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Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Comments to the author, 

1. In the manuscript entitled “Breaking through the Mermin-Wagner limit in 2D van der Waals 

magnets” by Sarah Jenkins et al., the authors reported the breakthrough of Mermin-Wagner limit 

in 2D van der Waals magnets by large-scale spin dynamics simulations. The results are very 

interesting and should contribute to the exploration of 2D magnets. This manuscript is suggested 

to be published in Nature Communications before the authors addressed the following comments. 

The size effects have been thoroughly investigated by spin dynamic simulation, so, does the 

boundary effect should be considered in the finite size simulation? 

2. As it known, the prerequisite of Mermin-Wagner theorem is isotropic Heisenberg model and 

short-range exchange interaction. In this manuscript, the authors considered the effects of both 

magnetic anisotropy energy and the cell size on cross temperature, and concluded that only short-

range order defined by the isotropic interactions dominates. Can the authors consider the influence 

of the degree, orientation of short-range order and interaction strength on the cross-temperature 

to further support the point of view in the manuscript? 

3. It is generally believed that a large magnetic anisotropy is needed to stabilize the magnetic 

order, while according to the authors’ point in the manuscript, the transition temperature has little 

to do with the magnetic anisotropy. Then, according to what rule can one find the low-dimensional 

magnetic materials with high transition temperature? 

4. The studies of 2D van der Waals magnets by computational methods have been thoroughly 

reviewed in Wiley Interdisciplinary Reviews: Computational Molecular Science, 12(2), e1545, 

which is suggested to be considered in this manuscript. 

5. There are some format errors that should be double-checked again, for example, the sentence 

“Jij is the exchange constant between spins.An easy-axis magneto-crystalline anisotropy constant 

K” in page 14 misses a space between “spin.” and “An”. 

Reviewer #2: 

Remarks to the Author: 

This manuscript reports results of detailed Monte-Carlo and micromagnetic simulations of the 

classical isotropic nearest-neighbor Heisenberg model on finite 2D lattices. The sizes of the 

systems considered in the manuscript are compatible with those of currently available samples of 

so-called “flakes.” The authors find that short-range order, characterized by a space-integrated 

correlation functon(the author’s intrinsic magnetization, eq. 2) is present at non-zero 

temperatures. They use a Landau-Lifshitz-Gilbert equation to investigate the time evolution of the 

short-range order at finite temperatures and conclude that the magnetization direction is stable 

over times long enough to be relevant in practice. They determine crossover temperatures for the 

vanishing of short-range order that are compatible with the ordering temperature found in recent 

experiments on van der Waals ferromagnets. They conclude that the main driving force behind the 

existence of short-range order in the Heisenberg model is not anisotropy, as frequently quoted in 

the literature, but finite-size effects. 

This manuscript presents a relevant and useful numerical study of the limitations of the 

Hohenberg-Mermin-Wagner (HMW) theorem for real samples of finite size. The authors are right to 

point out (lines 49-53 of the manuscript) that, embedded in the requisites of the theorem, lies the 

reason for their findings: the theorem requires that the thermodynamic limit is taken. They also 

rightly point out that there is a widespread belief in the scientific community that the sizes of real 

samples are usually enough to attain this limit in practice. However, systematic discussions of the 

actual values needed to recover the conditions imposed by the theorem are surprisingly scarce in 

the literature. The results presented here are relevant contributions to this discussion. 

Although scarce, there are examples of this discussion in the literature that the authors have 

missed. For instance, Using a combination of analytical methods and Monte Carlo simulations, 

Kapikranian et al. [J. Phys. A: Math. Theor. 40 (2007) 3741] have shown that the isotropic 

Heisenberg model on a finite lattice displays short-range order, characterized by a power-law 



decay of the spin-spin correlation function. This is in line with the findings reported in this 

manuscript. More recently, Palle and Sunko [J. Phys. A: Math. Theor. 54 (2021) 315001], have 

provided a very readable discussion. Their references 16-23 are part of the history of this 

discussion and also relevant for the present manuscript. Reference 9, in particular, provides an 

illuminating qualitative discussion of this subject, and even an amusing comparison, that is 

reminiscent of the ones used by the authors in Fig. 3 (the following sentences can be found on the 

bottom of page 9 of https://courses.physics.illinois.edu/phys598PTD/fa2013/L9.pdf): “e.g. in the 

case of crystalline order T0 is replaced by a temperature that is at least of the order of the Debye 

temperature, so to see HMW-type effects in (say) a graphene crystal at a few degrees would 

require the crystal to extend from here to the moon! The moral is that before taking the theorem 

too seriously in a real-life situation, one should carefully put in the numbers.” 

Another discussion with a long history is that of the existence of short-range order in bulk 

magnetic systems above the Curie temperature. Experimental evidence in its favor has been found 

in elemental transition metals [PRL 54, 932 (1985), PRL 48, 1686 (1982)]. In PRB 72, 140406(R) 

(2005), Antropov showed, using TDDFT, that local moments in Ni and Fe above Tc display what he 

terms “giant magnetic short-range order.” Although those results may seem weakly related to the 

present discussion, I think the relationship is stronger than it seems. They indicate the persistence 

of order well within the supposedly “disordered” phase of systems in which order is driven 

essentially by exchange, one of the main points made by the present manuscript. 

Finally, two technical issues: 

• The sentence “The magnitude of Jij/kB is within the same range as those observed for CGT (with 

a critical temperature of 66 K)2 where a negligible magnetic anisotropy (< 1 μeV) was observed 

for thin layers but a stable magnetic signal was still measured at finite temperatures (∼4.7 K),” 

found ion page 5, is confusing. According to ref. 2, Tc for the monolayer is negligible, in line with 

the extremely low anisotropy value they infer. The much higher Tc=66K quoted in this manuscript 

is actually a property of thick samples, as stated in the beginning of the “Methods” section of Ref. 

2. 

• The value of the damping constant the authors used in their LLG equation seems exaggerated for 

a system described by the isotropic Heisenberg model. In insulating magnets with negligible spin-

orbit coupling and no disorder, the Gilbert damping should also be negligible. The large value used 

here may have implications for the results presented in Fig. 1C-d and Fig. 4, since in the presence 

of a random thermal field the amplitude of low-energy modes in the stationary state could be 

substantially modified by the damping. 

In conclusion, I believe the the manuscript can be published in Nature Communications after the 

issues listed above have been addressed. 

Reviewer #3: 

Remarks to the Author: 

In 1966, Mermin and Wagner showed a rigorous proof, that there can be neither ferro- nor 

antiferromagnetic ordering for the one- or two-dimensional systems described by isotropic 

Heisenberg models with finite-range interactions, at non-zero temperatures. The magnetic order 

found in low-dimensional systems has, since then, usually been viewed as an effect of the 

magnetic anisotropy of the system. It is important to note that the Mermin-Wagner theorem 

assumes systems of infinite lateral dimensions. When studying the microscopic phenomena, for 

many purposes, the samples of novel 2D materials produced in the labs nowadays can indeed be 

considered infinite. However, one has to be aware that they are in fact finite. Therefore, when 

considering the Mermin-Wagner theorem, one has to ask themselves just how infinite is “infinite” 

and at which lateral size the sample can be viewed to be outside of the validity space of the 

theorem. The Authors of the current manuscript have tackled this problem numerically with the aid 

of atomistic simulations and analytical models. The result is, at least for me, quite surprising: even 

for the 2D-systems with the sizes comparable to the diameter of the observable universe, 

magnetic ordering at finite temperature is possible! Importantly, it is shown that this result is 

independent of the magnetic anisotropy and it is actually the exchange interactions that are 



responsible for the effect. 

The methods applied in this work are appropriate and well-described, the calculations seem valid 

and carefully performed. Relevant research is properly cited. The manuscript is well-written and 

timely, boosting the importance of 2D-materials for applications in data-storage technologies. It 

sheds light on the confusing presence of magnetism in experimental samples, even though the 

confusion is mainly rooted in our misconception of the region of validity of Mermin-Wagner 

theorem. I am glad this issue seems to be settled now and recommend the work for publication, in 

its current form.
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REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
Comments to the author, 
1. In the manuscript entitled “Breaking through the Mermin-Wagner limit in 2D van der Waals 
magnets” by Sarah Jenkins et al., the authors reported the breakthrough of Mermin-Wagner 
limit in 2D van der Waals magnets by large-scale spin dynamics simulations. The results are 
very interesting and should contribute to the exploration of 2D magnets. This manuscript is 
suggested to be published in Nature Communications before the authors addressed the 
following comments.  
 
Response: We thank the Reviewer for the kind comments about our manuscript, and for 
considering our work interesting and suggesting publication in Nature Communications. We 
have addressed below all points raised by the Reviewer and modify the manuscript 
accordingly.   
 
The size effects have been thoroughly investigated by spin dynamic simulation, so, does the 
boundary effect should be considered in the finite size simulation? 
 
Response: We have checked that our conclusions do not change by using different boundary 
conditions, such as using open boundary conditions (OBCs) as included in Supplementary 
Fig. 5, which is different than the periodic boundary conditions (PBCs) used in the paper. We 
have also tested that finite sizes with a different shape (e.g. circular) resulted in similar results. 
Therefore, boundaries/edges, and shapes are not observed to provide any modification on the 
conclusions already mentioned in the manuscript.  
  
We have included additional discussions in the text (page 8, lines 140-151; page 15, lines 
280-284) regarding the PBCs and the circular shape, with Supplementary Figures 5-6 
supporting our discussions.  
 
 
2. As it known, the prerequisite of Mermin-Wagner theorem is isotropic Heisenberg model 
and short-range exchange interaction. In this manuscript, the authors considered the effects 
of both magnetic anisotropy energy and the cell size on cross temperature, and concluded 
that only short-range order defined by the isotropic interactions dominates. Can the authors 
consider the influence of the degree, orientation of short-range order and interaction strength 
on the cross-temperature to further support the point of view in the manuscript? 
 
Response: In the isotropic Heisenberg model used in our simulations and in the Mermin-
Wagner theorem the short-range interactions are isotropic to any direction confined in the unit 
sphere. Hence, we cannot control their orientation as the spins are not fixed. Indeed, the 
intrinsic magnetisation (Eq. 2) is a scalar and not a vector quantity which rules out any 
preferential direction. However, we have quantified how the spins are oriented relative to the 
mean magnetisation direction at different temperatures and flake sizes as included in 
Supplementary Figure 4 and discussed in the text. We also include the spin-spin correlation 
(thus the average degree of alignment as a function of distance) to show the relative 
orientation of the short-range order in Supplementary Figure 7. 
 
Regarding the interaction strength, our tests showed that different magnitudes of the exchange 
constants would result in a linear re-scaling of the crossover temperatures which do not affect 
the conclusions.  
 



We have included additional discussions in the main text (page 8, lines 140-151) and 
Supplementary Figures 5-6 explaining further the points mentioned by the Reviewers.  
 
3. It is generally believed that a large magnetic anisotropy is needed to stabilize the magnetic 
order, while according to the authors’ point in the manuscript, the transition temperature has 
little to do with the magnetic anisotropy. Then, according to what rule can one find the low-
dimensional magnetic materials with high transition temperature?  
 
Response: As demonstrated in our manuscript, the exchange interactions are the key factor 
for the stabilisation of magnetism in 2D. This applies for either low or high transition 
temperature materials, and not on the value of the magnetic anisotropy itself. Then, if materials 
can be engineered to have high exchange coupling between atoms via different chemical 
synthesis, they may result in high temperature magnets.  
 
We have included additional discussions in the manuscript regarding this point raised by the 
Reviewer (page 8, lines 140-151).  
 
 
4. The studies of 2D van der Waals magnets by computational methods have been 
thoroughly reviewed in Wiley Interdisciplinary Reviews: Computational Molecular Science, 
12(2), e1545, which is suggested to be considered in this manuscript. 
 
Response: We thank the Reviewer for the reference. It has been included in the updated 
version of the manuscript.  
 
5. There are some format errors that should be double-checked again, for example, the 
sentence “Jij is the exchange constant between spins.An easy-axis magneto-crystalline 
anisotropy constant K” in page 14 misses a space between “spin.” and “An”. 
 
Response: We thank the Reviewer for pointing them out. We have amended them in the 
updated version of the manuscript.  
 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
This manuscript reports results of detailed Monte-Carlo and micromagnetic simulations of 
the classical isotropic nearest-neighbor Heisenberg model on finite 2D lattices. The sizes of 
the systems considered in the manuscript are compatible with those of currently available 
samples of so-called “flakes.” The authors find that short-range order, characterized by a 
space-integrated correlation functon(the author’s intrinsic magnetization, eq. 2) is present at 
non-zero temperatures. They use a Landau-Lifshitz-Gilbert equation to investigate the time 
evolution of the short-range order at finite temperatures and conclude that the magnetization 
direction is stable over times long enough to be relevant in practice. They determine 
crossover temperatures for the vanishing of short-range order that are compatible with the 
ordering temperature found in recent experiments on van der Waals ferromagnets. They 
conclude that the main driving force behind the existence of short-range order in 
the Heisenberg model is not anisotropy, as frequently quoted in the literature, but finite-size 
effects. 
 
This manuscript presents a relevant and useful numerical study of the limitations of the 
Hohenberg-Mermin-Wagner (HMW) theorem for real samples of finite size. The authors are 
right to point out (lines 49-53 of the manuscript) that, embedded in the requisites of the 
theorem, lies the reason for their findings: the theorem requires that the thermodynamic limit 



is taken. They also rightly point out that there is a widespread belief in the scientific 
community that the sizes of real samples are usually enough to attain this limit in practice. 
However, systematic discussions of the actual values needed to recover the conditions 
imposed by the theorem are surprisingly scarce in the literature. The results presented here 
are relevant contributions to this discussion. 
 
Response: We thank the Reviewer for the kind words regarding our manuscript. We have 
addressed below all points raised by the Reviewer and modify the manuscript accordingly.   
 
 
Although scarce, there are examples of this discussion in the literature that the authors have 
missed. For instance, Using a combination of analytical methods and Monte Carlo 
simulations, Kapikranian et al. [J. Phys. A: Math. Theor. 40 (2007) 3741] have shown that 
the isotropic Heisenberg model on a finite lattice displays short-range order, characterized 
by a power-law decay of the spin-spin correlation function. This is in line with the findings 
reported in this manuscript. More recently, Palle and Sunko [J. Phys. A: Math. Theor. 54 
(2021) 315001], have provided a very readable discussion. Their references 16-23 are part 
of the history of this discussion and also relevant for the present manuscript. Reference 9, in 
particular, provides an illuminating qualitative discussion of this subject, and even an 
amusing comparison, that is reminiscent of the ones used by the authors in Fig. 3 (the 
following sentences can be found on the bottom of page 9 of 
https://courses.physics.illinois.edu/phys598PTD/fa2013/L9.pdf): “e.g. in the case of 
crystalline order T0 is replaced by a temperature that is at least of the order of the Debye 
temperature, so to see HMW-type effects in (say) a graphene crystal at a few degrees would 
require the crystal to extend from here to the moon! The moral is that before taking the 
theorem too seriously in a real-life situation, one should carefully put in the numbers.” 
 
 
Response: We have included all the references mentioned by the Reviewer as well as 
additional discussions in the manuscript regarding the historical aspects and estimations by 
A. J. Leggett on graphene samples (page 3, lines 53-56; and page 10, lines 183-186).  
 
 
Another discussion with a long history is that of the existence of short-range order in bulk 
magnetic systems above the Curie temperature. Experimental evidence in its favor has been 
found in elemental transition metals [PRL 54, 932 (1985), PRL 48, 1686 (1982)]. In PRB 72, 
140406(R) (2005), Antropov showed, using TDDFT, that local moments in Ni and Fe above 
Tc display what he terms “giant magnetic short-range order.” Although those results may 
seem weakly related to the present discussion, I think the relationship is stronger than it 
seems. They indicate the persistence of order well within the supposedly “disordered” phase 
of systems in which order is driven essentially by exchange, one of the main points made by 
the present manuscript.  
 
Response: We thank the Reviewer for pointing these papers out. We have included additional 
discussions regarding the stabilisation of ordered phase near and above the Curie 
temperatures in the manuscript (pages 13-14, lines 253-261).  
 
 
Finally, two technical issues:  
 
• The sentence “The magnitude of Jij/kB is within the same range as those observed for 
CGT (with a critical temperature of 66 K)2 where a negligible magnetic anisotropy (< 1 μeV) 
was observed for thin layers but a stable magnetic signal was still measured at finite 
temperatures (∼4.7 K),” found ion page 5, is confusing. According to ref. 2, Tc for the 
monolayer is negligible, in line with the extremely low anisotropy value they infer. The much 



higher Tc=66K quoted in this manuscript is actually a property of thick samples, as stated in 
the beginning of the “Methods” section of Ref. 2. 
 
Response: We thank the reviewer for the comments. We have re-written those sentences 
(page 5, lines 90-96) and clarify the selection of the exchange interactions for our simulations.  
 
• The value of the damping constant the authors used in their LLG equation seems 
exaggerated for a system described by the isotropic Heisenberg model. In insulating 
magnets with negligible spin-orbit coupling and no disorder, the Gilbert damping should also 
be negligible. The large value used here may have implications for the results presented in 
Fig. 1C-d and Fig. 4, since in the presence of a random thermal field the amplitude of low-
energy modes in the stationary state could be substantially modified by the damping. 
 
 
Response: The large value of the damping (lambda=1) was used to accelerate the spin 
dynamics to reach the equilibrium at a computationally achievable time (~72 hours). For a 
different damping, one has to wait longer or shorter for this to happen. Based on the system sizes 
used in our computations this can vary between ~5 days up to several weeks, which is not 
computationally practical. However, once the system is at equilibrium, the value of the damping 
is not important as it is the case in our results. Moreover, a large damping would correspond 
to large fluctuations on the magnitude of the magnetization (Fig. 1c) and its direction (Fig. 1d) 
and so is the low time limit. Lower damping would lead to naturally slower dynamics of the 
magnetization. Nevertheless, we barely noticed any at the timescale included in our 
manuscript. It is worth mentioning that no damping parameter is present in the Monte Carlo 
calculations which support our conclusions.  
 
We have included additional comments in the manuscript highlighting the value of the damping 
used in our simulations (pages 16).  
 
 
In conclusion, I believe the the manuscript can be published in Nature Communications after 
the issues listed above have been addressed. 
 
Response: We hope to have addressed all the comments by the Reviewer and our 
manuscript can be finally accepted in Nature Communications.  
 
 
Reviewer #3 (Remarks to the Author): 
 
In 1966, Mermin and Wagner showed a rigorous proof, that there can be neither ferro- nor 
antiferromagnetic ordering for the one- or two-dimensional systems described by isotropic 
Heisenberg models with finite-range interactions, at non-zero temperatures. The magnetic 
order found in low-dimensional systems has, since then, usually been viewed as an effect of 
the magnetic anisotropy of the system. It is important to note that the Mermin-Wagner 
theorem assumes systems of infinite lateral dimensions. When studying the microscopic 
phenomena, for many purposes, the samples of novel 2D materials produced in the labs 
nowadays can indeed be considered infinite. However, one has to be aware that they are in 
fact finite. Therefore, when considering the Mermin-Wagner theorem, one has to ask 
themselves just how infinite is “infinite” and at which lateral size the sample can be viewed to 
be outside of the validity space of the theorem. The Authors of the current manuscript have 
tackled this 
problem numerically with the aid of atomistic simulations and analytical models. The result 
is, at least for me, quite surprising: even for the 2D-systems with the sizes comparable to the 
diameter of the observable universe, magnetic ordering at finite temperature is possible! 
Importantly, it is shown that this result is independent of the magnetic anisotropy and it is 



actually the exchange interactions that are responsible for the effect. 
 
The methods applied in this work are appropriate and well-described, the calculations seem 
valid and carefully performed. Relevant research is properly cited. The manuscript is well-
written and timely, boosting the importance of 2D-materials for applications in data-storage 
technologies. It sheds light on the confusing presence of magnetism in experimental 
samples, even though the confusion is mainly rooted in our misconception of the region of 
validity of Mermin-Wagner theorem. I am glad this issue seems to be settled now and 
recommend the work for publication, in its current form. 
 
Response: We thank the Reviewer for the kind words regarding our manuscript, and for 
accepting it in its current form.  
 
 



Reviewers' Comments: 

Reviewer #1: 

Remarks to the Author: 

Comments to the author, 

All the comments raised by the reviewers have been properly replied and included in the 

manuscript. I recommend acceptance of the revised manuscript in Nature Communications. 

Reviewer #2: 

Remarks to the Author: 

It is my opinion that the authors addressed all the points raised by me and the other referee 

satisfactorily. I recommend the publication of the manuscript in its present form. 
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