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Supplementary Methods 

 

Here we present additional details of the method used in using ontology-based feature engineering, 

implementation of the machine learning workflow, and the evaluation metrics used in the study. 

1.1 Feature engineering using epilepsy ontology 

As part of the three-step feature engineering process used to map values in the patient records to ontology 

terms, we first used syntactic mappings based on synonyms and related annotation properties (modeled 

using rdfs:label and rdfs:comment in the ontology) (1-3)). The syntactic transformation involves removal 

of whitespace in a phrase (e.g., “Mesial Temporal Sclerosis”) or mapping specific parts of the phrase 

(“Atypical Ganglioma WHO grade II” to AtypicalGaglioma) as the associated WHO grading is already 

modeled in EpSO using quantifier restriction on the object property hasWorldHealthOrganizationGrading.  

In the second step, we used class expressions that combined one or more ontology terms to represent a 

complex term.  

This composition-based class expressions using one or more ontology terms for representing medical 

concepts has also been implemented in the Systematized Nomenclature of Medicine Clinical Terms 

(SNOMED CT) (4). SNOMED CT uses a combination of pre coordination, where terms are modeled 

explicitly in an ontology (precoordinated expressions), and post coordination, where one or more terms are 

combined using a set of rules (post coordinated expressions). The use of post coordinated expressions in 

SNOMED CT enables it to model new medical concepts or terms. For example, a SNOMED CT post 

coordinated expression using the recommended syntax |hip joint| : |laterality| = |left| represents the laterality 

information about a hip joint (4). 

In this study, we used an aggregation of epilepsy ontology terms to map a value in the patient record; for 

example, “depletion of neuron in CA2” was mapped to NeuronalLoss, CA2Field, PyramidalNeuron, and 

HippocampalSclerosis. We note that the first three ontology terms together model the term from the patient 

record and the fourth term describes important contextual information (diagnosis information), which is 

important in a machine learning workflow. A similar term augmentation occurs when the patient record 

term “Blurring” is mapped to the ontology term BlurringOfGreyWhiteMatterJunction, which provides 

additional contextual information. 

In the third step of the feature engineering step, we used semantic transformation approach that uses the 

semantics of a patient record term for mapping to an ontology term. For example, the term “microcolumn” 

was mapped to AbnormalRadialCorticalLamination, FocalCorticalDysplasiaTypeIA, and OccipitalLobe 

by interpreting the occurrence of microcolumns to the specific type of cortical dyslamination seen in focal 

cortical dysplasia type 1A. This mapping considered that although abnormal radial cortical lamination 

occurs in both focal cortical dysplasia type 1A and focal cortical dysplasia type 1C; however focal cortical 
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dysplasia type 1C also includes the finding of abnormal tangential cortical lamination. Therefore, 

“microcolumn” was not mapped to focal cortical dysplasia type 1C. 

The mapping of patient record terms to epilepsy ontology terms required manual review and curation; 

therefore, dissemination of these mappings through a look up service will enable other users to reuse these 

mappings in their machine learning workflows. As additional mappings are created for new machine 

learning workflows, a library of these mappings can be a valuable resource for feature engineering of 

epilepsy clinical data.  

1.2 Machine learning workflow: parameters, training, and validation  

The input features FN from the 312 neuropathology reports NPR result in a feature matrix denoted by FM 

∈ ^(𝐹_𝑁  𝑋 〖𝑁𝑃〗_𝑅 ) with the diagnosis values used as labels to be assigned to a patient record by 

each of three models. Therefore, the machine learning task was implemented as multilabel classification 

based on the binary relevance (BR) transformation method where a patient can have one or more 

neuropathology diagnosis label (D with |D| = 59) with each label being independent of each other (5, 6). 

Each of the three models were trained for each diagnosis label based on the four input features, that is, 

microscopy (M), immunohistochemistry (IHC), brain localization (L), and imaging results (I). For example, 

neuropathology record with input features M, IHC, L, and I with output D label Ganglioglioma WHO grade 

I. The data values in the reports were encoded using the Scikit “OneHotEncoder” library.  

We used the Scikit “liblinear” solver for fitting the logistic regression model with “l2” regularization with 

a tolerance value of 0.01 for stopping, and relative strength of regularization value set to 1. The random 

forests library in Scikit is an implementation of the ensemble machine learning method that combines 

decision trees using random features to improve performance of the model (7). The Scikit random forest 

library used the “n_estimator” variable to denote the total number of decision trees in the forest, which was 

assigned a value of 21 during our parameter tuning phase based on the lowest number of incorrect 

predictions. The Scikit library uses additional parameters to use sample drawn with replacement from the 

data used for training (also called bootstrap sample), which is set to “true” in our implementation with the 

generalization accuracy estimated from the left-out samples with the relevant parameter “oob_score” set to 

true (6). The third model used in this paper is gradient tree boosting with the learning rate parameter set to 

0.1, the parameter for the number of weak learners “n_estimator” is set to 31, and the parameter to select 

the fraction of samples used for fitting the number of individual base learners is set to a value of 0.95. These 

parameter values are tuned based on the performance of test evaluations performed using a range of 

parameter values. 

To avoid overfitting, we used 5-fold cross validation with each iteration leaving out one subset of data for 

testing. The trained classifier was used to predict whether each of the diagnosis labels can be assigned to a 

patient record based on their neuropathology features. This leave-one-out approach takes into consideration 

our assumption that all the patient reports in our dataset are independent of each other and that the reports 

were created by a similar process. We used the aggregate of the iterations to generate the final assignment 

of a diagnosis label to a patient report. 

1.3 Evaluation metrics: Hamming loss, balanced accuracy, and recall 

If N is total number of samples, L is total number of labels, 𝑌𝑖 is the set of true class labels, and 𝑌𝑖̂ is the set 

of labels predicted by a classifier m, then, the Hamming loss is defined as HL(m, N) = 
1

𝑁
∑

1

|𝐿|
|𝑦𝑖  ̂ ∆𝑦𝑖|𝑁−1

𝑖=0 , 

where ∆ is the symmetric difference between two sets (5, 6). The accuracy measure is defined as A(m, N) 

= 
1

𝑁
∑

1

|𝐿|

|𝑌𝑖 ∩ 𝑌𝑖̂|

|𝑌𝑖 ∪ 𝑌𝑖̂|
𝑁−1
𝑖=0  (5, 6). The Scikit library includes a specialized function called balanced accuracy that 

address the issue of bias in imbalanced datasets, and it is computed by assigning a weight to each sample 

based on the occurrence of the true positive labels (6). In addition to these two metrics, we used recall 
measure to evaluate the performance of the three models, which is defined as 
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𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
, where true positive (TP) corresponds to correct diagnosis labels 

assigned by a model to a patient record and false positive (FP) corresponds to the correct diagnosis labels 

that were not assigned by a model to a patient record (8).  A lower hamming loss value, higher accuracy 

value, and higher recall values are indicative of improved performance by a machine learning model. 

1.4 Statistical analysis of the results.  

To validate the significance of our comparison, we conducted a corrected repeated k-fold cv test based on 

5 repetitions of 5-fold cross validation (9). A 5-fold cross validation approach was used to calculate the 

balanced accuracy, hamming loss, and recall for our baseline and class V ontology mapping for each 

machine learning algorithm. The accuracy measures for each of the 5 folds were recorded. For each 

algorithm, this 5-fold approach was repeated 5 times, resulting in 25 accuracy measures for each metric for 

either of the ontology mappings. These accuracy measures were then compared using a t-test using the 

following formula, where:  

(1) r is the number of replications,  

(2) k is the number of folds for cross validation, 

(3) aij refers to the accuracy metric (hamming loss, balanced accuracy, or recall) from fold j of replication 

i for one of the algorithms (random forest, logistic regression, or gradient boosting) for the baseline 

mapping 

(4) bij refers to an accuracy metric (hamming loss, balanced accuracy, or recall) from fold j of replication i 

for one of the algorithms (random forest, logistic regression, or gradient boosting) for the class V 

ontology mapping 

(5) n1 refers to the number of instances used for training, and 

(6) n2 refers to the number of instances used for testing. 

𝑡 =

1
𝑘𝑟

∑ ∑ 𝑎𝑖𝑗 − 𝑏𝑖𝑗
𝑟
𝑗=1
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P-values were calculated from the test statistic according to a t-distribution with 24 degrees of freedom (df 

= kr-1). All calculations were performed in Python (version 3.10). 

The results (with p = 0.05) show that the improvement in balanced accuracy is not statistically significant 

for all the three machine learning models. Similarly, the change in the hamming loss and recall values are 

also not statistically significant across all the three learning models  

 

2 Tables and Figures 
 

Table S1: Seven subcategories of brain tumors related to epilepsy based on their phenotype 

 
Brain Glial Neuronal Tumor    

 Anaplastic 

Ganglioglioma 

WHO Grade III   

 Atypical 

Ganglioglioma 

WHO Grade II OR WHO Grade III  
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 Diffuse 

Leptomeningeal 

Glioneuronal Tumor 

  

 Dysembryoplastic 

Neuroepithelial Tumor 

WHO Grade I Mutation in Gene FGFR 

 Ganglioglioma WHO Grade I Mutation in Gene BRAF  

 Myxoid Glioneuronal Tumor Mutation in Gene PDGFR  

 Papillary Glioneuronal Tumor Mutation in Gene PRKCA  

 Rosette-forming Glioneuronal Tumor  

Brain Glial 

Tumor 

    

 Diffuse Glioma    

  Astrocytic   

   Astrocytoma WHO Grade II-IV  

Mutation in Gene IDH 

   Diffuse Astrocytoma WHO Grade I 

Mutation in Gene MYB 

OR MYBL1 

   Glioblastoma Multiforme  WHO Grade IV   

IDH wildtype 

   Diffuse Midline Glioma WHO Grade III-IV 

Mutation in Gene H3 

   Diffuse Low Grade Glioma Mutation in Gene FGFR  

   Diffuse High Grade Glioma IDH wildtype, H3 

wildtype 

   Angiocentric Glioma WHO Grade I 

Mutation in Gene MYB 

  Mixed Astrocytic Oligodendroglial  

   Oligoactrocytoma  

  Oligodendroglial   

   Oligodendroglioma WHO Grade II-III 

Mutation in Gene IDH 
AND 

co-Deletion of 1p AND 

19q 

   Polymorphous low-grade 

neuroepithelial tumor of the 

young 

WHO Grade I  

Mutation in Gene BRAF 

OR FGFR 

 Non-Diffuse Glioma   

  Ependymal Tumor  

   Anaplastic Ependymoma WHO Grade III 

   Ependymoma  

   Ependymoma RELA-

Fusion Positive 

WHO 

Grade III 

Gene 

Fusion 

RELA 

   Myxopapillary 

Ependymoma 

WHO Grade I 

   Subependymoma WHO Grade I 
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  Other Astrocytic Tumor  

   Anaplastic Pleomorphic 

Xanthoastrocytoma 

WHO 

Grade III  

Mutation in 

Gene 

BRAF 

   Pilocytic Astrocytoma WHO 

Grade I  

Gene 

Fusion 

KIAA154

9-BRAF 

   Pleomorphic 

Xanthoastrocytoma 

WHO Grade II-III 

   Subependymal Giant Cell 

Astrocytoma      
Mutation in Gene TSC 

   Astroblastoma Mutation in Gene MN1 

   Isomorphic Astrocytoma WHO Grade I 

Brain Neuronal Tumor    

 Neurocytoma WHO Grade II   

 Multinodular and 

vacuolating neuronal 

tumor 

WHO Grade I   

Epithelial Cyst     

Hamartoma     

 Hypothalamic Hamartoma Mutation in Gene GLI3  

Meningioma     

Metastatic 

Tumor 

    

 

 

 

 

 

Table S2: Mappings between patient records and epilepsy ontology terms categorized by output 

label (diagnosis) and input features 

 

 

 

Diagnosis 

Patient Record Term Ontology Terms 

Brain glial tumor BrainGlialTumor 

Ganglioglioma Ganglioglioma 

Atypical Ganglioglioma WHO grade I AtypicalGanglioglioma 

Focal Cortical Dysplasia Type I FocalCorticalDysplasiaTypeI 

Pilocytic astrocytoma WHO grade I PilocyticAstrocytoma 
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Immunohistochemistry 

Patient Record Term Ontology Terms 

GFAP GlialFibrillaryAcidicProtein 

MAP2 MicrotubuleAssociatedProtein2 

CD34 LymphocyteAntigenCD34 

Ki-67 Ki-67Antigen 

p53 Phosphoprotein_p53 

 

 

 

Microscopy 

Patient Record Term Ontology Terms 

Brain glial tumor BrainGlialTumor 

Salt and pepper chromatin aggregates BrainTumor 

Atypical nuclei BrainTumor 

Multi-nucleated cells BrainTumor, BalloonCells 

Rosenthal fibres BrainTumor, PilocyticAstrocytoma, Astrocyte, GlialCell 

 

 

 

Anatomy 

Patient Record Term Ontology Terms 

occipital-basal Basal, OccipitalLobe 

temporo-occipital TemporalLobe, OccipitalLobe 

left temporo-polar LeftCerebralHemisphere, TemporalLobe 

TemporalPole 

left parietal cortex LeftCerebralHemisphere, ParietalLobe 

right temporal lobe RightCerebralHemisphere, TemporalLobe 

 

 

 

Imaging Terms 

Patient Record Term Ontology Terms 

MRI-positive WhiteMatterLesion MagneticResonanceImaging 

Ammon's horn sclerosis Hippocampus, HippocampalSclerosis 

mesial tumor BrainTumor 

Small lesion WhiteMatterLesion 

Left fronto-mesial dysplasia FocalCorticalDysplasia, LeftCerebral Hemisphere, FrontalLobe 
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Table S3: The p-values for the three evaluation metrics across the three machine learning models. 

 

  Gradient Boosting Random Forest Logistic Regression 

Balanced Accuracy 0.556 0.059 0.269 

Hamming Loss 0.069 0.555 0.555 

Recall 0.069 0.555 0.555 

 

 

 

Table S4: Distribution of diagnosis labels (20 most frequent labels) across 312 patient records 

 

Baseline Frequency 

(n) 

Ontology mapped (Input and 

Output) 

Frequency 

(n) 

Focal Cortical Dysplasia 

TypeIIB 

33 Focal Cortical Dysplasia Type IB 33 

Hippocampal Sclesoris TypeI   22 Cortical Developmentmal 

Malformmation 

23 

Ganglioglioma WHO grade I 20 Hippocampal Sclesoris TypeI   22 

Mild Malformation of Cortical 

Development, Oligodendroglial 

16 Ganglioglioma 20 

Reactive gliosis 9 Cortical Development 

Malformation, Oligodendroglial 

16 

Dysembryoplastic 

neuroepithelial tumor WHO 

Grade I 

9 Gliosis 10 

Mild Malformation of Cortical 

Development 

8 DysembryoplasticNeuroepithelial 

Tumor 

9 

Focal Cortical Dysplasia TypeIB 8 Focal Cortical Dysplasia TypeIB 8 

Mild Malformation of Cortical 

Development Type II  

7 Astrocytoma 7 

Focal Cortical Dysplasia 

TypeIIA 

6 Focal Cortical Dysplasia TypeIIA 6 

Pilocytic astrocytoma WHO I 5 PilocyticAstrocytoma 6 

Astrocytoma WHO grade I 5 GliosisWithoutHS 5 

Atypical Ganglioglioma WHO 

grade II 

4 Mesial Temporal Sclerosis 5 

Mesial Temporal Sclerosis Type 

Ib 

4 Glioblastoma Multiforme 5 

Rasmussen Encephalitis 3 Scar 4 

Hippocampal sclerosis type I, 

Focal corticcal Dysplasia 

TypeIIIA 

3 Rasmussen Encephalitis 4 

Focal cortical Dysplasia Type 

IIID, Glial scar 

3 Encephalitis 4 

Ganglioglioma WHO grade I, 

Hippocampal sclerosis type I 

3 Atypical Ganglioglioma 4 
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No Hippocampal sclerosis 3 Brain Tumor 3 

Focal Cortical Dysplasia 

TypeIA 

3 Focal Cortical Dysplasia TypeIA 3 

 

 

 

 

 

 

Figure S1: EpSO models neuropathology findings at fine level of granularity to support semantic 

annotation of patient records and applications in feature engineering. 

Figure S2: Multiple mappings created between ontology class and the ILAE 2017 classification of 

seizure types expanded version. 



 9 

References: 

1. Brickley D, Guha, R.V. RDF Schema 2004 [Available from: http://www.w3.org/TR/rdf-schema/. 

2. Wu Z, Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J., editor 

Implementing an inference engine for RDFS/OWL constructs and user-defined rules in oracle. 

IEEE 24th International Conference Data Engineering (ICDE); 2008: IEEE. 

3. Hitzler P, Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. OWL 2 Web Ontology 

Language Primer. World Wide Web Consortium W3C; 2009. 

4. Giannangelo K, Fenton, S. SNOMED CT Survey: An Assessment of Implementation in 

EMR/EHR Applications. Perspect Health Inf Manag 2008;5:7. 

5. Doquire G, Verleysen, M. Feature selection for multi-label classification problems. .  

International work-conference on artificial neural networks: Springer Berlin Heidelberg; 2011. p. 

9-16. 

6. Pedregosa F, Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J. Scikit-learn: Machine learning in Python. 

Journal of machine Learning research. 2011;12:2825-30. 

7. Breiman L. Random forests. Machine learning. 2001;45(1):5-32. 

8. Olson D. L. DD. Advanced Data Mining Techniques2008. 

9. Bouckaert RR, Frank, E. Evaluating the replicability of significance tests for comparing learning 

algorithms.  Pacific-Asia conference on knowledge discovery and data mining: Springer, Berlin, 

Heidelberg; 2004. p. 3-12. 

 


