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ABSTRACT

Inferring reliable brain-behavior associations requires synthesizing evidence from thousands of functional neuroimaging studies
through meta-analysis. However, existing meta-analysis tools are limited to investigating simple neuroscience concepts
and expressing a restricted range of questions. Here, we expand the scope of neuroimaging meta-analysis by designing
NeuroLang: a domain-specific language to express and test hypotheses using probabilistic first-order logic programming. By
leveraging formalisms found at the crossroads of artificial intelligence and knowledge representation, NeuroLang provides
the expressivity to address a larger repertoire of hypotheses in a meta-analysis, while seamlessly modeling the uncertainty
inherent to neuroimaging data. We demonstrate the language’s capabilities in conducting comprehensive neuroimaging
meta-analysis through use-case examples that address questions of structure-function associations. Specifically, we infer
the specific functional roles of three canonical brain networks, support the role of the visual word-form area in visuospatial
attention, and investigate the heterogeneous organization of the frontoparietal control network.

SI Application of NeuroLang to the Resolution of Typical Queries on coordinate-based
meta-analysis (CBMA) Databases

NeuroLang can be applied to the resolution of term-based and coactivation queries on CBMA databases, which are the most
common types of meta-analyses conducted in the literature. A term-based query derives an activation pattern associated with a
term of interest that relates to psychological concepts or cognitive processes. A coactivation query delineates a brain activation
pattern that comprises spatially distant brain regions, putatively forming a large-scale functional network. Answering these
queries is typically done using tools like Neurosynth1 or BrainMap2.

SI.1 From Term to Association Map
A core goal of meta-analyses is to identify brain regions that are preferentially activated in experiments studying a psychological
or cognitive process, relative to the rest of the brain3. As an example, a meta-analysis of studies on emotion should find that the
amygdala is one of the regions that is the most likely to be reported by this set of studies. In other words, the meta-analysis
should find that there is an association between studies of emotion and neural response in the amygdala. Several models
exist for computing probabilistic brain maps from a set of studies associated with a given term of interest (‘emotion’, in this
example). All provide an estimate of the probability that a voxel gets reported by studies associated with the term. We explore
and implement two of them in this example: multilevel kernel density analysis (MKDA) and activation likelihood estimation
(ALE).

An important point should be made first, regarding the differences between approaches to combining the peak activation
coordinates that are reported by neuroimaging studies. Peak activations are 3-dimensional points in the brain that lives in a
standardized stereotactic coordinate system and that can be seen as a sparse representation of the statistical map obtained from
an experimental study of neuroimaging signals. To account for the noise and variability of the exact location of these peaks,
meta-analysis models often assume a neighborhood around peaks to be reported, or to have a probability of being reported.
The definition of this spatial neighborhood is an a priori of the meta-analysis is sometimes called a spatial prior. This process,
applied to the map of each study separately, is called smoothing4.

A simple but common spatial smoothing approach is to consider all voxels within a sphere centered at a reported peak
location’s coordinates to also be reported by the study. This prior, used by MKDA, is illustrated on the left part of fig. S1.
MKDA obtains one such binary pattern for each study and aggregates them as frequencies at which each voxel is reported by
studies selected for a meta-analysis. In plain English, a voxel at location (x,y,z) is reported by a study s whenever s reports a
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Figure S1. Illustration of spatial smoothing priors used by MKDA and ALE to address the uncertainty in the location of peak
activation coordinates reported by neuroimaging studies.

peak activation within 10mm of that voxel. In NeuroLang, this sentence is encoded by the following VoxelReported rule

VoxelReported(x, y, z, s) :-
PeakReported(x2, y2, z2, s) & Voxel(x, y, z)
& d = euclidean_distance(x, y, z, x2, y2, z2) & d < 10

where the pairwise Euclidean distance between pairs of voxels is calculated using a built-in euclidean_distance function.
The lower bound d < 10 defines a 10mm radius ball around each peak location5. An MKDA meta-analytic map is obtained
by estimating the conditional probability that each voxel gets reported by studies associated with a given term of interest (e.g.
‘emotion’.) To compute estimates of these probabilities, we define the following NeuroLang rule, which gives each study an
equal probability of being selected

SelectedStudy(s_1) : 1/N, ..., SelectedStudy(s_N) : 1/N :- ⊤

The distribution of the program’s outputs can then be used to estimate the probability of each voxel being reported. Then, the
result of solving a conditional probabilistic rule

ans(x, y, z, PROB) :-
VoxelReported(x, y, z, s) & SelectedStudy(s)
// TermAssociation(emotion, s) & SelectedStudy(s)

will contain a probability for each voxel of the brain, based on the frequency at which it is reported by studies within the
database. The // operator represents a probabilistic conditioning.

Another approach to smoothing peak activations is to model their location’s uncertainty probabilistically. We give the
example of the ALE algorithm6, illustrated on the right part of fig. S1. Instead of using a hard sphere, a three-dimensional
Gaussian probability distribution is defined at each peak. This distribution provides a probability that depends on the Euclidean
distance between each reported peak and brain voxel. The standard deviation of the Gaussian distribution is directly linked to the
user-specified FWHM, as in the ALE algorithm. In NeuroLang, this is modeled using a rule that defines a VoxelReported
table is as follows

VoxelReported(x, y, z, s) : p :-
PeakReported(x2, y2, z2, s) & Voxel(x, y, z)
& d = euclidean_distance(x, y, z, x2, y2, z2) & d < 2 * FWHM
& p = gaussian(d ; 0, sigma) & FWHM = 10
& sigma = FWHM / 2 * sqrt(2 * log(2))

Following the ALE model, the probability of activation for voxel (x,y,z) is calculated as the probability that any study in
the meta-analysis report its activation. Assuming voxel reporting events to be independent, this means that the probability
P[∃s,VoxelReported(x,y,z,s)∧TermAssociation(emotion,s)] is equal to

1−∏
s
(1−P[VoxelReported(x,y,z,s)∧TermAssociation(emotion,s)]) (1)

where s is a study, as described in7. To estimate this probability, we use an existentially-quantified rule — that is, a rule that
uses a predicate logic existential (∃) quantifier — as follows
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ans(x, y, z, PROB) :- exists(s;
VoxelReported(x, y, z, s)
& TermAssociation("emotion", s)

)
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Figure S2. Probability maps for the term ‘emotion’, obtained from the MKDA and ALE NeuroLang programs. Values are
shown before any statistical test is performed. The maps are thresholded to select only the top 1% probabilities.

In fig. S2, we compare the probability maps obtained from the MKDA and ALE NeuroLang programs. As expected, the
association maps obtained with the two methods highlight a cluster in the amygdala, which is known to be part of the neural
signature of emotion.

SI.2 From Seed-Voxel to Coactivation Map
We now show how meta-analyses of voxel coactivations can be formulated in NeuroLang. These analyses are able to capture
some of the most studied functional networks of the brain: the frontoparietal cognitive control network, dorsal attention network,
and sensorimotor network. This was already shown to be possible on the manually curated BrainMap database8. We replicate
these results, with NeuroLang, on the automatically extracted NeuroQuery CBMA database9. To solve coactivation queries in
NeuroLang, we use the same program as in the previously described MKDA example, although the TermAssociation table
plays no role now, as it is not needed for solving coactivation queries. We formulate the following conditional probabilistic rule

ans(x, y, z, PROB) :-
VoxelReported(x, y, z, s) & SelectedStudy(s)
// VoxelReported(x2, y2, z2, s) & SeedVoxel(x2, y2, z2)

& SelectedStudy(s)

which asks, in plain English, ‘what is the probability that each voxel at MNI coordinates (x,y,z) gets reported by studies
reporting the activation of some seed voxel at MNI coordinates (x2,y2,z2)’. This is solved for every voxel within 10mm of any
peak reported at least once in the database, because the MKDA spatial smoothing prior is used. Note that this rule computes the
coactivation maps for each seed voxel within the SeedVoxel table, meaning that the query needs to be solved only once to
obtain several meta-analytical results. The SeedVoxel table contains the same coordinates as the ones used by Toro et al.8.

In fig. S3, we show the resulting coactivation map for each seed voxel. The first coactivation map, with a seed voxel in the
left central sulcus, correctly highlights the sensorimotor network, with clear activation clusters in the precentral and postcentral
gyri10. The second coactivation map, with a seed voxel in the ACC, correctly highlights the DMN, with activation clusters
in the medial prefrontal cortex, posterior cingulate cortex, and nucleus accumbens. Finally, the third coactivation map, with
a seed voxel in the left intraparietal sulcus, correctly highlights the dorsal attention network, with activation clusters in the
supplementary motor area, anterior insula, frontal eye fields, dorsolateral prefrontal cortex, and ventral occipital cortex. These
coactivation maps correctly highlight the functional network their respective seed voxel is expected to belong to, similar to
what was reported by Toro et al.8.

To conclude, we have shown that typical term-based and coactivation-based queries on CBMA could be expressed and
solved with NeuroLang.
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Figure S3. Coactivation maps obtained from seed voxels in the dorsal part of the left central sulcus
(x =−34,y =−26,z = 60), the ACC (x =−2,y = 46,z =−4), and the left intraparietal sulcus (x =−26,y =−58,z = 48).
The number of studies reporting activations within 10mm of each seed voxel was 971, 1812, and 1380 1380, 1812 and 971 for
the central sulcus, the ACC, and the left intraparietal sulcus (respectively).

SII VWFA: Term Associations not Surviving Correction for Multiple Comparison
In table S1, we complement our topic-based study of the VWFA but with an analysis of raw terms within the Neurosynth
database. The terms are indeed related to the topics found in our experiments: object and word recognition. However, none of
these term associations survive an FDR-based correction for multiple comparisons. The calculation is run for all terms within
Neurosynth’s vocabulary. We conducted the same analysis on the NeuroQuery database, which contains a broader vocabulary
and more term associations, and obtained similar results.
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Term associated with studies reporting the VWFA and the ‘language’
network, but not reporting the frontoparietal attention network

Term p-val (uncorrected)

l2 0.000773
bilinguals 0.001411
l1 0.003706
sublexical 0.006793
visual word recognition 0.006987
Term associated with studies reporting the VWFA and the fronto
parietal attention network, but not reporting the ‘language’ network

Term p-val (uncorrected)

occipitotemporal cortex 0.000008
object recognition 0.000145
conflict detection 0.007809
spatial processing 0.007809
visual working memory 0.009181
visual word recognition 0.009684
word recognition 0.009684
ba37 0.009684
visual stream 0.014894
exner 0.024605
fonts 0.032104

Table S1. Term associations surviving a likelihood ratio test (p < 0.05).
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