1 Generative process

- 1. For each sample $s, s \in \{1, 2, ..., S\}$:
 - (a) Generate signature proportions $\theta_s \sim Dir^K(\omega)$
 - (b) For each mutation motif $x_n, n \in \{1, 2, ..., N_s\}$:
 - i. Generate signature type $z_n \sim Multinomial(\theta_s)$
 - ii. Generate mutation type $x_n \sim Multinomial(\eta_{z_n})$
- S: Number of samples
- N_s : Number of mutations in sample s
- K: Number of signatures
- η_k : mutation distribution for signature k, known apriori

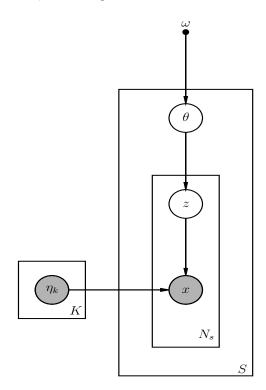


Plate diagram

2 Likelihood

$$P(x, \boldsymbol{\theta}, \boldsymbol{z} | \omega, \boldsymbol{\eta}) = \prod_{s=1}^{S} P_{Dir}(\theta_s | \omega) \left[\prod_{n=1}^{N_s} P_{Mult}(z_n | \theta_s) P_{Mult}(x_n | \eta_{z_n}) \right]$$
(1)

, where ω is the hyperparameter for θ

3 Inference

Log-likelihood is:

$$\log P(x, \boldsymbol{\theta}, \boldsymbol{z} | \omega, \boldsymbol{\eta}) = \sum_{s=1}^{S} \left[\log P_{Dir}(\theta_s | \omega) + \left(\sum_{n=1}^{N_s} \log P_{Mult}(z_n | \theta_s) + \log P_{Mult}(x_n | \eta_{z_n}) \right) \right]$$
(2)

Log-likelihood for mutations within one sample can be written as:

$$\log P = \log P(\theta_s | \omega) + \left(\sum_{n=1}^{N_s} \log P(z_n | \theta_s) + \log P(x_n | \eta_{z_n}) \right)$$
(3)

We use variational inference to estimate parameters, and use variational distributions $q(\theta, \mathbf{z} | \alpha, \boldsymbol{\pi})$ to approximate and decouple θ and \mathbf{z} . The variational distribution is specified as following:

$$q(\boldsymbol{\theta_s}, \boldsymbol{z} | \alpha_s, \boldsymbol{\pi}) = \prod_{s=1}^{S} q_{Dir}(\boldsymbol{\theta_s} | \alpha_s) (\prod_{n=1}^{N_s} q_{Mult}(z_n | \pi_n))$$
(4)

Using Jensen's inequality, we have:

$$\log P(x|\omega, \boldsymbol{\eta}) = \log \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta}) d\boldsymbol{z} d\boldsymbol{\theta}$$

$$= \log \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} \frac{P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta})}{q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi})} q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) d\boldsymbol{z} d\boldsymbol{\theta}$$

$$\geq \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} \log \frac{P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta})}{q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi})} q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) d\boldsymbol{z} d\boldsymbol{\theta}$$

$$= \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} \left[\log P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta}) - \log q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) \right] q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) d\boldsymbol{z} d\boldsymbol{\theta}$$

$$= \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} \log P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta}) q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) d\boldsymbol{z} d\boldsymbol{\theta} - \int_{\boldsymbol{\theta}} \int_{\boldsymbol{z}} \log q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi}) d\boldsymbol{z} d\boldsymbol{\theta}$$

$$= E_{q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi})} [\log P(x, \boldsymbol{\theta}, \boldsymbol{z}|\omega, \boldsymbol{\eta})] - E_{q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi})} [\log q(\boldsymbol{\theta}, \boldsymbol{z}|\alpha, \boldsymbol{\pi})]$$

The right-hand side of equation(5) is the evidence lower bound which we will refer to as $L(\alpha, \pi; \omega)$. To maximize the lower bound is equivalent to minimizing the KL divergence between the variational posterior distributions and true posterior distributions.

We use q to denote $q(\theta, z | \alpha, \pi)$ in subscripts and expand evidence lower bound by plugging in equation(2) and equation(4) as follows:

$$L(\boldsymbol{\alpha}, \boldsymbol{\pi}; \omega) = E_q[\log P(x, \boldsymbol{\theta}, \boldsymbol{z} | \omega, \boldsymbol{\eta})] - E_q[\log q(\boldsymbol{\theta}, \boldsymbol{z} | \boldsymbol{\alpha}, \boldsymbol{\pi})]$$

$$= E_q \left[\sum_{s=1}^{S} \left(\log P(\theta_s | \omega) + \sum_{n=1}^{N_s} (\log P(z_n | \theta_s) + \log P(x_n | \eta_{z_n})) \right) \right]$$

$$- E_q \left[\sum_{s=1}^{S} \left(\log q(\theta_s | \alpha_s) + \sum_{n=1}^{N_s} \log q(z_n | \pi_n) \right) \right],$$
(6)

where α_s is the parameter vector of length K in the Dirichlet distribution for θ_s , π_n is the parameter vector of length K in the multinomial distribution for z_n .

We can maximize the lower bound with respect to variational parameters within each sample. The lower bound within one sample can then be written and expanded as:

$$\begin{split} L_{s}(\alpha, \pi; \omega) &= E_{q} \left[\log P(\theta_{s} | \omega) + \sum_{n=1}^{N_{s}} (\log P(z_{n} | \theta_{s}) + \log P(x_{n} | \eta_{z_{n}})) \right] \\ &- E_{q} \left[\log q(\theta_{s} | \alpha_{s}) + \sum_{n=1}^{N_{s}} \log q(z_{n} | \pi_{n}) \right] \\ &= E_{q} \left[\log \Gamma(\sum_{k=1}^{K} \omega_{k}) - \sum_{k=1}^{K} \log \Gamma(\omega_{k}) + \sum_{k=1}^{K} (\omega_{k} - 1) \log \theta_{k, s} \right] \\ &+ E_{q} \left[\sum_{k=1}^{K} \sum_{n=1}^{N_{s}} I(z_{n} = k) \log \theta_{k, s} \right] \\ &+ E_{q} \left[\sum_{k=1}^{K} \sum_{n=1}^{N_{s}} \sum_{t=1}^{T} I(z_{n} = k) x_{n}^{t} \log \eta_{k}^{t} \right] \\ &- E_{q} \left[\log \Gamma(\sum_{k=1}^{K} \alpha_{s, k}) - \sum_{k=1}^{K} \log \Gamma(\alpha_{s, k}) + \sum_{k=1}^{K} (\alpha_{s, k} - 1) \log \theta_{s, k} \right] \\ &- E_{q} \left[\sum_{k=1}^{K} \sum_{n=1}^{N_{s}} I(z_{n} = k) \log \pi_{n, k} \right] \\ &= \left[\log \Gamma(\sum_{k=1}^{K} \omega_{k}) - \sum_{k=1}^{K} \log \Gamma(\omega_{k}) + \sum_{k=1}^{K} (\omega_{k} - 1) (\Psi(\alpha_{k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s, k''})) \right] \\ &+ \left[\sum_{k=1}^{K} \sum_{n=1}^{N_{s}} \pi_{n, k} (\Psi(\alpha_{k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s, k''})) \right] \\ &+ \left[\sum_{k=1}^{K} \sum_{n=1}^{N_{s}} \sum_{t=1}^{T} \pi_{n, k} x_{n}^{t} \log \Gamma(\alpha_{s, k}) + \sum_{k=1}^{K} (\alpha_{s, k} - 1) (\Psi(\alpha_{s, k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s, k''})) \right] \\ &- \left[\log \Gamma(\sum_{k=1}^{K} \alpha_{s, k}) - \sum_{k=1}^{K} \log \Gamma(\alpha_{s, k}) + \sum_{k=1}^{K} (\alpha_{s, k} - 1) (\Psi(\alpha_{s, k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s, k''})) \right] \\ &- \left[\sum_{t=1}^{K} \sum_{n=1}^{N_{s}} \pi_{n, k} \log \pi_{n, k} \right], \end{split}$$

where I is indication function being either 1 or 0 depending on whether the equation therein is true or not; ω_k is the k-th element in parameter ω , which is set to be symmetric as prior; $\alpha_{s,k}$ is the k-th element in α_s ; η_k^t , $t \in \{1, 2, ..., T\}$, is the t-th element in signature probability η_k corresponding to mutation type t, and x_n^t is 1 when x_n is observed as mutation t, and is 0 if otherwise.

We maximize lower bound with respect to each variational parameters. First, we isolate terms in $L_s(\boldsymbol{\alpha}, \boldsymbol{\pi}; \omega)$ containing $\pi_{n,k}$ and add Lagrange multiplier based on the constraint $1 = \sum_{k=1}^K \pi_{n,k}$, then maximize it with respect to $\pi_{n,k}$:

$$L_{s}^{[\pi_{n,k}]} = \left[\sum_{k'=1}^{K} \pi_{n,k'} (\Psi(\alpha_{s,k''}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$

$$+ \left[\sum_{k'=1}^{K} \sum_{t=1}^{T} \pi_{n,k'} x_{n}^{t} \log \eta_{k}^{t} \right]$$

$$- \left[\sum_{k'=1}^{K} \pi_{n,k'} \log \pi_{n,k'} \right]$$

$$+ \lambda_{n} \left(\sum_{k'=1}^{K} \pi_{n,k'} - 1 \right)$$
(8)

Take derivatives with respect to $\pi_{n,k}$, we have:

$$\frac{\partial L_s^{[\pi_{n,k}]}}{\partial \pi_{n,k}} = \left[(\Psi(\alpha_{s,k}) - \Psi(\sum_{k''=1}^K \alpha_{s,k''})) \right]
+ \left[\sum_{t=1}^T x_n^t \log \eta_k^t \right]
- \left[\log \pi_{n,k} + 1 \right]
+ \lambda_n$$
(9)

Setting this derivative to zero we yield:

$$\pi_{n,k} \propto \exp\left\{\Psi(\alpha_{s,k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''}) + \sum_{t=1}^{T} x_n^t \log \eta_k^t\right\}$$
 (10)

We can further simplify equation (10) since x_n is observed:

$$\pi_{n,k}^{t} \propto \exp \left\{ \Psi(\alpha_{s,k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''}) + \log \eta_{k}^{t} \right\}$$

$$= \eta_{k}^{t} \exp \left\{ \Psi(\alpha_{s,k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''}) \right\}$$
(11)

Similarly we isolate terms containing $\alpha_{s,k}$ in the lower bound and maximize it with respect to $\alpha_{s,k}$:

$$L_{s}^{[\alpha_{s,k}]} = \left[\sum_{k'=1}^{K} (\omega_{k'} - 1)(\Psi(\alpha_{s,k'}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$

$$+ \left[\sum_{k'=1}^{K} \sum_{n=1}^{N_{s}} \pi_{n,k'}(\Psi(\alpha_{s,k'}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$

$$- \left[\log \Gamma(\sum_{k''=1}^{K} \alpha_{s,k''}) - \sum_{k'=1}^{K} \log \Gamma(\alpha_{s,k'}) + \sum_{k'=1}^{K} (\alpha_{s,k'} - 1)(\Psi(\alpha_{s,k'}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$

$$(12)$$

Take derivatives with respect to $\alpha_{s,k}$ we yiled:

$$\begin{split} \frac{\partial L_{s}^{[\alpha_{s,k}]}}{\partial \alpha_{s,k}} &= \left[(\omega_{k} - 1)\Psi'(\alpha_{s,k}) - (\sum_{k=1}^{K} \omega_{k} - K)\Psi'(\sum_{k''=1}^{K} \alpha_{s,k''})) \right] \\ &+ \left[\sum_{n=1}^{N_{s}} \pi_{n,k}(\Psi'(\alpha_{s,k}) - K\Psi'(\sum_{k''=1}^{K} \alpha_{s,k''})) \right] \\ &- \left[\Psi(\sum_{k''=1}^{K} \alpha_{s,k''}) - \Psi(\alpha_{s,k}) + (\Psi(\alpha_{s,k}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) + (\alpha_{s,k} - 1)\Psi'(\alpha_{s,k}) - (\sum_{k'=1}^{K} \alpha_{s,k'} - K)\Psi'(\sum_{k''=1}^{K} \alpha_{s,k''}) \right] \\ &= (\omega_{k} + \sum_{n=1}^{N_{s}} \pi_{n,k} - \alpha_{s,k})\Psi'(\alpha_{s,k}) + \sum_{k'=1}^{K} (-\omega_{k'} - \sum_{n=1}^{N_{s}} \pi_{n,k'} + \alpha_{s,k'})\Psi'(\sum_{k''=1}^{K} \alpha_{s,k''}) \\ &= (\omega_{k} + \sum_{n=1}^{N_{s}} \pi_{n,k} - \alpha_{s,k})\Psi'(\alpha_{s,k}) - \sum_{k'=1}^{K} (\omega_{k'} + \sum_{n=1}^{N_{s}} \pi_{n,k'} - \alpha_{s,k'})\Psi'(\sum_{k''=1}^{K} \alpha_{s,k''}) \end{split}$$

$$(13)$$

Setting the equation above to be zero we have one solution as:

$$\alpha_{s,k} = \omega_k + \sum_{n=1}^{N_s} \pi_{n,k} \tag{14}$$

To update posterior parameter ω , we isolate terms containing ω from the lower bound cross all samples and take derivatives in the following two equations:

$$L^{[\omega_k]} = \sum_{s=1}^{S} \left[\log \Gamma(\sum_{k''=1}^{K} \omega_{k''}) - \sum_{k'=1}^{K} \log \Gamma(\omega_{k'}) + \sum_{k'=1}^{K} (\omega_{k'} - 1)(\Psi(\alpha_{k'}) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$
(15)

$$\frac{\partial L^{[\omega_k]}}{\partial \omega_k} = \sum_{s=1}^{S} \left[\Psi(\sum_{k''=1}^{K} \omega_{k'}) - \Psi(\omega_k) + (\Psi(\alpha_k) - \Psi(\sum_{k''=1}^{K} \alpha_{s,k''})) \right]$$
(16)

To approximate the estimation, we use Newton-Raphson algorithm by using the second derivatives (Hessian matrix) of the lower bound with respect to ω_k . Elements in Hessian matrix is as follows:

$$\frac{\partial L^{[\omega_k]}}{\partial \omega_k \omega_j} = \sum_{s=1}^S \left[\Psi'(\sum_{k''=1}^K \omega_{k''}) \right]
= S\Psi'(\sum_{k''=1}^K \omega_{k''}), j \neq k, j \in \{1, 2, ..., K\}
\frac{\partial L^{[\omega_k]}}{\partial \omega_k \partial \omega_j} = S\Psi'(\sum_{k''=1}^K \omega_{k''}) - S\Psi'(\omega_k), j = k$$
(17)

We use H_{ω} and G_{ω} to denote second derivatives and first derivatives of lower bound with respect to ω respectively. Using Newton-Raphson algorithm to approximate posterior ω is in the following:

$$\omega_{new} = \omega_{old} - H_{\omega_{old}}^{-1} G_{\omega_{old}}, \tag{18}$$

Iterate equation (18) until convergence.