1 Supplementary Material

2 Suppl. Table S1, S2 and S3 (see excel file)

shLuc	FW	AAGCTGTTTCTGAGGAGCCTAGTGAAGCCACAGATGTAG
		GCTCCTCAGAAACAGCTCTGCC
	RW	GAGCTGTTTCTGAGGAGCCTACATCTGTGGCTTCACTAGG
		CTCCTCAGAAACAGCTTCGCT
MTOR	FW	CCAATGTGCAGGATCTTCCCACTAGTGAAGCCACAGATGTA
shRNA 1		GTGGGAAGATCCTGCACATTGATGCC
	DW	
	IX VV	
MTOR	FW	CTAGCIGIGGAATCIGACGGCTTAGIGAAGCCACAGATGIA
shRNA 2		AGCCGTCAGATTCCACAGCTAATGCC
	RW	TTAGCTGTGGAATCTGACGGCTTACATCTGTGGCTTCACTAA
		GCCGTCAGATTCCACAGCTAGCGCT
RICTOR	FW	ACCGTATACTCCTTCGCAATAGTGAAGCCACAGATGTA
shRNA		TTGCGAAGGAGTATACGGCTGCC
10		
	RW	GCCGTATACTCCTTCGCAATACATCTGTGGCTTCACTAT
		TGCGAAGGAGTATACGGTCGCT
RPTOR	FW	ACTCTTGCTCAGATGCCTTTAGTGAAGCCACAGATGTAA
shRNA 2		AGGCATCTGAGCAAGAGGTGCC
	RW	CCTCTTGCTCAGATGCCTTTACATCTGTGGCTTCACTAAA
		GGCATCTGAGCAAGAGTCGCT
RPTOR	FW	ACAGGTGCTGTTAAGCCAATAGTGAAGCCACAGATGTAT
shRNA 4		TGGCTTAACAGCACCTGCTGCC
	RW	GCAGGTGCTGTTAAGCCAATACATCTGTGGCTTCACTATT
		GGCTTAACAGCACCTGTCGCT

5 Suppl. Table 4. Sequences of the oligonucleotides

6 FW forwards, RW reverse

9 Supplementary Figure S1. Graph shows relative expression to ACTB of MTOR, RICTOR

- 10 and *RPTOR* by qRT-PCR after shRNA-mediated knockdown. Data represent the mean ±
- 11 SEM of three independent experiments. Statistical analysis by Student t test (*, P < 0.05).
- 12

14 Supplementary Figure S2. Titration curves for human B-ALL cells cultured with 15 increasing concentrations of the specific PI3K inhibitors (A) alpelisib and (B) idelalisib and 16 the AKT inhibitor (C) ipatasertib. Viable cells were counted after 4 days by trypan blue 17 exclusion assay. Data are represented as mean \pm SEM of three independent experiments.

19

22 Supplementary Figure S3. Half inhibitory growth concentrations (IC50) of different

23 small molecule inhibitors targeting the PI3K/AKT/MTOR signaling axis tested in E2A-

24 **PBX1⁺ and E2A-PBX1⁻ cell lines.** Cells were treated for 4 days with the specific inhibitors.

25 Data represent IC50 calculated by GraphPad Prism software after three independent

- 26 experiments. MTORi: MTOR inhibitor; AKTi: AKT inhibitor; PI3Ki: PI3K inhibitor
- 27

28

29 Supplementary Figure S4. Titration curves for mouse E2A/PBX1⁺ leukemia cells

30 cultured with increasing concentrations of (A) capivasertib, (B) everolimus and (C) the

31 combination of torin-1 and capivasertib. Leukemia cells were cultured in methylcellulose and

32 colonies were counted after 3-5 days. Data are represented as mean \pm SEM of three

33 independent experiments. P values were calculated using non-linear regression analysis and

34 curves were compared with the sum-of-squares F test. ns: not significant, *** p<0.001. CFU,

35 colony forming units.

36

38 39

40 Supplementary Figure S5. Features of mice transplanted with murine E2A-

41 **PBX1⁺/PreBCR⁺ leukemias and treated with torin-1.** Recipient mice were transplanted

42 with 1.000 murine E2A-PBX1⁺/PreBCR⁺ leukemia cells after sublethal irradiation. *In vivo*

- 43 treatment was performed with vehicle or torin-1(20 mg/kg b.w./d) starting at day 8 after
- 44 transplantation. Each cohort contains 5 mice. Following characteristics were compared: (A)
- 45 white blood cells, WBC; (B) platelets, PLT; (C) hemoglobin, HGB; (D) spleen weight; (E)
- 46 liver weight and (F) lymph nodes weight. Statistical analysis was performed by two-sided

47 Mann-Whitney U test. Scatter dot plots represent mean ± SEM. * p<0.05; **, p<0.01

50 Supplementary Figure S6. Tissue Infiltration of murine E2A-PBX1⁺/PreBCR⁺ leukemia

51 cells after transplantation in recipient mice and *in vivo* treatment with torin-1. GFP+

52 murine E2A-PBX1⁺/PreBCR⁺ leukemia cells were assessed in following tissues and organs by

- 53 flow cytometry: (A) blood; (B) bone marrow; (C) lymph nodes; (D) spleen; (E) brain and (F)
- 54 spinal cord. Each cohort contains 5 mice. Statistical analysis was performed by two-sided
- 55 Mann-Whitney U test. Scatter dot plots represent mean \pm SEM. **, p<0.01
- 56

Supplementary Figure S7. Combinational treatment with capivasertib and torin-1. 60

61 Upper panels, titration curves are shown for (A) 697, (B) REH and (C) SEM cells. Statistical

analyses were performed using non-linear regression analysis and curves were compared with 62

the sum-of-squares F test. ns: not significant, *, p<0.05, ** p<0.01, *** p<0.001. Data 63

represent mean \pm SEM of three independent experiments. *Lower panels*. Heatmap 64

65 representation of Bliss interaction index for 697, REH and SEM cells treated with the MTOR

inhibitor torin-1 and the AKT inhibitor capivasertib. Data represent the mean of three 66

independent experiments. 67

- 71 phosphorylation status of MTOR and AKT on leukemia cells from bone marrow. Effects
- 72 of torin-1 on (A) Ser2448 p-MTOR and (B) Ser473 p-AKT phosphorylation status were
- assessed by phosphoflow in mouse E2A-PBX1⁺ leukemia cells infiltrating bone marrow after
- 74 in vivo treatment with vehicle or torin 1 (20 mg/kg b.w. per day). GFP+ cells expressing E2A-
- 75 PBX1⁺ were gated for the analysis. One representative histogram is shown. Change of
- 76 median fluorescence intensity (MFI) of cells treated with inhibitor was compared to vehicle as
- 77 well as unstained cells as controls. Each dot represents a measurement of three independent
- 78 experiments from two treated mice per cohort. Statistical analysis was performed by two-
- 79 sided Mann-Whitney U Test. *** p<0.001.
- 80

81

82 Supplementary Figure S9. Oxygen metabolism in RCH-ACV cells treated with torin-1.

(A-C) Time course of mitochondrial respiration rates of RCH-ACV cells pretreated with 10
nM torin-1. Samples "0" were treated immediately before starting metabolic measurements in

85 the Seahorse XFe96 Analyzer. Data represent mean \pm SD of at least three replicates in one

86 experiment. (A) Basal mitochondrial respiration. (B) ATP-linked respiration calculated after

- serial injections of 2 μ M oligomycin, 1.25 μ M FCCP and 1 μ M Rotenone/antimycin A. (C)
- $88 \qquad Gly colysis rate calculated after serial injection of 10 \ \text{mM} \ glucose, 1 \ \mu\text{M} \ oligomycin \ and \ 50$
- 89 mM 2-deoxy-glucose. Cells were seeded in glucose-free medium for this assay. (D)
- 90 Representative Mito Fuel Flex Assay with RCH-ACV cells following torin-1 pretreatment to
- 91 determine glucose dependency. Dashed lines show injection times of the labeled inhibitors.
- 92 The circled measuring points were used to calculate the dependency. Data represent mean \pm
- 93 SD. OCR: Oxygen Consumption Rate; ECAR: Extracellular Acidification Rate; ETO:
- 94 etomoxir
- 95