6 0 0 1.49 0.97 0 0 0 0 0 0 0
7 0 0 1.01 0 2.49 0 0 0 0 2.30 0.64
8 0 0 1.88 -3.01 2.32 0 0 0 0 3.80 1.53
9 0 0 1.84 -2.95 2.34 0 0 0 0 3.79 0
10 0 0 0.36 -0.46 2.24 0 0 0 0 0 0
11 0 0 1.88 -3.02 0 0 0 0 0 2.14 3.36
12 0 0 1.84 -2.92 0 0 0 0 0 2.13 0
13 0 0 1.82 -2.89 0 0 0 0 0 0 0
14 0 0 1.84 -2.93 0 0 0 0 0 0 -2.97
15 0 0 0 2.22 2.71 0 0 0 0 2.43 1.50
16 0 0 0 1.82 2.23 0 0 0 0 1.99 0
17 0 0 0 2.20 2.71 0 0 0 0 0 0
18 0 0 0 1.50 0 0 0 0 0 1.87 1.30
19 0 0 0 2.20 0 0 0 0 0 2.41 0
20 0 0 0 2.19 0 0 0 0 0 2.40 -2.11
21 0 0 0 1.76 0 0 0 0 0 0 0
22 0 0 0 1.44 0 0 0 0 0 0 -1.50
23 0 0 0 1.49 0 0 0 0 0 -2.32 0
24 0 0 0 1.29 0 0 0 0 0 -2.20 -1.35
25 0 0 0 -2.87 2.70 0 0 0 0 2.40 3.35
26 0 0 0 -1.37 2.00 0 0 0 0 1.66 0
27 0 0 0 -2.83 2.68 0 0 0 0 0 0
28 0 0 0 -0.98 2.42 0 0 0 0 -2.78 0
29 0 0 0 -2.23 0 1.52 0 0 0 0 0
30 0 0 0 -2.89 0 0 0 0 0 2.41 2.04
31 0 0 0 -0.15 0 0 0 0 0 2.20 0
32 0 0 0 -2.91 0 0 0 0 0 2.41 -2.13
33 0 0 0 -0.91 0 0 0 0 0 0 0
34 0 0 0 -1.81 0 0 0 0 0 0 -1.36
35 0 0 0 -2.36 0 0 0 0 0 -2.33 0
36 0 0 0 -1.87 0 0 0 0 0 -2.38 -1.39
37 0 0 -2.16 -2.39 0 3.25 0 0 0 0 -1.80
38 0 0 -1.87 -2.83 0 0 0 0 0 0 0
39 0 0 -2.10 -2.17 0 0 0 0 0 0 -1.37
40 0 0 -1.93 -2.75 0 0 0 0 0 -2.36 -1.35

Table S8: Mean vectors used for each cluster in simulation 2.

37



class
num.

dim.

1 2 3 4 5 6 7 8 9 10 11
1 1 1 0.77 1.07 0.34 1 1 1 1 0.40 0.86
2 1 1 0.80 1.09 0.35 1 1 1 1 0.43 1
3 1 1 0.97 0.20 0.20 1 1 1 1 1 1
4 1 1 0.78 1.07 1 1 1 1 1 0.41 0.87
5 1 1 0.79 1.07 1 1 1 1 1 0.42 1
6 1 1 0.45 0.95 1 1 1 1 1 1 1
7 1 1 1.02 1 0.09 1 1 1 1 0.02 1.33
8 1 1 0.78 2.24 0.35 1 1 1 1 0.43 0.87
9 1 1 0.70 2.08 0.32 1 1 1 1 0.43 1
10 1 1 1 2.56 0.05 1 1 1 1 1 1
11 1 1 0.77 2.21 1 1 1 1 1 0.41 0.87
12 1 1 0.69 1.98 1 1 1 1 1 0.37 1
13 1 1 0.68 1.97 1 1 1 1 1 1 1
14 1 1 0.70 1.98 1 1 1 1 1 1 0.95
15 1 1 1 1.09 0.35 1 1 1 1 0.43 0.89
16 1 1 1 0.69 0.24 1 1 1 1 0.27 1
17 1 1 1 1.04 0.33 1 1 1 1 1 1
18 1 1 1 1.02 1 1 1 1 1 0.40 0.84
19 1 1 1 1.07 1 1 1 1 1 0.42 1
20 1 1 1 0.96 1 1 1 1 1 0.37 0.93
21 1 1 1 0.62 1 1 1 1 1 1 1
22 1 1 1 0.74 1 1 1 1 1 1 0.95
23 1 1 1 0.72 1 1 1 1 1 1.10 1
24 1 1 1 0.83 1 1 1 1 1 1.22 0.98
25 1 1 1 2.01 0.32 1 1 1 1 0.37 0.85
26 1 1 1 1.69 0.21 1 1 1 1 0.33 1
27 1 1 1 1.94 0.30 1 1 1 1 1 1
28 1 1 1 3.15 0.09 1 1 1 1 0.78 1
29 1 1 1 2.34 1 0.35 1 1 1 1 1
30 1 1 1 2.20 1 1 1 1 1 0.41 0.85
31 1 1 1 2.51 1 1 1 1 1 0.07 1
32 1 1 1 2.21 1 1 1 1 1 0.41 1.02
33 1 1 1 1.79 1 1 1 1 1 1 1
34 1 1 1 2.34 1 1 1 1 1 1 1.05
35 1 1 1 2.85 1 1 1 1 1 1.33 1
36 1 1 1 2.50 1 1 1 1 1 1.66 1.13
37 1 1 0.57 1.84 1 1.21 1 1 1 1 0.83
38 1 1 0.72 1.99 1 1 1 1 1 1 1
39 1 1 0.53 2.08 1 1 1 1 1 1 0.74
40 1 1 0.64 2.84 1 1 1 1 1 1.54 1.55

Table S9: Variance vectors used for each cluster in simulation 2.
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Figure S25: Correlations corresponding to the covariances used for each cluster in simulation 2.
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cluster num. 1 2 3 4 5 6 7 8 9 10 11
π 4.15E-01 3.52E-04 5.22E-04 1.79E-03 2.39E-02 6.8E-06 1.47E-05 2.53E-05 2E-05 1.19E-05 2.33E-05

cluster num. 12 13 14 15 16 17 18 19 20 21 22
π 3.59E-05 3.55E-05 3.71E-04 4.24E-05 5.79E-05 4.91E-03 2.4E-06 2.5E-06 2.85E-05 6.6E-06 3.99E-04

cluster num. 23 24 25 26 27 28 29 30 31 32 33 34
π 1.68E-04 2.99E-04 1.51E-03 2.8E-06 4.4E-06 4.8E-06 1.60E-03 4.32E-02 3.84E-02 1.05E-02 9.66E-03 4.47E-01

Table S10: Mixing weights for each cluster used in simulation 3.
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class
num.

dim.

1 2 3 4 5
1 0.80 0.85 0.91 0.52 0.47
2 0 0 0 0 0
3 0 0 0 0 -6.11
4 0 0 0 -5.49 0
5 0 0 0 -1.63 -1.28
6 0 0 -8.54 0 0
7 0 0 -8.62 0 -8.55
8 0 0 -8.54 -8.52 0
9 0 0 -8.58 -8.57 -7.38
10 0 -8.28 0 0 0
11 0 -8.38 0 0 -7.17
12 0 -8.35 0 -7.28 0
13 0 -8.26 0 -7.32 -8.40
14 0 -6.99 -6.83 0 0
15 0 -8.20 -7.66 0 -7.00
16 0 -8.14 -7.61 -7.15 0
17 0 -4.92 -5.39 -5.44 -5.06
18 -5.94 0 0 0 0
19 -5.83 0 0 0 -8.02
20 -5.80 0 0 -8.02 0
21 -5.91 0 0 -8.10 -8.20
22 -5.32 0 -6.58 0 0
23 -5.74 0 -7.73 0 -6.22
24 -5.33 0 -6.77 -5.81 0
25 -5.34 0 -6.02 -5.63 -5.21
26 -5.90 -6.16 0 0 0
27 -5.93 -6.17 0 0 -7.97
28 -5.96 -6.14 0 -7.97 0
29 -4.99 -5.21 0 -5.72 -5.15
30 -2.71 -3.05 -3.87 1.22 1.63
31 -2.24 -2.34 -2.67 0 0
32 -5.39 -5.88 -5.96 0 -5.01
33 -5.66 -6.67 -6.65 -5.45 0
34 -6.95 -6.94 -7.00 -7.42 -7.25

Table S11: Mean vectors used for each cluster in simulation 3.
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class
num.

dim.

1 2 3 4 5
1 5.54 5.45 5.35 6.01 5.70
2 1 1 1 1 1.00
3 1 1 1 1 17.92
4 1 1 1 16.76 1.00
5 1 1 1 11.75 13.46
6 1 1 18.27 1 1.00
7 1 1 19.02 1 19.59
8 1 1 18.81 19.91 1.00
9 1 1 18.98 20.30 19.70
10 1 16.90 1 1 1.00
11 1 17.19 1 1 19.40
12 1 17.07 1 20.11 1.00
13 1 17.52 1 20.39 19.82
14 1 16.57 18.06 1 1.00
15 1 17.79 18.95 1 19.62
16 1 17.47 19.20 20.22 1.00
17 1 15.39 14.77 16.49 15.92
18 18.96 1 1 1 1.00
19 19.56 1 1 1 19.29
20 19.17 1 1 19.89 1.00
21 20.01 1 1 20.41 19.63
22 18.82 1 17.49 1 1.00
23 19.24 1 19.19 1 19.14
24 19.71 1 18.54 19.70 1.00
25 18.49 1 16.94 18.14 18.68
26 19.39 17.18 1 1 1.00
27 20.13 17.71 1 1 20.05
28 19.98 17.50 1 20.44 1.00
29 18.73 16.75 1 18.16 18.16
30 20.04 18.37 21.15 13.46 13.79
31 10.98 9.99 8.33 1 1.00
32 12.26 11.72 12.25 1 14.92
33 13.38 10.10 11.43 14.80 1.00
34 6.28 6.24 6.91 6.52 5.89

Table S12: Variance vectors used for each cluster in simulation 3.
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Figure S26: Correlations corresponding to the covariances used for each cluster in simulation 3.
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Figure S27: Constrained covariance draws plotted in pairs of off-diagonal elements. a, Constrained
samples generated with Algorithm 1 and b, the corresponding ordinary Wishart samples. Com-
paring within columns, one observes that data generated with Algorithm 1 closely match their
unconstrained counterparts, indicating they serve as an appropriate proposal distribution.
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Figure S28: Heatmaps displaying bi-clusterings of chromosome 7 CTCF ChIP-seq data based on
CLIMB, mash, and Pearson correlation. The columns, corresponding to different cell populations,
are ordered according to the dendrogram for each clustering method. The rows, corresponding to
each binding site, are ordered based on class membership (for CLIMB and mash) and Pearson
correlation for the other.

cells with h=1
1 CFUE CFU−MK CH12 CMP ER4 ERY ERY_fl G1E
  GMP LSK MEL MEP MK MONO NEU T−CD4 T−CD8
2 CFU−MK CH12 CMP ER4 ERY ERY_fl G1E GMP
  LSK MEL MEP MK MONO NEU T−CD4 T−CD8
3 CFU−MK CH12 CMP ER4 ERY ERY_fl G1E GMP
  LSK MEL MEP MK NEU T−CD4 T−CD8
4 ERY_fl T−CD4 T−CD8

5 T−CD4

6 CFUE GMP

7 G1E

8 

9 ERY_fl G1E T−CD4 T−CD8

10 CFUE CMP

11 CFUE

12 CMP GMP

13 CFUE ERY_fl

14 ERY_fl

Figure S29: Class sizes in the CTCF ChIP-seq data analysis of chromosome 7. The final model
estimated 14 non-empty classes, each described by association vectors with binary elements. The
legend shows which cell types in each class were assigned a 1, indicating presence of CTCF.

45



-2.5 peak center 2.5Kb-2.5 peak center 2.5Kb-2.5 peak center 2.5Kb

15
14

13
12

11
10

9
8

7
6

5
4

3
2

-2.5 peak center 2.5Kb

1
CTCF LSK CTCF GMP CTCF ery CTCF T-CD4

Figure S30: CTCF ChIP-seq signals for binding sites on chromosome 11 in LSK, GMP, ERY,
and T-CD4 cells. Same as in Fig. S13, but hierarchically clustered using Pearson correlation and
cutting the tree to have 15 clusters.
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Figure S31: ATAC-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP, ERY,
and T-CD4 cells. Same as in Fig. S14, but hierarchically clustered using Pearson correlation and
cutting the tree to have 15 clusters.
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Figure S32: H3K4me1 ChIP-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP,
ERY, and T-CD4 cells. Same as in Fig. S15, but hierarchically clustered using Pearson correlation
and cutting the tree to have 15 clusters.
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Figure S33: H3K4me3 ChIP-seq signals for CTCF binding sites on chromosome 11 in LSK, GMP,
ERY, and T-CD4 cells. Same as in Fig. S16, but hierarchically clustered using Pearson correlation
and cutting the tree to have 15 clusters.
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