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Supplemental Material I: 

Supplemental Figures 

  

Figure S1. Test materials that were rejected. A: 6 image slices were excluded due to 

mismatch between T1-maps (TOP, shown in grey scale) and LGE (BOTTOM). The 

mismatched slice positions were evident by different right ventricle shapes and positions. B: 

Fourteen image slices were excluded for slice position being too basal or apical. C: One 

patient (5 image slices) was rejected for other LGE image artefacts (red arrows). 
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Figure S2. Image quality assessment on 291 pairs of VNE and LGE images test 

materials (68 patients). VNE provided significantly better image quality, assessed 

independently by five blinded operators and their average scores (all p<0.001). VNE 

provided superior imaging quality in all cases with “uninterpretable” (red clusters) or “poor” 

(blue) LGE images. 

 

 

Figure S3. Examples to demonstrate better image quality of VNE than LGE. 

Conventional LGE can be affected by inaccurate inversion time (TI) selection and breathing 

artefacts attributable to patient fatigue at the last stage of long scanning sessions. Arrows 

point to the LGE artefacts. VNE provided better and more consistent image contrast and 

quality overall. 

  



VNE for scar assessment in myocardial infarction  

Page 4 of 12 

 

Figure S4. Test materials that were excluded after multi-observer quality control. A: 11 

slices of LGE with uninterpretable image quality. B: 3 slices of LGE from a patient with MI 

and concomitant significant valvular disease and a severely thinned and dilated left ventricle. 

 

Figure S5. Myocardial scar assessment on males (green) and females (red). There was no 

significant difference between male and female patients in the assessment of myocardial 

scar size (A) and transmurality (B) using VNE.  
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Supplemental Material II:  

Extended Deep Learning Method 

This supplemental material provides the deep learning method details for reproducibility of 

the virtual native enhancement (VNE) technology for myocardial viability and infarction 

assessment in cardiovascular magnetic resonance (CMR). The VNE image generator was 

constructed based on multiple streams of U-nets, using short-axis cines and native T1-

mapping data, and trained using the conditional generative adversarial network (cGAN) 

strategy. 

 

VNE image generator 

U-Net is a popular generative convolutional neural network (CNN) architecture that 

translates an input image into corresponding output masks or images. The VNE generator in 

this development consists of two streams of 14-layer adapted U-Net blocks (Figure S6). 

One stream utilizes magnitude cine images with 25 channels representing time frames. The 

other stream processes T1-mapping data with 8 channels representing 7 inversion recovery-

weighted magnitude images and 1 reconstructed T1-map, stacked together for computing 

efficiency. The final convolutional layer of these U-Nets was removed, such that the second 

last layer of each stream outputs feature maps of 64 channels. All feature maps are 

concatenated and passed onto a further 6-layer U-Net block (Figure S7) to fuse the 

information and produce a single-channel VNE image.
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Figure S6. Configuration of the convolutional stream. The convolutional stream is used 

to extract feature maps from a native modality such as cine or T1-mapping. BN = batch 

normalization. Dropout rate was set as 0.2. 

 

 

Figure S7. Configuration of the CNN fusion block. The fusion block combines feature 

maps of multiple native modalities and derive a VNE image. 
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VNE generator training using cGAN 

cGAN consists of two models trained together in an adversarial manner: a generative model 

G and a discriminative model D. G is the VNE generator that produces the VNE images 

which resembles LGE. In this application, we use two discriminators D1, D2 in the 

discriminator models, where D1 is a classification neural network (Figure S8 A) that 

encourages VNE to look like LGE images, and D2 (Figure S8 B) encourages the low-level 

image clarity of VNE to match good quality cine images, therefore achieving higher signal to 

noise ratio of VNE. G and Ds are trained simultaneously. 

Objective 

G and Ds are trained by optimizing the value of an objective function. Suppose there is a 

native CMR input 𝑥 which is processed by G to produce the VNE image 𝐺(𝑥) that resembles 

the LGE image 𝑦 and matches good quality cine 𝑧 in image clarity. In this application, the 

objective for cGAN optimization can be expressed as an adversarial minimax game: 

 

min
𝐺

max
𝐷1,𝐷2

 (𝜆1‖𝑦 − 𝐺(𝑥)‖1 + 𝜆2‖𝑉𝐺𝐺(𝑦) − 𝑉𝐺𝐺(𝐺(𝑥))‖1 + log (1 − 𝐷1(𝐺(𝑥))) + log 𝐷1(𝑦)

+ log (1 − 𝐷2(𝐺(𝑥))) + log 𝐷2(𝑧)), 

 

where G is optimized to minimize the objective function, while D1 and D2 are optimized to 

maximize the objective function. The first term is an L1 loss that encourages the generator G 

to produce 𝐺(𝑥) (optionally including intermediate VNE signals produced at the end of cine 

and T1-map streams) that matches 𝑦 pixel by pixel. Rather than exact replication of real 

LGE signal intensities, this VNE application focuses on enhancing the native CMR signals 

and translating the native images into the presentation of LGE. To account for this, the 

second term is a perceptual loss which calculates differences between high-level image 

feature representations of 𝐺(𝑥) and 𝑦. The features, denoted by 𝑉𝐺𝐺(𝐺(𝑥)) and 𝑉𝐺𝐺(𝑦), are 

generated from the last convolutional layer of a 16-layer VGG network pre-trained on 

ImageNet. In the third and fourth terms, 𝐺(𝑥) and 𝑦 are input to the discriminator D1 which 

produces the “realness” labels 𝐷1(𝑦) and 𝐷1(𝐺(𝑥)) as 1: “real” LGE or 0: “virtual” LGE. The 

objective of training D1 is to distinguish between real and virtual LGE images, i.e., to 

maximize the two terms. In the last two terms, image patches were randomly sampled from 

images 𝐺(𝑥) and 𝑧 and input to the discriminator D2. The objective of training D2 is to 

distinguish between VNE and cine patches based on the low-level feature clarity. 

Simultaneously, G is encouraged to produce VNE that cannot be distinguished from real 



VNE for scar assessment in myocardial infarction  

Page 8 of 12 

LGE appearance by the discriminator D1, and from cine image clarity by D2, i.e., to minimize 

the third and fifth terms. The weighting parameters 𝜆1 and 𝜆2 are used to balance the 

magnitude of terms. In this application, a much lower 𝜆1 = 20 and higher 𝜆2 = 200 were set 

in order to enforce matching in perceptual features rather than pixel values. The strategy 

results in a trained generator that translates the existing native CMR signals into LGE image 

appearance with improved image clarity. 

 

To account for inevitable position differences between the native modalities and LGE used in 

training, an additional modification was added to the first L1 loss term, to shift the LGE 

image locally and search for the best match: 

min
𝑖,𝑗

‖𝑦𝑖,𝑗  − 𝐺(𝑥)‖
1

, 

where 𝑖, 𝑗 ∈ {−10, −9 … , 10} denote the shift in pixels horizontally and vertically.  

 

Training and optimization specifications 

To improve the robustness of the model, on-the-fly augmentation was employed on the 

training dataset, introducing uniformly distributed random rotation in 360 degrees, zoom in 

range 0.8 to 1.0, shear within the range of 0.2, and translation within 4 pixels around the 

manually annotated center of the LV cavity, using Python Keras packages. The 

specifications of training CNN were: input size=192x192, batch size=16, learning rate=2e-4; 

Adam was used as the optimizer. The networks were implemented in TensorFlow and 

trained using an NVIDIA GeForce RTX 3090 GPU, for 400 epochs, taking approximately 24 

hours. 
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Figure S8. Configuration of the neural network discriminators used in the conditional 

Generative Adversarial Network training approach. A: Discriminator D1 to encourage 

VNE to look like LGE; B: D2 to encourage VNE to resample cine clarity, therefore achieve 

higher signal to noise ratio. 
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Supplemental Material III: 

Generative Adversarial Network for Synthetic 

Pre-contrast Cine 

For CMR scans in clinical practice, short-axis cines are typically acquired post-contrast as 

per routine imaging protocols. We translated post-contrast cines into synthetic pre-contrast 

images for training the contrast-free VNE technology, using a dedicated conditional 

generative adversarial network (cGAN).  

 

To train the cGAN model, 328 CMR scans that had both pre-contrast cines (usually acquired 

during the pilots and planning, Figure S9 A) and post-contrast cines were identified from the 

clinical dataset from Oxford. The scans were randomly split into a training dataset of 295 

scans (315 pairs of pre- and post-contrast cines with matched slice positions), and a 

validation dataset of 33 scans (37 pairs of cines). Each cine has 25 temporal frames, which 

gives a total of 7875 images for training, and 925 images for validation. 

 

The Generator uses the same architecture as in Figure S6, with a convolutional layer added 

at the end (4x4 kernel size, 1 filter, Tanh activation) to produce the cine images. The 

Discriminator has the same architecture as in Figure S8 A. The training procedure is 

illustrated in Figure S9 B, where the Generator learned to produce synthetic pre-contrast 

cine images that have the same pixel values (trained with L1 loss) and similar image 

appearance (trained with the Discriminator). The Discriminator was trained simultaneously to 

distinguish between true and synthetic pre-contrast cine images in an adversarial manner. 

The dedicated cGAN for generating synthetic pre-contrast cine was trained and optimized in 

the same manner as the cGAN for VNE (Supplemental Material II). Illustrative examples of 

synthetic pre-contrast cine frames produced by the trained Generator are given in Figure 

S10. 
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Figure S9. Training procedure of a cGAN model to produce synthetic pre-contrast 

cine images. A: a CMR scan with paired pre- and post-contrast cines. B: cGAN training 

which encourage the Generator to produce synthetic pre-contrast cines that have similar 

appearance and pixel values with the real pre-contrast cines.  

 

 

Figure S10: Illustrative examples of synthetic pre-contrast cine frames from the test 

set presented together with the matched post-contrast and real pre-contrast cines. 
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Supplemental Material IV:  

A case example of real-world clinical use of 

the VNE prototype 

A 58-year-old man, with a previous ST elevation myocardial infarction (STEMI) treated with 

primary percutaneous coronary angiography (PCI) to the left anterior descending (LAD) 

artery, was referred for CMR to investigate recent episodes of chest pain. CMR was 

performed on a 1.5T MR system (Siemens Avanto FIT) (Figure S11 A). Cine imaging and 

native T1-mapping (ShMOLLI method) were performed before GBCA administration, with 

immediate generation of VNE images before post-contrast LGE acquisition (Figure S11 B). 

VNE images compared closely to the LGE images, showing a near-transmural myocardial 

infarction in the mid-distal anterior wall, anterior septum and apex, with little viability (Figure 

S11 C). This real-world, real-time case example displays high agreement between VNE and 

LGE, with superior image quality of VNE when compared to LGE (breathing motion artefact 

at the end of the scan session). 

 

Figure S11: A case example of real-world clinical use of the VNE prototype. A: A photo 

taken on the site. B: CMR protocol. C: The produced VNE images in comparison with LGE. 


