

Supplementary Figure S1. Correlations between tumoral *ITCH* RNA expression and PD-L1 protein levels, CD8⁺ T-cell infiltration, or patient survival.

A, PD-L1 protein levels compared by splitting 7,194 patient-derived tumors with matched RNA-seq data and PD-L1 protein levels (measured by reverse-phase protein array from 32 TCGA cancer types) into top versus bottom 50% of *ITCH* RNA expression levels. P value as indicated, Student *t* test.

B, Spearman's correlation score (Rho) between intra-tumoral *ITCH* RNA levels and PD-L1 protein levels in 7,194 tumors of 32 TCGA cancer types. Rho = -0.051, negative correlation. P = 1.429e-05.

C, Spearman's correlation score (Rho) between intra-tumoral *ITCH* RNA levels and CD8+ T-cell infiltration levels in TCGA-SKCM dataset (n = 471) calculated by three different algorithms (CIBERSORT-ABS, EPIC and TIMER). Rho > 0, positive correlation. P values, as indicated.

D, Kaplan-Meier survival curve of stage-matched patients from TCGA-SKCM dataset with high (top 10%) versus low (bottom 10%) intra-tumoral *ITCH* expression (early stage: stage 0, I, II combined, n = 231; left panel) or high (top 15%) versus low (bottom 15%) intra-tumoral *ITCH* expression (late stage: stage III, IV combined, n = 193; right panel). Time of diagnosis as starting time for follow-up. P values, log-rank test.

E, Kaplan-Meier survival curve of patients from TCGA renal clear cell carcinoma dataset with high (top 50%) versus low (bottom 50%) intra-tumoral *ITCH* expression. Time of diagnosis as starting time for follow-up. P values, log-rank test. HR, hazard ratio.

Supplementary Figure S2. Physical and functional interactions between ITCH and PDL1/L2.

A, Cell-surface levels of PD-L2 in M238R1 (left) and MDA-MB-231 (right) cells stably expressing control shRNA (shCtr) or ITCH-targeting shRNAs (shITCH-1, shITCH-2), as measured by cell-surface staining and FACS analysis (PD-L2 is not detectable in H358 cells). MFI, mean fluorescence intensity. Mean ± SEMs (n = 3).

B, Cell-surface levels of PD-L2 in M238 R1 cells stably expressing empty vector (Vec) or over-expressing (OE) ITCH, as measured by cell-surface staining and FACS analysis. Mean ± SEMs (n = 3).

C, Cell-surface levels of PD-L1 in M238R1, H358, and MDA-MB-231 stably expressing control shRNA (shCtr) or ITCH-targeting shRNAs (shITCH-1, shITCH-2) and M238R1 stably expressing empty vector (Vec) or OE ITCH, as measured by immunofluorescence staining. Scale bar = 20 μm.

D, PD-L1 internalization in M238 R1 cells stably expressing empty vector (Vec) or OE ITCH, as measured by FACS analysis. Mean ± SEMs (n = 3).

E, Confocal microscopic imaging of M238 R1 cells stably expressing empty vector (Vec) or OE ITCH before (0 min) and 30 minutes after initiating surface PD-L1 internalization. Small white arrows, co-localization of PD-L1 and the lysosome marker, LAMP1. Scale bar = 10 μm.

F, M238 R1 cells stably expressing Vec or OE ITCH were treated with indicated concentrations of chloroquine (CQ) (left) or MG-132 (right) for 16 hours, followed by measurement of cell-surface levels of PD-L1 by cell-surface staining and FACS analysis. Mean ± SEMs (n = 3).

G, M238 R1 cells stably expressing Vec or ITCH were treated with indicated concentrations of chloroquine (CQ) for 16 hours, followed by measurement of total PD-L1 level by Western blots (WBs).

H, Real-time PCR of *PD-L1* mRNA levels in M238 R1 or H358 stably expressing control and ITCH-shRNAs. Mean ± SEMs (n = 3).

I, HEK 293T cells expressing PD-L2-FLAG, with or without ITCH co-transfection, were pre-treated with or without MG-132 (20 μ M) for 4 hours followed by anti-FLAG IP and detection of UB by WBs.

J, HEK 293T cells expressing PD-L1-FLAG, with or without ITCH co-transfection, were subjected to anti-FLAG immunoprecipitation and mass spectrometry analysis. Quantification of the indicated ubiquitination sites on PD-L1 is shown (log2).

K, Tandem mass spectra of the ubiquitinated PD-L1-K46 (left) or PD-L1-K162 (right) peptides.

L, As in J, except quantification of K63 ubiquitination on ubiquitin.

M, Tandem mass spectrum of the ubiquitinated ubiquitin-K63 peptide.

N, Jurkat cell-surface PD-1 expression measured by FACS analysis after indicated treatments or co-culture with M238R1-NYESO/A2 cells.

P value, Student's *t* test, ns, not significant. * p < 0.05. ** p < 0.01, *** p < 0.001.

Supplementary Figure S3. Gating strategy for FACS analysis.

An example shown following tumor dissociation, with percentages at each step of gating the parental populations.

Supplementary Figure S4. Impact of *ltch* knockdown on *in vitro* growth of murine melanoma cell lines.

A, Growth curves of cultured YUMM1.7ER and NILER1-4 cell lines stably expressing control or ITCH-shRNAs (left and middle). Mean ± SEMs (n = 3). WBs of YUMMER1.7 cell lines stably expressing control or ITCH-shRNAs (right).
B, Clonogenic growth (10 days) of YUMM1.7ER and NILER1-4 cell lines stably expressing control and ITCH-shRNAs off or on trametinib (Tram) treatment at indicated concentrations.

Supplementary Figure S5. Effects of ITCH or PD-L1 expression on immune infiltration or immune cell gene expression.

A, Tumor growth curves of shCONTROL (shCtr) and ITCH-knockdown (shITCH-3) YUMM1.7ER melanoma under no treatment or on trametinib (Tram, 1 mg/kg/d) treatment in C57BL/6 mice. shCONTROL and ITCH-knockdown tumors (n = 3) after 14 days of trametinib treatment were dissociated into single cells followed by CyTOF and scRNA-seq analysis. Mean \pm SEMs (n = 8 for NT groups and n = 10 for Tram groups).

B, Fraction of CD4⁺ or CD8⁺ cells in total live cells from shCONTROL and ITCH-knockdown YUMM1.7ER tumors. Mean \pm SEMs (n = 3). P value, Student's *t* test, ** p < 0.01, ns: not significant.

C, Heatmap showing scaled mean expression levels of indicated markers in different cell clusters of CD4⁺ T cells (YUMM1.7ER).

D, Heatmap showing scaled mean expression levels of indicated markers in different cell clusters of CD8⁺ T cells (YUMM1.7ER).

E, Tumor growth curves of shCONTROL (shCtr) and ITCH-knockdown (shITCH mix) NILER1-4 melanoma under trametinib (Tram, 3 mg/kg/d) treatment in C57BL/6 mice. shCONTROL and ITCH-knockdown tumors (n = 4) after 5 days of trametinib treatment were dissociated into single cells followed by CyTOF and scRNA-seq analysis. Mean \pm SEMs (n = 8 for NT groups and n = 10 for Tram groups).

F, Heatmap showing scaled mean expression levels of indicated markers in different cell clusters of CD4⁺ T cells (NILER1-4).

G, Heatmap showing scaled mean expression levels of indicated markers in different cell clusters of CD8⁺ T cells (NILER1-4).

Supplementary Figure S6. Impact of tumor cell-intrinsic ITCH deficiency on immune cells and gene expression.

A, UMAP of intra-tumoral CD45⁺ single cells showing expression levels of indicated cell lineage markers (shCONTROL and ITCH-knockdown NILER1-4 tumors, both on trametinib treatment).

B, UMAP of intra-tumoral CD45⁺ single cells (in **A**) with indicated cell types denoted by distinct colors. NK (Natural killer cells), TAM (Tumor associated macrophages), DC (Dendritic cells), TAN (Tumor associated neutrophils).

C, Fractions of indicated cell types in total CD45⁺ cells from NILER1-4 shCONTROL and ITCH-knockdown tumors, both on trametinib treatment.

D, Heatmap showing scaled mean expression levels of indicated genes in indicated T cell clusters from shCONTROL and ITCH-knockdown NILER1-4 tumors, both on trametinib treatment.

E, Heatmap showing scaled mean expression levels of indicated genes in indicated TAM cell clusters from shCONTROL and ITCH-knockdown NILER1-4 tumors, both on trametinib treatment.

F, UMAP of intratumoral TAMs (n = 886) analyzed by scRNA-seq (shCONTROL and ITCH-knockdown YUMM1.7ER tumors, both on trametinib treatment). Different cell clusters denoted by distinct colors.

G, Heatmap showing expression levels of differentially expressed genes (rows) among different TAM subpopulations (columns) in **F**. Representative genes of each cluster are highlighted.

H, Fractions of each TAM subpopulation in total CD45⁺ cells from shCONTROL and ITCH-knockdown YUMM1.7ER tumors, both on trametinib treatment.

I, The ratio of M2-like TAMs to M1-like TAMs in shCONTROL and ITCH-knockdown YUMM1.7ER tumors, both on trametinib treatment.

J, Heatmap showing scaled mean expression levels of indicated genes in indicated TAM cell clusters from shCONTROL and ITCH-knockdown YUMM1.7ER tumors, both on trametinib treatment.

Supplementary Figure S7. CyTOF analysis of CD45⁺ and CD4⁺ populations in YUMM1.7ER control and ITCH overexpression tumors.

A, Clonogenic growth (7 days) of YUMM1.7ER cell lines stably expressing empty vector (Vec) and over-expressing (OE) ITCH, off or on trametinib (Tram) treatment at indicated concentrations.

B, Tumor growth curves of Vec and ITCH OE YUMM1.7ER tumors on trametinib (Tram, 0.45 mg/kg/d) treatment in C57BL/6 mice. Vec and ITCH OE tumors (n = 4 for each condition) before and after 7 days of trametinib treatment were dissociated into single cells and analyzed by CyTOF. Mean \pm SEMs (n = 11-12).

C, Heatmap showing scaled mean expression levels of indicated protein markers in different cell clusters of CD45⁺ cells (YUMM1.7ER, NT and Tram).

D, t-SNE map of intra-tumoral CD4⁺ cells from Vec and ITCH-OE YUMM1.7ER tumors on NT and trametinib treatment, as analyzed by CyTOF. Inferred cell types denoted by distinct colors.

E, Fractions of indicated cell types in CD4⁺ T cells from Vec and ITCH-OE YUMM1.7ER tumors on NT or trametinib treatment. Mean \pm SEMs (n = 4). P value, Student's *t* test. * p < 0.05.

F, Heatmap showing scaled mean expression levels of indicated protein markers in different cell clusters of CD4⁺ T cells (YUMM1.7ER, NT and Tram).