1 Generative process

1. For each sample s, s € {1,2,...,S}:
(a) Generate signature proportions 65 ~ Dir (w)
(b) For each mutation motif z,, n € {1,2,..., Ns}:
i. Generate signature type z, ~ Multinomial ()
ii. Generate mutation type z, ~ Multinomial(n,, )
S: Number of samples
Ng: Number of mutations in sample s
K: Number of signatures

nr: mutation distribution for signature k, known apriori
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2 Likelihood
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, where w is the hyperparameter for 6



3 Inference

Log-likelihood is:
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Log-likelihood for mutations within one sample can be written as:
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We use variational inference to estimate parameters, and use variational distributions ¢(6, z|a, 7) to approximate
and decouple 6 and z. The variational distribution is specified as following;:
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Using Jensen’s inequality, we have:
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The right-hand side of equation(5) is the evidence lower bound which we will refer to as L(a, 7w;w). To maximize

the lower bound is equivalent to minimizing the KL divergence between the variational posterior distributions and
true posterior distributions.

We use ¢ to denote ¢(0, z|a, ) in subscripts and expand evidence lower bound by plugging in equation(2) and
equation(4) as follows:
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where «; is the parameter vector of length K in the Dirichlet distribution for 6, m, is the parameter vector of
length K in the multinomial distribution for z,.



We can maximize the lower bound with respect to variational parameters within each sample. The lower bound
within one sample can then be written and expanded as:
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where [ is indication function being either 1 or 0 depending on whether the equation therein is true or not; wy
is the k-th element in parameter w, which is set to be symmetric as prior; oy is the k-th element in o; 77,2,
t € {1,2,...,T}, is the t-th element in signature probability 7 corresponding to mutation type ¢, and x!, is 1 when
T, is observed as mutation ¢, and is 0 if otherwise.

We maximize lower bound with respect to each variational parameters. First, we isolate terms in Lg(a, m;w)
containing 7, j and add Lagrange multiplier based on the constraint 1 = Zle Tk, then maximize it with respect
to mp
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Take derivatives with respect to m, j, we have:
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Setting this derivative to zero we yield:
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We can further simplify equation(10) since x,, is observed:
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Similarly we isolate terms containing o j in the lower bound and maximize it with respect to o y:
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Take derivatives with respect to oy we yiled:
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Setting the equation above to be zero we have one solution as:
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To update posterior parameter w, we isolate terms containing w from the lower bound cross all samples and take
derivatives in the following two equations:
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To approximate the estimation, we use Newton-Raphson algorithm by using the second derivatives (Hessian
matrix) of the lower bound with respect to wy. Elements in Hessian matrix is as follows:
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We use H,, and G, to denote second derivatives and first derivatives of lower bound with respect to w respectively.
Using Newton-Raphson algorithm to approximate posterior w is in the following;:
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Wnew = Wold — Hwoldeold? (18)

Iterate equation(18) until convergence.



