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GA Framework 

 
Evolution of preferred expressions with the GA. The GA allows users to evolve photorealistic 3D 
meshes of facial expressions, through a combination of gradual refinement and random processes 
across generations. Random processes can potentially result in anatomically implausible facial 
configurations, which is however automatically mitigated by the use of corrective mechanisms (see 
fig 2 in (1)).  
     Facial stimuli are uniquely defined using vectors of blendshape weights representing 
chromosomes of genes in the context of a genetic algorithm. In the process of the genetic evolution 
of facial stimuli, through repeated visual sample assessment, the participant refines the latent 
quantitative representation. Specifically, evolution by a genetic algorithm constitutes repeated 
selection of favourable samples from iteratively refined populations, whereby the refinement is 
driven by the selection of prior choices. At the same time inherent randomness in the GA through, 
for example, its mutation and population boosting operators enable facial dynamics space 
exploration preventing premature convergence.  
  Each time the tool is initialized, a protocol-generated set of 10 expressions are displayed, 
involving  random generation of two expressions per emotion type (happy, sad, angry and fearful), 
one arbitrary expression and the neutral expression to compose the initial ten faces. This 
initialization approach casts a net wide enough to allow proper exploration of the space and avoid 
premature convergence. Specifically, we initially generate faces from gene pools (sets of 
blendshapes) characteristic of each type of emotion as well as random faces, seeding enough 
diversity into the population to enable free space exploration for different emotion types. 
 On each iteration of the GA, the user selects from the population a number of expressions most 
similar to some internalized target. Among an unconstrained number of selections, one (elite) face 
is selected by the participant as the best and there is no further relative fitness ranking of the 
remaining selected samples. The elite is guaranteed to propagate unchanged to the updated 
population to exert sufficient selection pressure in the GA. The manner and extent of gene 
propagation of the non-elite selections can vary and are stochastically governed. Specifically, the 
two mechanisms for gene propagation are averaging, and the tandem of cross-breeding and 
mutation. The formal definitions of these operators in the genetic algorithm are given in(1). In simple 
terms, through averaging the mean of two or more blendshape vectors is propagated to the next 
population. Cross-breeding and mutation on the other hand involves substitution of randomly 
selected weights of one chromosome by those of another (“cross-breeding") and the subsequent 
assignment of new random values to a fixed number of arbitrary genes in the chromosome 
(“mutation"). Finally, to maintain diversity and avoid premature convergence, the population at each 
iteration is boosted by 40 % (4 out of 10 samples) insertion of novel samples completely 
uncorrelated to prior user selections. After calculating when the process plateaus, we chose to 
terminate the iterative process after 10 iterations with the final (preferred) face being the evolved 
expression approximating the emotion being created. These measures (stimulus positioning, 
unrestrained number of selections and population diversity boosting) are designed to ensure an 
unbiased exploration of expression space, avoid premature convergence, and mitigate risks of 
serial dependency, where participants’ selections might be based on prior decisions.  
 
 
 
GA stochastic noise thresholds. Both protocol-based initialisation of the genetic algorithm and its 
key population refining processes of mutation, cross-breeding and averaging involve sampling the 
uniform random distribution. Due to this stochastic element in the evolutionary process, the final 
evolved face will vary, even given the absolute consistency of the person’s targeted expression. 
We call this variance that is inherent to the generation process itself genetic algorithm noise. Since 
the stimuli have a quantitative representation as blendshape vectors, we can simulate genetic 
evolution to quantify the noise, which provides a threshold in user data analysis. Any difference in 
excess of the threshold in user-generated distributions can be deemed significant i.e. unlikely to 
have arisen from the stochastic nature of the generation mechanism itself. The simulation relies on 
replacing user assessment by a metric comparing population samples to a target that represents 
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average stimuli of happy, sad, fearful and angry, derived from participant testing. Cosine distance 
was used to quantify difference of expressions given that it provides a reliable metric for high-
dimensional sparse vectors such as the blendshape representation. The cosine distance (CD) is 
defined as: 
 

𝐶𝐷(𝛼ଵ, 𝛼ଶ) = 1.0 −
𝛼ଵ ⋅ 𝛼ଶ

‖𝛼ଵ‖‖𝛼ଶ‖
 

 
where 𝛼ଵ and 𝛼ଶ  are the two blendshape vectors being compared 
 
Through 500 simulated iterations, the mean and variance of the inter-sample cosine distance over 
all combinations of independent final elites in the simulated distribution quantify genetic algorithm 
noise as the only source of variation.  
 
 
GA convergence - simulations. We performed simulations to characterize the convergence of the 
GA. The simulations were aimed at evolving expressions that best matched targets of variable 
complexity (1,3,12 or 125 active blendshapes), using cosine distance as the relative fitness 
function. Across 11 iterations each simulation selected expressions “compatible” with the target 
expression (flagging the “best” example amongst the selection), with the number of selections 

mirroring average numbers operated by participants within iterations (see Fig. S3, A). Within each 
iteration, we obtained a distribution of cosine distance errors between the “best” example and the 
target expression (Fig S1). Simulations showed that shifts in the mean of these error distributions 
become progressively smaller across iterations, converging by the 11th iteration (i.e. approximately 
at iteration 7~8, which mimics participant convergence data shown in Fig S2). We also show the 
target next to the expression flagged as the “best” example on the final iteration, providing visual 
evidence of the framework’s convergence. 
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Fig S1: Simulated EmoGen convergence using Cosine Distance (α1; α2) as the selection metric for targets of increasing 
complexity defined by the number of non-zero weight blendshapes (1,2,12, 125 blendshapes). Also shown for each target 
are the average faces converged to in the final generation. From Fig 18 in Roubtsova et al. (2021).  

 
 
GA convergence – evidence from participant data: participant data also empirically suggests GA 
convergence on the participants’ selections.  Firstly, in a previous study, participants were asked 
to evolve the same expression on three separate occasions (2). We observed that participants 
were systematic in evolving expressions that depicted their preferred facial expressions of 
emotions. This was evidenced by lower within-subject variability than between-subject variability in 
the expressions created. Secondly, in our current study, participants rated how closely evolved 
expressions captured the depiction they had in mind. These ratings showed a high level of 
satisfaction, suggesting that evolved expressions provided good approximations of the participants 
intended facial depiction. Finally, and most importantly, these evolved expressions explain 
participants’ identification of emotion categories (as shown in Fig 4 C), which provides evidence 
that these expressions capture processes that drive expression recognition behavior.  
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Fig. S2. Differences in expressions across iterations of the GA (Top panel). Within each GA iteration participants must 
indicate one expression (“preferred expression”) amongst all the expressions they selected that best captures the target 
expression. Across successive iterations we can calculate how much the preferred expressions have changed based on 
their distance in expression space. We used Cosine Distance (CD) which provides a reliable metric for comparison of sparse 
high-dimensional vectors such as the blendshape weight representation (1). The plot depicts the distance of preferred 
expressions on a given iteration relative to the previous iteration (sum of squares of CDs between expressions, averaged 
across subjects), showing progressively smaller differences in expressions throughout iterations, plateauing approximately 
around iteration 8 (generation 7).  For a more in-depth analysis on convergence with the GA system, see (1).   Cumulative 
sum of differences in ideal expressions across iterations of the GA (Bottom panel). Cumulative sum of difference 
(CD) in expressions across neighbouring iterations, expressed as a % of the sum total of differences across all iterations. 
Consistent with the above plot, this suggests a plateauing of differences near the 8th iteration. 
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Fig. S3.  Participant selections of GA evolved expressions. Top panel: Average number of expressions selected per 
GA iterations. On each iteration of the GA, participants can select as many expressions (between 1 and 10) that have some 
resemblance to the target expression. The barplot depicts average number of selections within each GA iteration, showing 
that the number of expressions selected plateaus to 5 selections by the 7th iteration. This shows that upon initialization, a 
smaller number of expressions tend to be recognized as similar to the target expression; as expressions are evolved across 
iterations, the number of expressions indicated as being similar to the target progressively increase, plateauing to 5 
selections on average. Bottom panel: Frequency of number of selected expressions across participants. 
 
 
 
GA – effect of initialization expressions: 
By relying on procedurally generated sets of starting expressions on the 1st trial, we potentially introduce an 
additional source of noise since the selection of the initial seed is known to impact these search algorithms. 
However, random starting positions are beneficial as they provide greater flexibility for the GA to explore 
different areas of expression space. Given that we wanted to capture nuanced differences between 
participants’ depictions of expressions, we opted for the latter so as to not constrain the algorithm in the 
exploration of expression space. We also wanted to avoid systematically biasing participants in expression 
space which is a possibility when using a fixed starting configuration. By using procedurally generated starting 
configurations we essentially treat starting configuration as an additional source of noise in the GA. Importantly 
the GA noise threshold shown in figure 2, which was compared against individual differences in evolved 
expressions, is produced by simulated data using random starting configurations, thus accounting for noise 
introduced by procedurally generated initialization. 
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The effect of starting configuration (fixed Vs procedurally generated) was assessed through simulated data 
aimed at evolving expressions across 10 generations that best matched a fixed target expression, using cosine 
distance as the relative fitness function (as described in SI GA convergence - simulations). We compared the 
effect of Fixed (Fixed set of 10 faces in the 1st trial across all simulations) or Procedurally generated starting 
configurations (variable set of 10 expressions on the 1st trial across simulations) through 500 simulations. 
Comparing final generation distributions, the convergence statistics (cosine distance error mean and standard 
deviation µ ± σ) were similar for both initializations: 0.47 ± 0.162 and 0.43 ± 0.164 for fixed and protocol-
generated initializations respectively (full details can be found in (1)). While this difference was significant, 
also considering the large number of samples (t(998)=3.8, p<.001), the effect size was small (Cohen’s d=.24). 
Therefore, starting configuration has a negligible impact on final evolved expressions. However, and 
importantly the GA noise threshold shown in figure 2 demonstrates that the individual differences between 
participants are not the result of noise introduced by the GA procedure. These noise thresholds were obtained 
with simulations using non-fixed starting expression configurations that account for noise resulting from 
procedurally generated initialization 
 
 
GA – Pros and Cons: 
The GA is an efficient search mechanism, we outline below some of its pros and cons 
“Pros:  
-We contend that some bias is advantageous as we ‘want’ people to move in a certain direction 
and not completely randomly on each trial to increase efficiency. However, we also avoid forcing 
people in a particular direction since we introduce 4 novel samples on each iteration uncorrelated 
with previous selections.  
-GAs look to mimic natural selection – so they are biased in a way that mimics that process.  
-The starting point (first iteration) can introduce bias, but this is also randomly determined. We 
also show that even if we get local solutions people end up roughly in the same spot – which is a 
good thing (people cluster). 
-The introduction of randomness is also produced via the mutations, which give people the 
chance to branch away from initial choices and reduce bias 
 
Cons: 
-Trials are not independent, so some bias can be introduced 
-The GA may evolve parameters in non-physically realistic ways and we mitigate this with 
corrective shapes as part of the 149 blendshapes.”  
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A)  

 
B)   
 
 

Happy Vs Fear - Z=-2.01, p=0.045, pCorr=0.269 
Happy Vs Angry - Z=-2.19, p=0.029, pCorr=0.171 
Happy Vs Sad - Z=-1.95, p=0.051, pCorr=0.305 
Fear Vs Angry - Z=-3.9, p=0.000, pCorr=0.001 
Fear Vs Sad - Z=-.18, p=0.860, pCorr=5.162 
Angry Vs Sad - Z=-3.9, p=0.000, pCorr=0.001  

 
 
Fig. S4. Subjective ratings of preferred facial expressions. A) Distribution of subjective ratings (cumulative sum of Likert 
scale scores) of how closely the preferred facial expression captured the target expressions (1-very poor / 7-very good). 
Given that Likert ratings are ordinal, not continuous and have upper / lower bounds, we ran a non-parametric Friedman test, 
testing the null hypothesis that expression scores come from the same distribution, which revealed a significant difference 
between emotions (χ2(3)=19.28,p<0.00). B) Bonferroni-corrected Wilcoxon signed-rank tests, exploring which emotion 
pairings contribute to the above result. These show that Angry differed from Sad and Fear expressions, explained by the 
greater negative skew in the distribution of Angry expression scores.  
 
 
 
 
 
 
 
 
Predicting emotion category of new evolved expressions.  
 
We used machine learning (Support Vector Machines) to test whether GA evolved blendshape weight vectors could be 
used to reliably predict the emotion category created by participants, and whether predictions generalized to GA stimuli 
evolved by different groups of participants. A Support Vector Machine (SVM) classifier was trained to discriminate emotion 
category based on blendshape weights of faces in a randomly sampled subset of 219 participants. The SVM model was 
trained by providing each participant’s 5 final preferred expressions (i.e. the participant’s preferred expressions selected in 
GA iterations 7 through 11). SVM parameters were optimized in the training set through 5-fold cross-validation, converging 
on a non-linear Radial basis function (RBF) kernel, C=30 (penalty parameter of the error term), and Gamma=.01 (inverse 
of the standard deviation of the RBF). The SVM model was subsequently tested by labelling expressions using weight 
vectors  evolved by a separate group of participants (N=74), and correctly identified the emotion type in 86% of cases 
(binomial test p = 1.4e-37). The classification report below summarizes performance of the classifier and normalized rates 
of classification. 
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Accuracy (relative to chance level = 0.25):  0.8633288227334236 
Binomial test p =  1.3893856470802085e-37 
Classification Report: 
              precision    recall  f1-score   support 
 
       Angry        0.87      0.84      0.85       370 
        Fear         0.77      0.78      0.77       370 
       Happy       0.98      0.97      0.98       370 
         Sad         0.84      0.86      0.85       368 
 
    accuracy                                 0.86      1478 
   macro avg      0.86      0.86      0.86      1478 
weighted avg     0.86      0.86      0.86      1478 
 
 
 
 
 
Comparison of GA expressions evolved through online platforms (Online) and expressions 
evolved in a controlled laboratory environment (Lab). In order to control for stimulus 
presentation conditions, we collected additional GA data in a controlled laboratory setting. 
Participants (N=43) evolved the happy, sad, fear and angry expressions using the same laptop in 
the Lab. We compared expressions between the Online and Lab groups by means of two machine 
learning approaches. 
 We first tested whether an SVM classifier trained with data collected online could recognize 
expressions evolved by participants in the lab. The classifier showed overall comparable 
performance in the classification of emotions evolved by these two groups: classification accuracy: 
Online group = 86% (as shown in “Predicting emotion category of new evolved expressions”) Vs 
Lab group = 87% correct classification (see classification report below). 
 
Accuracy (relative to chance level = 0.25):  0.8662790697674418 
Binomial test p =  1.3893856470802085e-37 
Classification Report: 
              precision    recall  f1-score   support 
 
       Angry       0.83      0.93      0.88        43 
        Fear        0.88      0.70      0.78        43 
       Happy      1.00      0.93      0.96        43 
         Sad        0.78      0.91      0.84        43 
 
    accuracy                                0.87       172 
   macro avg     0.87      0.87      0.87       172 
weighted avg    0.87      0.87      0.87       172    
  

The second approach consisted of testing whether an SVM classifier could determine 
whether evolved expressions came from the Lab or Online group. We supplied the classifier equal 
numbers of expressions belonging to the two groups (randomly sampling 43 in the Online group). 
The classifier exhibited chance level performance (53% classification accuracy, binomial test p = 
.62, see classification report below), suggesting that expressions do not significantly differ between 
the two groups. 
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Accuracy (relative to chance level = 0.5):  0.5348837209302325 
Binomial test p =  0.6172994135892526 
Classification Report: 
              precision    recall  f1-score   support 
 
         lab          0.47      0.62      0.53        37 
        prol          0.62      0.47      0.53        49 
 
    accuracy                                0.53        86 
   macro avg    0.55      0.55      0.53        86 
weighted avg   0.56      0.53      0.53        86 
 
 

We also collected subjective Likert ratings of how satisfied a subset of these participants 
(N=31) were with the expression the GA converged on. Below we present the Likert ratings and 
Kruskal-Wallis test results comparing scores between the Lab and Online groups, for each emotion 
type.  

 
A) Subjective ratings of GA expressions evolved by 32 participants in the laboratory (Lab 

group). 
Mean scores per category:  
Happy    5.597656 
Fear     5.417969 
Angry    5.765625 
Sad      5.382812 
 
std scores per category:  
Happy    1.045000 
Fear     1.111512 
Angry    1.034441 
Sad      1.146469 
 

B) Kruskal-Wallis test results (Bonferroni corrected) comparing subjective ratings between Lab and 
Online groups, for each emotion type.  

 
 
Lab Vs Online Happy  - Statistics=0.000, p=0.999, pCorr=5.994 
Lab Vs Online Fear - Statistics=0.168, p=0.682, pCorr=4.090 
Lab Vs Online Angry - Statistics=0.231, p=0.631, pCorr=3.786 
Lab Vs Online Sad - Statistics=1.362, p=0.243, pCorr=1.459 
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Fig S5: Final preferred expression positioning, clustering, and distances in expression space, for the Online and Lab groups 
separately. a) Dispersion of participants’ preferred expressions across the first 3 Principal Components (PCs) of facial 
expression. Ellipsoids depict dispersion of expressions per emotion cluster, identified through Gaussian Mixture Model - 
GMM (radii scaled to encompass 2 standard deviations per PC. b) GMM confusion matrix depicting probability of 
expressions matching the corresponding cluster label, and characterizing cluster overlap based on classification rate. c) GA 
stochastic noise threshold (dotted orange lines) related to the distribution of differences (cosine distance in blendshape 
space) of all possible participant expression pairings per emotion category (blue histograms). Area of the blue curve above 
these noise thresholds identifies the % of participant expression pairings whose differences exceed variability explained by 
GA stochastic noise.  
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Comparison of emotion identification performance between GA and KDEF stimuli 
 
Participants (N=60) who had not previously evolved GA expressions labelled (happy, fear, angry or sad) expressions 
belonging to either the GA stimulus set, or the Karolinska Directed Emotional Faces (KDEF) database (3) (Fig. S6). Rates 
of correct identification were submitted to a 2x4 repeated measures ANOVA, with factors Stimulus (GA / KDEF) and Emotion 
(happy / fear / angry / sad). Mauchly’s test indicated that the assumption of sphericity was violated for Emotion (χ2=13.13, 
p=.02) and for the Stimulus x Emotion interaction (χ2=36.13, p<.001), therefore degrees of freedom were corrected using 
Huynh-Feldt estimates of sphericity (ε=.92 and ε=.8, respectively). We found a main effect of Stimulus (F(1,59)=158.29, 
p<.001, η2=.1) of Emotion (F(2.78,164.23)=107.75, p<.001, η2=.41), and a significant Stimulus x Emotion interaction 
(F(2.39,140.93)=37.21, p<.001, η2=.08). Bonferroni corrected post-hoc comparisons (critical p=.01) showed that GA 
preferred expressions had lower rates of identification than KDEF stimuli for happy (t(59)=-3.19, p=.002), fear (t(59)=-6.2, 
p<.001) and sad (t(59)=-10.96, p<.001), but equivalent identification rates for angry expressions (t(59)=-1.27, p=.21; Fig 3d; 
full stats in table below). Taken together, while both types of stimuli show similar patterns of expression recognition per 
category, expressions portrayed by GA stimuli led to lower rates of identification at a group level (with the exception of angry 
expressions). We also collected a second group of 60 participants who performed the same task, but with GA and KDEF 
stimuli blocked separately. Results mimicked those of Group 1, with a main effect of Stimulus (F(1,59)=114.29, p<.001, 
η2=.1) of Emotion (F(2.29,151.4)=68.8, p<.001, η2=.38), and a significant Stimulus x Emotion interaction (F(2.56, 
151.4)=9.93, p<.001, η2=.02). Post-Hoc t-tests showed a significant difference between GA and KDEF for happy (t(59)=-
4.13, p<.001), fear(t(59)=-6.9, p<.001) and sad  (t(59)=-7.8, p<.001) expressions. However group 2 also showed a 
significant (but smaller) difference between GA and KDEF angry stimuli (t(59)=-2.7, p=.03) 
      

 
 
Fig. S6.  Agreement across participants on emotion of GA evolved expressions. a) Participants labelled GA expressions 
evolved by a different group of participants (top row), or labelled posed expressions drawn from the Karolinska Directed 
Emotional Faces (KDEF) database (bottom row).  b) Probability of correct expression identification as a function of emotion 
category and stimulus type tested in interleaved (left) or blocked (right) presentations. Error bars represent standard error 
of the mean (SEM).  
 
 
 

 

  



 
 

13 
 

 

 

Fig. S7.  External validation of GA evolved expressions. Polar plots depicting rates of participant response (rHappy, rFear, 
rAngry, rSad) based on stimulus expression category (happy, fear, angry, sad). Blue and Orange lines represent pooled 
performance using GA and KDEF stimuli, respectively. While there is significant overlap in response probabilities to both 
categories of stimuli, GA stimuli show greater rates of labelling errors, especially within fear and sad expressions. e.g. GA 
fear stimuli are more frequently confused as ‘angry’, with respect to KDEF fear stimuli. Happy expressions showed a 
complete overlap between GA and KDEF stimuli.  
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Fig. S8. Sample GA preferred expressions: 15 randomly sampled Happy expressions per emotion category  
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Fig. S9. Sample GA preferred expressions: 15 randomly sampled Fear expressions per emotion category (not the same 
participants within each emotion)  
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Fig. S10. Sample GA preferred expressions: 15 randomly sampled Angry expressions per emotion category (not the same 
participants within each emotion) 
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Fig. S11. Sample GA preferred expressions: 15 randomly sampled Sad expressions per emotion category (not the same 
participants within each emotion) 
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Fig. S12.  Expression features that mostly contribute to Happy / Angry expression categories  (i.e. are most activated in 
expressions belonging to these categories), ranked by blendshape weight. Blendshape weight can be thought of as the 
contraction of a muscle group, ranging from 0 - fully relaxed, to 1 - fully contracted. Ranking blendshapes based on activation 
permits us to determine which set of action units mostly contribute to a specific expression. However, the rank of these 
activations shouldn’t be strictly interpreted as “order of importance”. Two action units might be systematically present in a 
given expression, and one might be more pronounced than the other, but both could still contribute significantly to the 
expression . Each plot depicts the blendshape name, FACS code and Action Unit (AU) of the first 10 blendshapes (x-axis, 
stacked) ranked based on average blendshape weight value (y-axis).  
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Fig. S13.  Expression features that mostly contribute to Fear / Sad expression categories (i.e. are most activated in 
expressions belonging to these categories), ranked by blendshape weight. Each plot depicts the blendshape name, FACS 
code and Action Unit (AU) of the first 10 blendshapes (x-axis, stacked) ranked based on average blendshape weight value 
(y-axis).  
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Fig. S14.  Expression features that vary the most amongst across participants per Happy / Angry categories, ranked by 
blendshape weight variability (10 samples). Each plot depicts the blendshape name, FACS code and Action Unit (AU) of 
the first 10 blendshapes (x-axis, stacked) ranked based on average blendshape weight standard deviation (y-axis).  
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Fig. S15.  Expression features that vary the most amongst across participants per Fear / Sad categories, ranked by 
blendshape weight variability (10 samples). Each plot depicts the blendshape name, FACS code and Action Unit (AU) of 
the first 10 blendshapes (x-axis, stacked) ranked based on average blendshape weight standard deviation (y-axis).  
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Fig. S16. GA and KDEF sample expressions per emotion category used to assess emotion recognition.  
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Fig. S17. GA and KDEF spread in expression space. We compared the spread of Happy/Fear/Angry/Sad GA and KDEF 
expressions within the same quantitative space. 293 GA evolved expressions and 70  KDEF stimuli portraying 
Happy/Fear/Angry/Sad and Neutral expressions were automatically FACS coded using the OpenFace software 
(https://github.com/TadasBaltrusaitis/OpenFace), yielding scores along 17 facial expression Action Units. We submitted 
these scores to Principal Component Analysis, representing GA and KDEF expressions in a 10 dimensional space and 
accounting for 75% of variance in the data.  We then calculated the Euclidean distance in PCA space between each 
expression and its Neutral face, as a way of quantifying spread in PCA space factoring out identity differences. This involved 
calculating the distance between each GA expression and a constant Neutral GA stimulus, and the distance between each 
KDEF expression and the Neutral stimulus portrayed by the same actor. Barplots represent average distance of GA / KDEF 
stimuli relative to a Neutral expression. Greater distances of KDEF stimuli suggest greater intensity of KDEF expressions 
relative to GA expressions.   
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Fig. S18. Spread of expressions in expression space as a function of stimulus intensity. We parametrically manipulated the 
intensity of GA preferred expressions to characterize how expression intensity affects spread of expressions in PCA space. 
We scaled blendshape weights of 293 Happy/Fear/Angry and Sad Ideal expressions in 5 linearly spaced intervals: 100% 
(the original preferred expression), 80/60/40 and 20% scaled intensity intervals. We then calculated distance from Neutral, 
similarly to Fig S17. We observed that spread in PCA space linearly decreased as a function of intensity scaling percentage, 
showing that intensity affects spread of samples in expression space.   
 
 
 
blendshapes are shown at the bottom of each emotion section. Although  inspired by the FACS system, blendshapes don't 
fully map onto AUs. Some AUs aren't associated with a dedicated controller, but are expressed through a combination of 
blendshapes. This includes Lips Part (25) and Eyes Closed (43), which can be observed above  for Happy and Sad 
expressions, respectively. While we lack dedicated controllers for these AUs, we can see in the 3D renders that participants 
indeed evolved Happy expressions with lips apart (Fig S8), and sad expressions with eyes closed (Fig S11). Despite the 
overlap in AUs across studies, comparisons also reveal variability in expressions based on stimuli, methods and tested 
populations. For instance we found Mouth Stretcher (27) and Squint (44) for Happy, Lip Corner Depressor (15), Nasolabial 
Deepener (11) and Lower Lip Depressor (16) for Fear, Upper Lip Raiser (10), Nasolabial Deepener (11), and Outer Brow 
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Raiser (2) for Angry, and Nasolabial Deepener (11), Squint (44) and Lip Stretcher (20) for Sad expressions, which were not 
documented in the reviewed literature. Several participants evolved Happy expressions with open mouths, which might 
explain AU 27 (although Lips Part AU25, and Jaw Drop AU26, associated with more subtle mouth opening movements 
have been observed in the reviewed studies). Also, Lip Corner Depressor (15), which is typically reported for Sadness, was 
also highly activated in participants’ Fear expressions (and not observed in other reviewed studies), highlighting the overlap 
between these two categories. This, together with the variability that can also be observed amongst these reviewed studies, 
highlight the variability of expression beyond core emotion descriptors identified in the Ekman & Friesen classification. 
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Expression discrimination task   
 

Given the variability in preferred facial expressions, we expect that participants will also vary in their 
perceptual sensitivity to differences in facial expressions. We examined this in a different 
subsample of participants (N=62, M=40, F=22, age= 28.4+/-9) who had previously evolved 
preferred facial expressions using the GA toolkit. We created continua of expression stimuli 
between 2 negative preferred facial expressions (e.g. “Angry” to “Fear” continuum) and participants 
were tested in random pairs, with each pair member contributing one continuum of stimuli based 
on their evolved expressions. Participants were recruited through the Prolific online platform. After 
reading the information sheet and providing informed consent, participants were redirected to an 
emotion recognition task hosted on Pavlovia (https://pavlovia.org/). Stimulus presentation 
conditions were identical to the GA validation and GA expression Categorization experiments.  

Continua were created by rendering new facial images from the GA preferred expressions (e.g. 
“Angry” and “Fear”, in 7 linearly spaced steps). For example, the 1st and 7th images corresponded 
to a participant’s unaltered Fear and Angry preferred facial expressions respectively, whereas the 
central (4th) step corresponded to a 50% blend of Fear and Angry expressions. Each pair was 
tested along one of three possible emotion axes: Fear-Angry, Fear-Sad or Angry-Sad. On every 
trial each member of the pair was randomly presented with an expression drawn from either their 
own continuum (“Participant”) or the other’s continuum (“Control”), and were asked to determine 
which category it belonged to, using a two alternative forced choice (e.g. Fear or Angry?). Note that 
while the continua tested were the same within each pair, the “Participant” and “Control” labels 
were swapped between pair members (i.e. one member’s “Participant” continuum corresponded to 
the other’s “Control” continuum, and vice versa).  

We looked at participants’ responses as a function of stimulus level, separately along the 
Participant and Control continua. We hypothesized that participants would be more sensitive to 
changes in expressions when tested with stimuli drawn from their own continuum (Participant 
continuum), since changes in the stimuli would occur on expressions that are unique to the 
participant (i.e. that were their preferred expressions). Greater sensitivity to differences in 
expression would result in a greater rate of change of responses across continuum steps (steeper 
slope in the Participant continuum responses). Each pair was tested on one of the three emotion 
continua (randomly selected), and we only analyzed pairs where both members were able to 
successfully perform the task on both continua (i.e. where their responses were captured by a 
sigmoid function with y at the leftmost step <= .25, and y at rightmost step >= .75). This resulted in 
16 participants (8 pairs) on the Fear-Angry continua, 28 participants (14 pairs) on the Fear-Sad 
continua, and 18 participants (9 pairs) on the Angry-Sad continua. Each participant performed 20 
trials per step (7) x 2 continua (280 trials in total). Pooled data fits support our hypothesis of a 
steeper slope (greater sensitivity to changes in expressions) within the Participant continua. We 
tested differences in slope steepness with a Mixed Effects Probit Regression, with Continuum 
(Participant / Control) and Emotions (Fear-Angry, Fear-Sad, Angry-Sad) as factors, and emotion 
Steps (1-7) as a covariate, participant as a Cluster variable, and Responses as the dependent 
variable. Participants were added as random intercept. This analysis revealed a significant 
Continuum*Steps interaction (Wald test χ2(1)= 59.14, p<.001), indicating a steeper slope in the 
Participant relative to the Control continua by a factor of 1.14 (z = 7.7, p<.001). Analysis were 
carried out on the Jamovi statistical software (https://www.jamovi.org/), using the Generalized 
Mixed Models module of the GAMLj suite (https://gamlj.github.io/gzlmmixed.html).   
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Fig. S19: Responses pooled across all participants and all emotion combinations, fit with a cumulative 
Gaussian function. Participants were randomly paired, with each pair member contributing one continuum of 
stimuli connecting his/her GA evolved expressions of two negative emotions (e.g. stimuli shown from Fear-
Angry continua; note however that data depicts responses pooled across Fear-Angry, Fear-Sad, and Angry-
Sad emotion combinations). Each pair member then performed an emotion classification task on stimuli drawn 
from either the continuum connecting his/her GA evolved expressions (“Participant”) or the continuum 
connecting the other member’s GA evolved expressions (“Control”). Separate groups of participants were 
tested on different emotion combinations. Plots show change in participant responses (proportion of one 
emotion type response, (e.g. “Angry”) as a function of stimulus level along “Participant” and “Control” continua. 
Plots show a steeper change in classification responses when participants are presented stimuli drawn from 
a continuum connecting the two preferred facial expressions they had previously evolved.  
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     Table S1: Table showing the top 15 activated blendshapes / Action Units (AU) in averaged happy, fear, angry and sad 
GA preferred expressions, compared to expression descriptors documented in (4–9). AUs reported in these studies that are 
not listed amongst our top 15 active 
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