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SUPPLEMENTAL METHODS 
  



Study Populations, Phenotyping, Genotyping, and Quality Control 
HERMES Consortium: Details of the HERMES Consortium have been previously described1. 
Briefly, the HERMES Consortium included participants of European ancestry from 26 separate 
cohorts or population-based studies including the UK Biobank. Heart failure was defined based 
on study-specific criteria, including diagnosis codes, discharge codes, death certificate codes, 
and expert clinician evaluation. Genotyping was performed using study-specific high density 
genotyping arrays, and quality controls included sample/variant call rate, Hardy-Weinberg 
equilibrium, and minor allele frequency, with additional study-specific quality controls. 
Imputation was performed to a variety of imputation panels including 1000 Genomes and 
Haplotype Reference Consortium. Genome wide association studies were adjusted for 
covariates including age, sex, and genetic principal components where available. Summary level 
quality control was performed using EasyQC, prior to fixed-effects meta-analysis using METAL2. 
 
Penn Medicine BioBank: The Penn Medicine Biobank is a longitudinal genomics and precision 
medicine study in which participants consent to linkage of genomic information and 
biospecimens to the electronic health record. All patients receiving care at Penn Medicine 
(Philadelphia, PA) are eligible for enrollment, and more than 65,000 participants are currently 
enrolled. Heart failure was defined based on diagnosis codes documented within the electronic 
health record. International Classification of Diseases version 9/10 codes were mapped to 
pheCodes3, and individuals with codes 425 or 428 (including subcodes) were considered heart 
failure cases. Individuals without these codes were considered controls. Genotyping was 
performed using the Infinium Global Screening Array (GSA) (Illumina, Inc. San Diego, CA), and 
the current analysis included 43,623 participants with available genotype data. Pre-imputation 
quality control was performed using PLINK4,5 to exclude low marker call rate (<95%), low 
sample call rate (<90%), or sex discordance between genotype and reported sex. Imputation to 
the TOPMed reference panel (97,256 samples and 308,107,085 variants) was performed using 
the TOPMed Imputation Server, with phasing performed using EAGLE and imputation 
performed using MINIMAC46. Identity-by-descent with a Pi-hat threshold of 0.25 to account for 
relatives up-to first cousins was performed on the imputed genotype data, and one sample per 
related pair was removed. Ancestry-specific GWAS (European and African Ancestry) were 
performed using PLINK4,5 among variants meeting the following quality thresholds: r2 > 0.3; 
minor allele frequency > 0.001 or minor allele count > 20, adjusted for age, sex, and 5 ancestry-
specific genetic principal components. LiftOver was used to map genome positions from hg38 
to hg19/GRCh377. 
 
eMERGE: The genome-wide association study (GWAS) was conducted using the electronic 
Medical Records and Genomics (eMERGE) Network dataset. The case/control cohort was 
comprised of individuals 18 years or older from the following non-pediatric eMERGE sites: 
Marshfield Clinic, Vanderbilt University Medical Center, Kaiser Permanente/University of 
Washington Medical Center, Columbia University, Mayo Clinic, Northwestern University, 
Geisinger Health System, Harvard (Partners Health Care), Icahn School of Medicine at Mount 
Sinai, and Meharry Medical College. Cases were defined as having an occurrence of one or 
more of the following International Classification of Diseases (ICD-9 or ICD-10) codes: I11.0, 
I13.0, I13.2, I25.5, I42.0, I42.5, I42.8, I42.9, I50.0, I50.1, I50.9, 425.4, 428.0, 428.1, 428.9, 



402.01, 402.11, 402.91, 404.01, 404.11, 404.91, 404.03, 404.13, 404.93, 425.4, I50.0, I50.1, 
I50.2, I50.4, I50.9, or/and I50.82. Controls were defined as any individuals not having any of the 
aforementioned ICD codes. We conducted ancestry-specific analyses, creating separate 
case/control cohorts for individuals self-identifying as “Black” and “White” in the “Race” 
variable in the eMERGE dataset. There were a total of 7,208 controls and 2,607 cases in the 
African cohort (total = 9,815 individuals), and 48,714 controls and 14,065 cases in the European 
cohort (total = 62,779 individuals).   
 
Genotyping and quality control of eMERGE has been previously reported8. Imputed genotype 
data with a minor allele frequency threshold of 0.01 to conduct the GWAS. Plink-v2.04,5 was 
used for all analysis. For the quality control of the genetic data we checked for robust sex 
concordance, a marker call rate of 0.01, and a sample call rate of 0.01. Related individuals were 
dropped using a pihat > 0.25 threshold. A Hardy-Weinberg equilibrium p-value threshold of 1e-
9 was used. This produced a total of 13,275,706 SNPs tested in the African cohort and 
7,654,263 SNPs tested in the European cohort. Logistic regression was run using covariates sex, 
age and the first 5 principal components (PCs). PCs were calculated from the ancestry-specific 
cohorts.  
 
Mount Sinai BioMe: BioMe is an electronic health record-linked clinical-care biobank which 
includes more than 45,000 participants of diverse ancestry. Participants are recruited from the 
Mount Sinai healthcare system (New York, NY). The current analysis included individuals of 
European or African self-reported race/ancestry to avoid overlapping the Global Biobank Meta-
analysis Initiative dataset which included Hispanic individuals from BioMe. Individuals with 
heart failure were identified using electronic health record diagnosis codes. Individuals were 
considered heart failure cases if they had evidence of the following codes: ICD10: I11.0, I13.0, 
I13.2, I25.5, I42.0, I42.5, I42.8, I42.9, I50.0, I50.1, I50.9; ICD9: 4254, 4280, 4281, 4289. 
Genotyping was performed using the Global Screening Array (Illumina, Inc. San Diego, CA). 
Genotype quality controls included checks for sex discordance, sample duplicates, low call rate 
(<95%), Hardy-Weinberg Equilibrium (p < 1x10-5Individuals with closer than second-degree 
relatedness were removed using KING9. Genotypes were imputed using the TOPMed 
imputation server (https://imputation.biodatacatalyst.nhlbi.nih.gov). Ancestry-specific GWAS 
were performed using PLINK version 2 among well-imputed variants with minor allele 
frequency > 0.01, adjusting for age, sex and 10 genetic principal components4,5. LiftOver was 
used to map genome positions from hg38 to hg197. 
 
Geisinger DiscovEHR: DiscovEHR is a collaboration between Geisinger and the Regeneron 
Genetics Center. The population is derived from patients who have previously consented to 
participate in the Geisinger MyCode Community Health Initiative. MyCode is an IRB-approved 
research study, and all participants have provided informed consent for broad use of samples 
for research. Participants are broadly recruited to MyCode from both primary and specialty 
care clinics across the Geisinger system. Exome sequencing and genome-wide genotyping of 
samples are performed by Regeneron, and genomic data are linked with Geisinger’s long-
standing electronic health record, comprising both inpatient and outpatient records. This study 
included data from 82,608 patients who were genotyped on the Illumina Global Screening Array 

https://imputation.biodatacatalyst.nhlbi.nih.gov/


chip out of 144,204 total patients in the cohort. Heart failure status was assigned based on ICD-
10 codes. Details of genotyping and quality control have been previously reported10. The 
DiscovEHR participants included in the current analysis were distinct from participants included 
in the previously-published HERMES GWAS. 
 
Global Biobank Meta-analysis Initiative: The Global Biobank Meta-analysis Initiative (GBMI) is a 
network of 19 biobanks representing >2 million consenting participants, with linkage of 
electronic health record and genotype data. Details of phenotyping, genotyping, quality control, 
and GWAS in GBMI have been reported previously11. To avoid overlap with other datasets 
included elsewhere in the current meta-analysis, we included two GWAS from GBMI (admixed-
American and East Asian ancestry studies). Individuals were considered heart failure cases 
based on pheCode or ICD codes recorded within electronic health records, using study-specific 
definitions adapted from a GBMI-recommended definition. Genotyping was performed 
individually by biobank using genotype arrays. Following standard sample- and variant-level 
quality control genotypes were imputed into reference panels including 1000 Genomes, 
Haplotype Reference Consortium, or TOPMed. Ancestry-specific GWAS were performed by 
study, with suggested covariates including age, age2, sex, age*sex, 20 first principal 
components, and biobank specific covariates including genotyping batches and recruiting 
centers. GWAS were recommended to be performed using SAIGE or REGENIE12,13. LiftOver was 
used to map genome positions from hg38 to hg197. 
 
FinnGen: FinnGen is a public-private partnership aiming to collect genome and health data on 
500,000 Finnish biobank participants. The study consists of ~200,000 legacy samples primarily 
collected by the National Institute for Health and Welfare, and an additional ~300,000 samples 
to be prospectively collected from hospital biobanks. Participating individuals consent to 
linkage of genome-wide genotyping with nationwide registers of longitudinal health data. 
Individuals with heart failure were identified using inpatient, outpatient, insurance 
reimbursement, and medication records, based on the “I9_HEARTFAIL_ALLCAUSE” phenotype 
(https://risteys.finngen.fi/phenocode/I9_HEARTFAIL_ALLCAUSE). Details of genotyping and 
quality control are available from https://finngen.gitbook.io/documentation/. Briefly, 
individuals underwent genotyping using Illumina or Affymetrix chip arrays. Individuals with 
ambiguous gender, high genotype missingness (>5%), excess heterozygosity (+/- 4 standard 
deviation), and non-Finnish ancestry were excluded. Variants with high-missingness, low Hardy-
Weinberg Equilibrium p-value ) <1 x 10-6), and minor allele count <3 were excluded. Samples 
were pre-phased using EAGLE14, and imputed to the SISu v3 imputation reference panel using 
BEAGLE 4.115. LiftOver was used to map genome positions from hg38 to hg197. FinnGen 
participants provided informed consent for biobank research, and the Coordinating Ethics 
Committee of the Hospital District of Helsinki and Uusimaa (HUS) approved the FinnGen Study 
protocol No. HUS/990/2017. 
 
VA Million Veteran Program (replication): Details of the VA Million Veteran Program (MVP) 
have been previously described16,17. Briefly MVP recruits participants from the Department of 
Veterans Affairs Healthcare System, who consent to linkage of electronic health records with 
biospecimens, surveys, and genomic information. More than 850,000 participants have 
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enrolled, with genomic and electronic health record data currently available for approximately 
650,000. The current analysis focused on European Ancestry participants from MVP Release 
3.0, which included 43,344 HF cases and 258,943 controls. HF phenotyping has been previously 
described, and was based on a combination of structured (ICD codes), and unstructured 
(ejection fraction) data extracted from the electronic health record17. Participants underwent 
genotyping using a custom Affymetrix Axiom Biobank Array16. Genotyping quality control has 
been previously described, and excluded duplicate samples, samples with more heterozygosity 
than expected, missing genotype calls (>2.5%), or discordance between genetically inferred sex 
and phenotypic gender18. One individual from each pair of related individuals (more than 
second degree relatedness as determined by KING9) was excluded. Variants were imputed to 
the 1000 Genomes Phase 3 version 5 reference panel using MINIMAC46. Following imputation, 
low-quality (r2<0.3) were excluded from further analysis. Ancestry was assigned using HARE as 
previously described19. PLINK24,5 was used to test for associations between each common 
(minor allele frequency >0.01) directly measured or imputed variant and all-cause heart failure, 
adjusted for age, sex, and ten genetic principal components. 
 
Mass General Brigham Biobank (replication): The Mass General Brigham (formerly “Partners 
Healthcare”) Biobank is a large research data and sample repository comprising more than 
100,000 participants that is embedded within the framework of Mass General Brigham 
Personalized Medicine20. Participants are prospectively enrolled in the context of outpatient 
visits, inpatient stays, and emergency department encounters. The Biobank contains banked 
samples (plasma, serum, DNA and buffy coats), genomic data, and other health information, 
including data from the electronic health record (EHR) at hospitals affiliated with the Mass 
General Brigham Healthcare system – primarily the Massachusetts General Hospital and the 
Brigham and Women’s Hospital in Boston, MA. Array- based genotyping was performed using 
either the Illumina Multi-Ethnic Genotyping Array, Expanded Multi-Ethnic Genotyping Array, or 
the Multi-Ethnic Global BeadChip Array (Illumina, Inc., San Diego, CA). We studied the first 
25,784 genotyped participants of European genetic ancestry from the Mass General Brigham 
Biobank with relevant clinical data available. Individuals with heart failure were identified using 
electronic health record diagnosis codes for heart failure (ICD I50) OR cardiomyopathy (ICD I42) 
(at least one instance of either code). After standard genotype and sample quality control, 
imputation to the Haplotype Reference Consortium Version 1.1 reference panel was performed 
using the Michigan Imputation Server6. After imputation, SNPs were removed if missing rate < 
0.02, Hardy-Weinberg Equilibrium p-value < 1e-06, or minor allele frequency < 1%, and samples 
were removed if missing rate > 0.05. PLINK24,5 was used to test for associations between each 
variant and all-cause heart failure, adjusted for age, sex, and five genetic principal components 
 
 

Multi-trait GWAS 
Multivariate models were implemented using the GenomicSEM package in R. We applied 3 
models: a common factor model, and models analogous to MTAG and NGWAMA. Detailed 
description of the GenomicSEM package is available at: 
https://github.com/GenomicSEM/GenomicSEM. A detailed comparison of these approaches as 
implemented in GenomicSEM is presented in Grotzinger et. al21. Each method begins by fist 

https://github.com/GenomicSEM/GenomicSEM


estimating the genetic covariance matrix using GWAS summary statistics and a multivariate 
extension of LD-score regression. Then each model is specified using a system of equations. 
Finally, the parameter(s) of interest are regressed on each SNP. A common factor model 
specifies a latent variable which represents the shared variance among related traits. This 
latent trait can variably influence each of the downstream traits (in this case HF and cardiac 
MRI measures of structure/function). A common factor GWAS thus considers the effects of 
genetic variants on the shared heritability of related traits. Here, the common factor GWAS 
considers a latent trait which influences HF and cardiac imaging measures of cardiac 
structure/function. MTAG was initially described by Turley et. al.22, and is based on the concept 
that when traits are correlated, the precision of GWAS estimates can be improved when jointly 
modeling the correlated traits. The method was initially described as a generalized method of 
moments estimator and was subsequently adapted to the GenomicSEM framework in 
Grotzinger et. al.23 Here, we specified a system of equations where 1) our target phenotype of 
interest (HF) was regressed on each SNP, and 2) the supporting phenotypes (in this case the 
cardiac MRI traits) were regressed on the target phenotype (HF). The results of this GWAS 
represent more precise SNP-effects on HF, and by virtue of increasing precision also improves 
power for novel discovery. Finally, the NGWAMA model was described by Baselmans et. al.,24 
and assumes each genetic variant has a common effect on each of the related traits. This 
method computes a multivariate Z-statistic which represents a weighted sum of test statistics 
from each of the input traits adjusted for sample overlap and genetic correlation between 
traits. An analogous model was specified in GenomicSEM using a common factor model where 
residual variances of each HF/MRI trait were fixed to 0, with the diagonally-weighted least 
squares estimator serving as an approximation of N-weighting. 
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Supplemental Figure 1: Distribution of Genetic Ancestry 

 
Distribution of genetic ancestry of included participants, as determined by projecting principal 
components of allele frequency into a reference sample of UK Biobank participants using the 
snp_ancestry_summary() function of the bigsnpr R package25,26. 
  



Supplemental Figure 2: QQ-plot of HF Meta-analysis 

 
Quantile-quantile plot demonstrating the observed vs. expected p-value for variants included in 
the all-cause HF meta-analysis, estimated using fixed-effects inverse variance weighting. 



Supplemental Figure 3: Multi-Ancestry HF GWAS Regional Association Plots  

 



 



 



 



 

Regional association plots for independent genetic variants associated with HF at p < 5x10-8 in the all-cause HF 
meta-analysis, estimated using fixed-effects with inverse variance weighting. Points are colored by linkage 
disequilibrium with the index variant, estimated from the 1000 Genomes Phase 3 reference panel. 
  



Supplemental Figure 4: Manhattan Plot of NGWAMA of HF and Cardiac MRI Traits 

 
Manhattan Plots of NGWAMA multi-trait GWAS of heart failure and cardiac imaging traits. A) Model including 
HF and cardiac MRI traits unindexed for body surface area (LVEDV, LVESV, LVEF). B) Model including HF and 
cardiac MRI traits indexed for body surface area (LVEDVi, LVESVi, LVEF). C) Model including HF and both 
indexed and unindexed MRI traits (LVEDV, LVEDVi, LVESV, LVESVi, LVEF). 
 
  



Supplemental Figure 5: Manhattan Plot of MTAG of HF and Cardiac MRI Traits 

 
Manhattan Plots of MTAG multi-trait GWAS of heart failure and cardiac imaging traits. A) Model including HF 
and cardiac MRI traits unindexed for body surface area (LVEDV, LVESV, LVEF). B) Model including HF and 
cardiac MRI traits indexed for body surface area (LVEDVi, LVESVi, LVEF). C) Model including HF and both 
indexed and unindexed MRI traits (LVEDV, LVEDVi, LVESV, LVESVi, LVEF). 
 
  



Supplemental Figure 6: Manhattan Plot of Common Factor GWAS of HF and Cardiac MRI Traits 

 
Manhattan Plots of common factor multi-trait GWAS of heart failure and cardiac imaging traits. A) Model 
including HF and cardiac MRI traits unindexed for body surface area (LVEDV, LVESV, LVEF). B) Model including 
HF and cardiac MRI traits indexed for body surface area (LVEDVi, LVESVi, LVEF). C) Model including HF and 
both indexed and unindexed MRI traits (LVEDV, LVEDVi, LVESV, LVESVi, LVEF). 



Supplemental Figure 7: Tissue and Cell-type Enrichment 

 
 
LDSC-SEG was performed to identify tissue and cell-type specific associations with the composite HF endophenotype. A) Association between 
tissue-specific gene expression (GTEx) and HF. B) Association between tissue-specific chromatin marks (ROADMAP and ENTEX). C) Associations with 
cardiac-specific cell-types based on differential gene expression. Vertical dashed lines represent nominal significance (p < 0.05); FDR significant 
associations are denoted with white circles.

  



Supplemental Figure 8: Branch Chain Amino Acid Mendelian Randomization 

 

 
Mendelian randomization was performed to identify whether circulating branch chain amino acid levels were associated with 
cardiac MRI traits, given colocalization between BCKDHA and both LVESVMRI and LVEDVMRI. Presented here are the results of inverse 
variance weighted and weighted-median MR, which makes different assumptions about the presence of pleiotropy. This method 
remains robust when up to 50% of the weight of the genetic instrument is derived from invalid instruments. No adjustments were 
made for multiple comparisons. 
  



Supplemental Figure 9: Summary of Prioritized Genes 

 
Summary of genes prioritized by two or more different analyses. A) Each gene along the x-axis represents either the nearest gene 
(prioritized in the GWAS analyses), or specific gene prioritized in the colocalization, TWAS, gene expression profiling, and pQTL MR 
analyses. Each dot represents a significant gene-analysis pair. B) Summary of concordance in gene prioritization across different 
methods 
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