1	Supplementary Information
2	Supplementary Figures 1-7 and Legends
3	
4	IL-33 induces thymic involution-associated naive T cell aging and impairs host control of
5	severe infection
6	
7	Lei Xu ^{1, 2, 3, 4, 5, 6, #} , Chuan Wei ^{1, 2, 3, 4, #} , Ying Chen ^{1, 2, 3, 4} , Yue Wu ^{1, 2, 3, 4} , Xiaoli Shou ^{1, 2, 3, 4} ,
8	Wenjie Chen ^{1, 2, 3, 4} , Di Lu ^{1, 2, 3, 4} , Haoran Sun ^{1, 2, 3, 4} , Wei Li ⁶ , Beibei Yu ^{1, 2, 3, 4} , Xiaowei Wang
9	⁷ , Xiaojun Zhang ⁸ , Yanxiong Yu ^{1, 2, 3, 4} , Zhigang Lei ^{1, 2, 3, 4} , Rui Tang ^{1, 2, 3, 4} , Jifeng Zhu ^{1, 2, 3, 4} ,
10	Yalin Li ^{1, 2, 3, 4} , Linrong Lu ⁹ , Hong Zhou ¹⁰ , Sha Zhou ^{1, 2, 3, 4, *} , Chuan Su ^{1, 2, 3, 4, *} , Xiaojun
11	Chen ^{1, 2, 3, 4, *}
12	
13	¹ Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu
14	211166, P. R. China.
15	² State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu
16	211166, P. R. China.
17	³ Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing,
18	Jiangsu 211166, P. R. China.
19	⁴ Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P. R.
20	China.
21	⁵ Department of Respiratory, Nanjing First Hospital, Nanjing Medical University, Nanjing,
22	Jiangsu 210006, P. R. China.
23	⁶ Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University,
24	Nanjing, Jiangsu 210006, P. R. China.
25	⁷ Department of Blood Transfusion, Children's Hospital of Nanjing Medical University,
26	Nanjing, Jiangsu 210008, P. R. China.
27	⁸ Imaging Center, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu
28	210008, P. R. China.
29	⁹ Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, P. R.
30	China.
	1

¹⁰Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei
 230032, P. R. China.

3

4 [#]These individuals contributed equally.

^{*}Correspondence and requests for materials should be addressed to X.C. (email:
chenxiaojun@njmu.edu.cn), C.S. (email: chuansu@njmu.edu.cn), or S.Z. (shazhou@
njmu.edu.cn).

Fig. S1. Schistosome infection decreases the expression of CD5 in naïve CD8⁺ T cells. (a) Gating strategy of CD5 expression on naïve CD4⁺ T cells or naïve CD8⁺ T cells; (b, c) Samples were obtained from uninfected mice or mice 8 weeks after schistosome infection. Representative and quantified flow cytometry of CD5 MFI on naive CD8⁺ T cells from the spleen or peripheral blood (n = 7 mice, pool of two independent experiments). P = 0.0014 (Spleen), P = 0.0002 (Blood), Unpaired two-tailed Student's t-test. All data are shown as the mean \pm s.d. **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

2 Fig. S2. T cell aging is linked to thymic involution during schistosome infection. (a-c) 3 Cells were from uninfected mice or mice 5, 6, or 8 weeks after schistosome infection. 4 Representative and quantified flow cytometry of CD5 MFI on naïve CD4⁺ T cells or naïve 5 $CD8^{+}T$ cells from the thymus, spleen, or peripheral blood (Infected 8 W, n = 3 mice; other 6 groups, n = 4 mice). (d, e) Samples were obtained from uninfected mice or mice 8 weeks after schistosome infection. Representative and quantified flow cytometry of annexin V⁺ cells 7 8 gated on CD4⁺CD8⁺DP, CD4SP, CD8SP, or CD4⁻CD8⁻ DN thymocytes in the thymus (n = 89 mice, pool of two independent experiments). P < 0.0001 for all thymocyte subsets, One-way

1	ANOVA with Tukey's multiple comparisons. (f-h) Mice were treated with PZQ at week 8
2	after infection and sacrificed 7 weeks after PZQ treatment. Representative and quantified flow
3	cytometry of CD5 MFI on naive CD4 ⁺ T cells or naïve CD8 ⁺ T cells from the thymus, spleen,
4	or peripheral blood (Infected+Veh or Infected+PZQ, $n = 6$ mice; other groups, $n = 7$ mice;
5	pool of two independent experiments). CD4 ⁺ T cells: Infected+Veh versus Uninfected+Veh, P
6	< 0.0001 (Thymus), P $<$ 0.0001 (Spleen), P $<$ 0.0001 (Blood); Infected+PZQ versus
7	Infected+Veh, $P < 0.0001$ (Thymus), $P = 0.0035$ (Spleen), $P < 0.0001$ (Blood). $CD8^+$ T cells:
8	Infected+Veh versus Uninfected+Veh, P < 0.0001 (Thymus), P = 0.0017 (Spleen), P < 0.0001
9	(Blood); Infected+PZQ versus Infected+Veh, $P < 0.0001$ (Thymus), $P = 0.0094$ (Spleen), $P < 0.0094$
10	0.0001 (Blood). One-way ANOVA with Tukey's multiple comparisons. All data are shown as
11	the mean \pm s.d; *P < 0.05, **P < 0.01, ***P < 0.001. Source data are provided as a Source
12	Data file.

1

Fig. S3. IL-33 leads to thymic involution during severe infection. (a) Western blots of IL-33 in the liver after schistosome infection (n = 3 mice). P = 0.0001 (31KD), P < 0.0001 (17KD). (b) Annexin V⁺ cells in thymocytes after schistosome infection (n = 7 mice, pool of two independent experiments). WT+Sj versus WT, P < 0.0001 for all subsets; $il33^{-/-}$ +Sj versus WT+Sj, P < 0.0001 for all subsets. (c-e) Morphology, weight and cellularity of thymus from schistosome-infected mice (n = 4 mice). WT+Sj versus WT, P = 0.0002 (weight), P < 0.0001

1	(cells); $il33^{-/-}$ +Sj versus WT+Sj, P = 0.0115 (weight), P = 0.0002 (cells). (f) The level of sST2
2	was determined by ELISA (n = 4 mice), $P < 0.0001$. (g) Western blots of IL-33 in the thymus
3	after CLP induction (n = 3 mice), P = 0.0204. (h-j) Morphology, weight, and cellularity of
4	thymus after CLP induction ($n = 6$ mice, pool of two independent experiments). WT+CLP
5	versus WT, P < 0.0001 (weight or cells); $il33^{-/-}$ +CLP versus WT+CLP, P = 0.0069 (weight), P
6	= 0.0213 (cells). (k) Relative thymus size (n = 9 patients for children without sepsis, n = 11
7	patients for children with sepsis), $P < 0.0001$. (I) Annexin V ⁺ cells in thymocytes after IL-33
8	treatment (n = 7 mice, pool of two independent experiments). $P < 0.0001$ for all thymocyte
9	subsets. (m-o) Morphology, weight, and cellularity of thymus after IL-33 treatment ($n = 4$
10	mice). WT+IL-33 versus WT+PBS, P < 0.0001 (weight or cells); $il33^{-/-}$ +IL-33 versus
11	$il33^{-/-}$ +PBS, P = 0.9063 (weight), P = 0.4730 (cells). (p) Morphology of the thymus in the
12	kidney capsule after thymus transplantation. (q) Representative flow cytometry of thymocytes
13	after thymus transplantation. (r) Representative flow cytometry of T cells in peripheral blood
14	after thymus transplantation. (a, b, d, e, i, j, l, n, o) One-way ANOVA with Tukey's multiple
15	comparisons. (\mathbf{f} , \mathbf{g} , \mathbf{k}) Unpaired two-tailed Student's t-test. All data are shown as the mean \pm
16	s.d. $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, NS, not significant. Source data are provided as a
17	Source Data file.

Fig. S4. Loss of IL-33-mediated thymic involution reverses T-cell immunity during
severe infection. (a-c) Samples were from uninfected or schistosome-infected WT or *il33^{-/-}*mice. CD5 MFI on naive CD4⁺ T cells or naïve CD8⁺ T cells from the thymus, spleen, or
peripheral blood (*il33^{-/-}*+Sj, n = 6 mice, other groups, n = 8 mice, pool of two independent
experiments). CD4⁺ T cells: WT+Sj versus WT, P < 0.0001 (Thymus, Spleen, or Blood); *il33^{-/-}*+Sj versus WT+Sj, P < 0.0001 (Thymus, Spleen, or Blood). CD8⁺ T cells: WT+Sj versus

1	WT, P < 0.0001 (Thymus, Spleen, or Blood); $il33^{-/-}$ +Sj versus WT+Sj, P < 0.0001 (Thymus,
2	Spleen, or Blood). One-way ANOVA with Tukey's multiple comparisons. (d-f) Samples were
3	from uninfected or schistosome-infected mice treated with anti-IL-33. CD5 MFI on naive
4	$CD4^{+}T$ or naïve $CD8^{+}T$ cells from the thymus, spleen, or peripheral blood (n = 4 mice).
5	CD4 ⁺ T cells: Infected+Veh versus Uninfected+Veh, P < 0.0001 (Thymus, Spleen, or Blood);
6	Infected+anti-IL-33 versus Infected+Veh, P < 0.0001 (Thymus), P = 0.0439 (Spleen), P =
7	0.0899 (Blood). CD8 ⁺ T cells: Infected+Veh versus Uninfected+Veh, P < 0.0001 (Thymus,
8	Spleen, or Blood); Infected+anti-IL-33 versus Infected+Veh, P < 0.0001 (Thymus), P =
9	0.00559 (Spleen), P = 0.7075 (Blood). One-way ANOVA with Tukey's multiple comparisons.
10	(g-i) Samples were from WT or $il33^{-/-}$ mice and WT or $il33^{-/-}$ mice after CLP induction. CD5
11	MFI on naive $CD4^+T$ or naïve $CD8^+T$ cells from the thymus, spleen, or peripheral blood (n =
12	6 mice, pool of two independent experiments). $CD4^+T$ cells: WT+CLP versus WT, P < 0.0001
13	(Thymus, Spleen, or Blood); $il33^{-/-}$ +CLP versus WT+CLP, P = 0.0034 (Thymus), P < 0.0001
14	(Spleen), $P = 0.0175$ (Blood). $CD8^+T$ cells: WT+CLP versus WT, $P = 0.0018$ (Thymus), $P = 0.0018$
15	0.0007 (Spleen), P < 0.0001 (Blood); $il33^{-/-}$ +CLP versus WT+CLP, P < 0.0001 (Thymus), P =
16	0.0002 (Spleen), $P = 0.0012$ (Blood). One-way ANOVA with Tukey's multiple comparisons.
17	Data are shown as the mean \pm s.d. *P < 0.05, **P < 0.01, ***P < 0.001, NS, not significant.
18	Source data are provided as a Source Data file.

2 Fig. S5. IL-33 results in thymic involution-mediated T cell aging. (a-d) Naïve/memory naïve CD4⁺ T cells or CD8⁺ T cells in the spleen from WT or *il1rl1^{-/-}* mice after IL-33 3 treatment (n = 4 mice). WT+IL-33 versus WT+PBS, P = 0.0018 (CD4⁺T cells), P = 0.02714 5 $(CD8^{+} T \text{ cells}); il1rl1^{-/-} + IL-33 \text{ versus WT} + IL-33, P = 0.0002 (CD4^{+} T \text{ cells}), P = 0.0237$ 6 (CD8⁺T cells). (e-g) Samples were from mice after IL-33 treatment. CD5 MFI on naive CD4⁺ 7 T cells or $CD8^+T$ cells from the thymus, spleen, or peripheral blood (n = 8 mice, pool of two 8 independent experiments). $CD4^+T$ cells, P < 0.0001 (Thymus or Spleen), P = 0.0392 (Blood); $CD8^{+}T$ cells, P = 0.0057 (Thymus), P = 0.0676 (Spleen), P = 0.0162 (Blood); Unpaired 9 10 two-tailed Student's t-test. (h, i) Mice were injected with IL-33 at week 8 after transplantation with $illrll^{-/-}$ thymus. (h) Representative flow cytometry of CD5 MFI on naive CD4⁺ T cells 11

1 or $CD8^+$ T cells in the spleen or peripheral blood. (i) CD5 MFI on naive $CD8^+$ T cells in the 2 spleen or peripheral blood (PBS, n = 7 mice; IL-33, n = 8 mice; pool of two independent experiments). WT+IL-33 versus WT+PBS, P < 0.0001 (Spleen), P < 0.0001 (Blood); 3 $il1rl1^{-/-}$ +IL-33 versus WT+IL-33, P < 0.0001 (Spleen), P = 0.0028 (Blood). (j, k) Mice were 4 infected with schistosome at week 8 after transplantation with $illrll^{+/+}$ or $illrll^{-/-}$ thymus. (j) 5 Representative flow cytometry of CD5 MFI on naive CD4⁺ T cells or CD8⁺ T cells in donor 6 thymus, spleen, or peripheral blood. (k) CD5 MFI on naive CD8⁺ T in donor thymus, spleen, 7 or peripheral blood (n = 4 mice). Infected+ $illrll^{+/+}$ thymus versus Uninfected+ $illrll^{+/+}$ 8 thymus, P < 0.0001 (Donor thymus, Spleen, or Blood); Infected+ $illrll^{+/+}$ thymus versus 9 Infected+ $illrll^{-/-}$ thymus, P < 0.0001 (Donor thymus), P = 0.0008 (Spleen), P = 0.0017 10 11 (Blood). (**b**, **d**, **i**, **k**) One-way ANOVA with Tukey's multiple comparisons. Data are shown as the mean \pm s.d. *P < 0.05, **P < 0.01, ***P < 0.001. Source data are provided as a Source 12 13 Data file.

Fig. S6. IL-33 perturbs the compartment of TECs. (a) Representative flow cytometry of
TECs before or after being sorted by MACS from the thymus cultured in FTOCs. (b-d)
Representative and quantified flow cytometry of mTECs and cTECs in FTOC treated with

1	IL-33 (n = 9 biologically independent samples of fetal thymic lobes, pool of three
2	independent experiments). WT+IL-33 versus WT+PBS, P < 0.0001 (mTEC or cTEC);
3	$il1rl1^{-/-}$ +IL-33 versus $il1rl1^{-/-}$ +PBS, P = 0.2001 (mTEC), P = 0.2018 (cTEC); One-way
4	ANOVA with Tukey's multiple comparisons. (e) Histology of the thymus from mice after
5	IL-33 treatment; Green, Keratin 5; red, Keratin 8; Scale bar, 1000 µm. (f-h) Representative
6	and quantified flow cytometry of cTECs or mTECs in WT or <i>illrl1</i> ^{-/-} mice after IL-33
7	treatment (n = 4 mice). WT+IL-33 versus WT+PBS, P = 0.0314 (mTEC or cTEC);
8	$illrll^{-/-}$ +IL-33 versus $illrll^{-/-}$ +PBS, P = 0.5786 (mTEC or cTEC); One-way ANOVA with
9	Tukey's multiple comparisons. (i) Histology of the thymus from WT or $il1rl1^{-/-}$ mice after
10	schistosome infection; Green, Keratin 5; red, Keratin 8; Scale bar, 1000 µm. (j-l)
11	Representative and quantified flow cytometry of cTECs or mTECs in WT or <i>illrl1</i> ^{-/-} mice
12	after schistosome infection (n = 4 mice). WT+Infected versus WT+Uninfected, $P = 0.0115$
13	(mTEC), P = 0.0113 (cTEC); $il1rl1^{-/-}$ +Infected versus WT+Infected, P = 0.0023 (mTEC), P =
14	0.0020 (cTEC); One-way ANOVA with Tukey's multiple comparisons. (m-o) Representative
15	flow cytometry and quantification of flow cytometry of cTECs or mTECs in WT or il33-/-
16	mice after CLP induction (n = 6 mice, pool of two independent experiments). WT+CLP
17	versus WT, P < 0.0001 (mTEC or cTEC); $il1rl1^{-/-}$ +CLP versus WT+CLP, P = 0.0111 (mTEC),
18	P = 0.0094 (cTEC); One-way ANOVA with Tukey's multiple comparisons. Data are shown as
19	the mean \pm s.d. *P < 0.05, **P < 0.01, ***P < 0.001, NS, not significant. Source data are
20	provided as a Source Data file.
21	

