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Supplementary Section 1: Large-scale atomistic simulations22

The system is integrated using a Monte Carlo integrator to find the ground state. The Metropolis

algorithm 1 takes a random spin with direction Si, and changes it to S′i - the trial spin direction.

The next step is to calculate the change in energy between the initial and trial states ∆E = E(S′i)−

E(Si). The new trial direction is then either accepted or rejected based on a probability (P):

P = exp
(
− ∆E

kBT

)
, (1)

where kB is the Boltzmann constant and T is the absolute temperature. If the change in energy is23

less than zero then the spin is automatically accepted. This is repeated N times per Monte Carlo24

step where N is the number of atoms in the system.25

The trial spin positions are selected using a sampling method2 with three types of trial move:26

spin flip, Gaussian and random. The three types of trial moves allow the system to equilibrate27

quickly at any temperature. At high temperatures the random and spin flip sampling steps allow28

large changes in the spin direction and at low temperatures the Gaussian sampling creates small29

changes in the spin direction. The data files generated in this research can be found at the following30

repository link.31

Supplementary Section 2: Time-intensive computational simulations32

The simulations were run on the EPSRC Tier-2 National HPC CIRRUS (project ec131) and the UK33

National Supercomputer ARCHER2 (project d429). The largest 1000 nm × 1000 nm simulations34
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comprised over 8 million atoms. To fully equilibrate the systems, large number of Monte Carlo35

steps are required. We have used atomistic methods3, 4 with large parallelisation features to over36

6000 CPU cores. For a single temperature point on the magnetisation vs temperature curves a37

simulation of 40 million Monte Carlo steps was performed. For the largest systems, 432 CPU38

cores of CIRRUS/ARCHER2 were used and converged on an average of 30 hours. This is nearly39

113,000 hours of simulation time per point on the plots and each snapshot in Fig. 4 in the main40

text.41

Supplementary Section 3: Size effects and anisotropy42

The intrinsic magnetisation was simulated as a function of temperature with (K = 1×10−24 J/atom)43

and without (K = 0) anisotropy for a flake size of 100× 100 nm2 (Supplementary Figure 1). The44

data show that there is a smaller change in the crossover temperature than for the 1000× 1000 nm2
45

flake size (Fig. 1b) when fitted by Eq. (3) in the main text. The lack of anisotropy decreases the46

exponent: without anisotropy the fitting parameters are β = 0.53±0.03 and Tx = 26.64±0.31 K47

and with anisotropy β = 0.47±0.02 and Tx = 27.14±0.27 K.48

Supplementary Section 4: The choice of Monte Carlo trial moves and dipolar interactions49

We have used a Monte Carlo algorithm which chooses the new trial positions uniformly over the50

three possible trial moves5. Here we compare the results to an adaptive algorithm6, which adapts51

the choice of trial move to the simulation to improve the acceptance probability. Both simulations52

show the same magnetisation vs. temperature profile with the same crossover temperature (Sup-53
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Supplementary Figure 1: The effect of anisotropy for a flake size of 100 × 100 nm2. See the caption of Figure 1b

for the simulation parameters.

plementary Fig. 2a-b). However, the adaptive algorithm converges approximately 10 times faster.54

In the simulations in the paper we have started the system in a fully ordered state. In Supplemen-55

tary Fig. 2c we show that the magnetisation vs. temperature curves are the same for both the fully56

ordered and the fully disordered initial states and in Supplementary Fig. 2d we show the ordering57

process at T = 10 K starting from random and ordered magnetic states. The ordering process from58

the disordered state is slow due to the large size of the system, taking around 30×106 Monte Carlo59

steps to reach thermal equilibrium, but exhibits a stable average magnetisation length for the last60

10×106 Monte Carlo steps. For the final 106 steps, the average magnetisation is the same as that61
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Supplementary Figure 2: Comparison of different simulation methods. a, Simulated temperature-dependent intrin-

sic magnetisation using the uniform choice between the trial steps and the adaptive algorithm, respectively. The data

show that the equilibrium intrinsic magnetisation at each temperature is the same independent of the algorithm, with

the same crossover temperature around Tx ∼ 23 K when fitted by Eq. (3) with fitting parameter β = 0.71. b, The

intrinsic magnetisation at T = 10 K over 40×106 Monte Carlo steps using the uniform choice between the trial steps

and the adaptive algorithm, respectively. Both situations magnetise to approximately |m| =0.64, with the adaptive

algorithm converging slightly faster. c, Comparison between fully ordered and fully random starting configurations

for the intrinsic magnetisation. d, Convergence of the intrinsic magnetisation to equilibrium for the fully ordered and

fully random starting configurations.

obtained from the fully ordered starting state.62
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Supplementary Figure 3: Influence of the dipolar interactions. Variation of the intrinsic magnetisation M/MS for a

2D honeycomb lattice of 50 nm with and without dipole-dipole interactions.
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Supplementary Section 5: Angular distribution of the spins63

The final spin configurations for the 1000× 1000 nm2 flake after 40 million Monte Carlo steps for64

each size and temperature are shown in Fig. 1. In Supplementary Fig. 4, we plot the distribution of65

the angle from the average magnetisation direction of the system over the lattice sites. A deviation66

from the sin-like behaviour indicates the presence of short-range order in the system.67
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Supplementary Figure 4: The distribution of the angle measured from the mean magnetisation direction of the

system. a, For 50×50 nm2, b, 100×100 nm2, c, 500×500 nm2, and d, 1000×1000 nm2 flake sizes. As there is no

anisotropy, the average direction is random and can assume any position in space. The small width of the distribution

shows that short-range order persists up to 20 K even up to a system size of 1000×1000 nm2.
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Supplementary Figure 5: Different boundary conditions and circular flake. a-c, Open boundary conditions (OBC)

applied to honeycomb and square lattices, respectively. Similar approaches and theoretical setup is used for these

simulations as in Figure 2. e, Finite circular flake with honeycomb lattice at different diameters showed in the inset.

Points are simulated data and solid lines fitting curves to Eq. 3. We noticed the neither the OBCs nor the flake shape

change the conclusions.
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Supplementary Figure 6: Strength of the exchange interactions. Calculated crossover temperature (K) versus the

exchange interactions Ji j multiplied by the numerical factor α shown in the x-axis. α either increased or decreased the

magnitudes of Ji j relative to their pristine values (e.g. 1×Ji j) taken into account in the computations. A linear variation

is observed between the crossover temperatures and αJi j which indicates that the stabilisation of 2D magnetism is

independent of the strength of exchange interactions considered. Similar approaches as those used in Figure 2 are

considered with a flake of 100 nm.
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Supplementary Section 6: Anisotropic spherical model68

We use the anisotropic spherical model (ASM) for the calculation of the finite-size and boundary69

effects on the intrinsic magnetization7, 8. Previous works have demonstrated that differently to70

spin-wave theory (SWT), the ASM takes into account Goldstone modes in the system and self-71

consistently generates a gap in the correlation functions which avoids the infrared divergences.72

The Goldstone modes prevent phase transitions for isotropic systems in dimensions d ≤ 2. The73

ASM has been used mostly for the analytical study of magnetisation in thin films9 and domain74

walls7. So far, comparison of the theory to computational results is restricted to small 3D magnets75

of around a few nanometers lateral size in simple cubic lattices8, where good agreement has been76

found. Here, we adapt the work by Kachkachi and Garanin in Ref. 8 to 1D and 2D systems for the77

isotropic Heisenberg Hamiltonian in the absence of an applied magnetic field. We consider a 1D78

spin chain, and three different lattices for the 2D systems; cubic, hexagonal and honeycomb.79

The average magnetisation is defined as

m =
1
N ∑mi, (2)

which vanishes for finite-size systems in the absence of magnetic field due to the Goldstone mode

corresponding to the global rotation of the magnetisation. However, at reduced temperatures the

spins in the system are aligned with respect to each other. Thus, a finite intrinsic magnetisation M

exists,

M =

√√√√〈( 1
N ∑

i
Si

)2

〉, (3)

corresponding to the quantity calculated using Monte Carlo simulations in the main text.80
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The Hamiltonian is

H =−∑
i< j

Ji jSi ·Si. (4)

For the sake of simplicity, we reduce the energy scale to dimensionless variables, λi j = Ji j/∑ j Ji j,81

and the reduced temperature is defined as θ = T/T MFA
c . For direct comparison to simulations82

using classical spin models, one needs to renormalize T MFA
c adequately. In this work we find that83

its value needs to be reduced compared to the analytical expression T MFA
c = ∑ j Ji j/3 to achieve84

good quantitative agreement with the simulations. In Fig. 2(a)-(c) of the main text, the shaded85

areas denote a range where the rescaling factor is varied between 0.65 and 0.85. We attribute the86

necessity of the rescaling to the fact that the ASM becomes exact as the spin dimension D becomes87

infinite, while the simulations are carried out for D = 3.88

The anisotropic spherical model consists of self-consistency equations for the magnetization

components, which are mα
i = 〈Sα

i 〉 = 0 (α = x,y,z) vanishing in the absence of an applied field,

and the Dyson equation for the correlation function sil = D〈Sα
i Sα

l 〉:

sil = θGiδil +Gi ∑
j

λi js jl (5)

where δil is the Kronecker symbol. Gi is the so-called gap parameter to be determined from the set

of constraint equations sii +m2
i = 1 on all sites i = 1, . . . ,N of the lattice. This reduces to sii = 1

for zero external field. Solving these equations consists of determining the correlation function si j

as a function of Gi from Eq. (5) and using sii = 1 in order to obtain Gi. Therefore, the number of

parameters in the calculations is N2+N, which can be reduced by taking symmetries into account.

For periodic boundary conditions (pbc) with translational symmetry, only the sublattices have to be
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treated separately. This allows for an analytical treatment and to study finite-size effects separately

from boundary effects. In Fourier space, Eq. (5) simplifies to

sk,qq′ = θ

(
1

Gq
δqq′−λk,qq′

)−1

, (6)

where q and q′ denote sublattice indices. The case of a single sublattice has been treated in Ref.

8, which is valid for the chain, the square and the hexagonal lattice studied here. However, for

the honeycomb lattice two sublattices have to be taken into account. The constraint equations are

given by

sii =
1

Nc
∑
k

θ

(
1

Gq
δqq′−λk,qq′

)−1
∣∣∣∣∣
q=q′

= 1, (7)

where Nc is the number of cells, over which the Fourier transformation is performed.89

For a single sublattice, one can then calculate the intrinsic magnetization M:

M =
√

1−θGP̃N(G), (8)

with

P̃N(G)≡ 1
N ∑

k

′ 1
1−Gλk

(9)

where the prime indicates that the mode k = 0 is excluded from the sum. At low temperatures in

zero field M deviates from 1 according to the law

M ∼= 1−θW pbc
N /2 (10)

where the coefficient of the term linear in θ is smaller than in the bulk. The coefficient W pbc
N reads90

W pbc
N ≡ 1

N ∑
k

′ 1
1−λk

. (11)
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In particular, in two dimensions one has W (pbc)∼= 8π lnL+ const, which results in91

M ∼= 1−θ(4π lnL+ const). (12)

In the following, the geometrical factors λk are provided for different lattice structures.92

Chain: For a one-dimensional system along the x axis with N = L spins, the wave vector is defined

as

kx =
2πnx

N
, nx = 0, . . . ,N−1. (13)

The reduced coupling is λk = cos(kx).93

In Fig. 4(d) of the main text, the results of the ASM with periodic boundary conditions are

compared to the analytical solution of the nearest-neighbour classical Heisenberg model with free

boundary conditions10. Introducing

L(X) =
1

tanh(1/X)
−X , (14)

where X = 2
3θ , the intrinsic magnetization is then calculated as

M =
1
N

√
N(1+L)

1−L
− 2L(1−LN)

(1−L)2 . (15)

Square lattice: The wave vectors are defined as

kα =
2πnα

Lα

, nα = 0, . . . ,Lα −1,α = x,y. (16)

The reduced couplings λk = 1
2(cos(kx)+ cos(ky)) are used in Eq. (6).94
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Hexagonal lattice: The wave vectors are defined as95

kx =
2πnx

Lx
, nx = 0, . . . ,Lx−1, (17)

ky = −
√

3
3

2πnx

Lx
+

2
√

3
3

2πny

Ly
, nα = 0, . . . ,Lα −1, α = x,y. (18)

The reduced couplings λk

λk =
1
2

[
cos(kx)+2cos(

1
2

kx)cos(

√
3

2
ky)

]
(19)

are used in Eq. (6).96

Honeycomb lattice: The wave vectors are defined as97

kx =
1
3

2πnx

Lx
+

1
3

2πny

Ly
, nα = 0, . . . ,Lα −1, α = x,y; (20)

ky =

√
3

3
2πnx

Lx
−
√

3
3

2πny

Ly
, nα = 0, . . . ,Lα −1, α = x,y. (21)

The reduced couplings λk read

|λk|=
1
3

√
(cos(kx)+2cos(

1
2

kx)cos(

√
3

2
ky))2 +(sin(kx)−2sin(

1
2

kx)sin(

√
3

2
ky))2, (22)

and are only finite between the two sublattices. In Eq. (7) one can use(
1

Gq
δqq′−λk,qq′

)−1
∣∣∣∣∣
q=q′

=
G

1−G2 |λk|2
, (23)

where G is the same for both sublattices. The intrinsic magnetisation of the honeycomb lattice is

calculated as

M =

√
θG

N(1−G)
, (24)

where N is the total number of sites rather than the number of cells. This can be derived from98

Eq. (3) using the expressions for the correlation function and λk=0 = 1.99
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Supplementary Figure 7: Spin-spin correlation function for a 2D hexagonal lattice. Spin-spin correlation functions

at different temperatures a, For 50×50 nm2, b, 100×100 nm2, c, 500×500 nm2, and d, 1000×1000 nm2 flake sizes,

respectively. Exchange parameters are the same as used in Figure 2.
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Supplementary Figure 8: Comparison between 3D and 2D magnetisation for finite systems. a, M/MS versus

temperature for 2D (50 nm× 50 nm) and 3D (50 nm× 50 nm× 20 nm) finite honeycomb systems with (K = 1×10−24

J/atom) and without magnetic anisotropy (K = 0). b, Similar as a, but with the temperature in the 3D case scaled by

a 3/4 factor to remove the effect of an additional interlayer exchange interaction taken into account. That is, if the

dimensionality would be a scaling factor on the crossover temperature, both M(T) curves for 2D and 3D systems

would be close or superposed to each other. However, we found that the finite volume liaised with the exchange

interactions play together to stabilise higher crossover temperatures and a different shape of the M(T) between 2D and

3D systems. Indeed, we cannot separate contributions from exchange interactions and volume in a simply way which

indicates that strictly 2D magnetic order is different to that at bulk compounds. Similar methods as those for Figure 1

are used. 16
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