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Supplementary Fig. 1. Generation of a tissue specific Satbl knockout mouse. a i. ES cell clone HEPD0534 5 E11
obtained from EUCOMM, with knockout first mutation, ii. mouse with floxed exon 4 allele obtained from Vassilis
Pachnis’ laboratory® where the reporter cassete has been removed in vitro (the primer set utilized for genotyping is
indicated, F9/R10), iii. Satbl allele upon deletion of floxed exon 4 Satb1 allele in transgenic mice expressing the Cre
recombinase driven by the Cd4 gene promoter. b Breading scheme for the generation of tissue-specific Satbl
knockout mice (grey). Satb1™" mice were bred to Satb1*" mice expressing the CD4-Cre transgene?. Figure created
with Motifolio Toolkit (Motifolio Inc, Ellicott City, Md). ¢ Genotyping of the offspring indicated in b. This is a
genotyping experiment performed for each offspring of the breeding scheme indicated in b. Therefore the genotyping
PCR experiment has been performed for hundreds of times. d Immunofluorescence experiments indicating that
SATBL1 is expressed in 97.11% of total wild type thymocytes and 4.16% of total Satb1l cKO thymocytes, utilizing an
antibody detecting all SATB1 isoforms. The relative SATB1 fluorescence signal was calculated with Volocity
(PerkinElmer). Blue DAPI, scale bar 50 um. e The same experiment as in d, but utilizing an antibody against the
long SATBL1 isoform. f Western blot experiment utilizing an antibody against all SATB1 isoforms performed in WT
and Satb1 cKO thymocytes. The Western blot analysis was performed four times for anti-SATB1 long and four times
for anti-SATBL1 all isoforms, with similar results. g The same experiment as in f but utilizing an antibody against the
long SATB1 isoform.
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Supplementary Fig. 2. Efficiency of SATB1 depletion in Sathl cKO thymocytes. a More than 96% of the total
Satbl cKO thymocytes express the YFP reporter, indicating the efficient expression of the Cre recombinase
expressed under the Cd4 promoter. The generation of mice expressing the YFP reporter gene has been previously
described®. The primers used to confirm the presence of the YFP reporter were Rosa26-LC 5°-GCT CTG AGT TGT
TAT CAG TAA GG-3’, Rosa26-R3 5’-GGA GCG GGA GAA ATG GAT ATG-3’ and Rosa26-R2 5°-GCG AAG
AGT TTG TCC TCA ACC-3’. b More than 97% of the double positive (CD4*CD8") Satb1 cKO thymocytes express
the YFP reporter, indicating the efficient expression of the Cre recombinase expressed under the Cd4 promoter. ¢
Intracellular staining for SATBL protein in total thymocytes and FACS analysis. d Intracellular staining for SATB1
protein in double positive (CD4"CD8") thymocytes and FACS analysis. For figures a, b, c, d; two biological
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replicates are shown. e The SATB1 short and long protein isoforms were expressed in bacteria and detected by
Western blot analysis using an antibody against the long SATB1 isoform (left panel) and an antibody non-specifically
targeting all SATB1 isoforms (right panel). The Western blot analysis was performed seven times with similar
results. f Recombinant short and long SATBL1 protein isoforms with a 6xHis histidine tag were expressed in bacteria
and detected by Western blot using anti-6xHis antibody (left panel) or an anti-long SATB1 isoform antibody (right
panel). The Western blot analysis was performed three times with similar results.



Supplementary Figure 3
a

600

CD4 SP CD4 SP CD4 SP CD4SP  cD62Lhi CD44lo  Early_apoptotic
thymus spleen pancreas mesLN - spleen thymus
8.3e-05 301 97e-10 20 0.12 0.0005 .0084 0.02
7.5 - 40] g 2 %
i £© 20 13 ﬁ? 30 jg %
: 20 e
25 10 & 5 w 10 | m 20
0.0 0 0 0 0 0
c WT SKO WT SKO WT SKO WT SKO WT SKO WT SKO
-{—% CD8 SP CD8 SP CD8 SP CD8 SP CD62LIo_CD44hi Apoptotic
E_ thymus spleen pancreas o5 mesLN spleen thymus age
9251 0016  20{ 00016 0.067 0.4 60| 0.0031 0.04
81. 15 40 ° o
b o 10 & 50 10 5 =
©0.5 5 2.5 5 -
00 0 0.0 % 0 0
5 WT SKO WT SKO WT SKO WT SKO WT SKO WT SKO
[&]
g‘_, CD4CD8 DP CD4CD8 DP CD4CD8 DP CD4CD8 DP  CD62Lhi_CD44hi Necrotic
thymus spleen pancreas mesLN spleen 1.00 thymus
.000. 4.6e-07 0.0031 15 0.0031 : 0.69
9] = 4 J 03y 75 S 075 /@ L=
5.0 10
60 ) : 0.50
30 25 5 0.25
@~ ’
0 o{ <> 0 0.0 0 0.00
WT SKO WT SKO WT SKO WT SKO WT SKO WT SKO
e

Intraperitoneal glucose tolerance test
0.?4

0.56

400

Blood glucose [mg/dl]
N
o
o

BF 0 15 30 60
Treatment time points [min]

120



Supplementary Fig. 3. Deregulation of the immune system in Satbl cKO animals. a Phenotypical comparison of
WT and Satbl cKO mice (SKO). b Gating strategies for flow cytometry experiments. ¢ Characterization of cell
populations in WT and Satb1 cKO by flow cytometry. Young animals (45+11 days; 6 WT, 6 Satbl cKO) were used
for the analysis of the thymus and spleen and old animals (179+35 days; 7 WT, 9 Satbl cKO) for the analysis of
spleen. Three young animals for each genotype were used for CD62 / CD44 analysis of the spleen and three old
animals for CD4 / CD8 analysis of the pancreas. The red circle represents the mean + s.d. P values by two-sided
Student's t-test. d T cells in Satbl cKO animals infiltrated in the pancreas (see ¢) and damaged the islets of
Langerhans. Pancreas tissue section experiments stained with Hematoxylin-Eosin to visualize the islets of
Langerhans (LI, marked with a dotted line) surrounded by acinar cells. In Satbl cKO (SKO) sections, the islets of
Langerhans and acinar regions were infiltrated by lymphocytes (L; quantified in c), contained regions of fibrosis
(asterisks), necrosis (N) and sub-capsular and interlobular edema, manifested with dilated ducts (arrowheads). Scale
bar for WT, SKO2, SKO3 is 20 um, and for SKO1 50 um. e Intraperitoneal glucose tolerance test to indicate impaired
glucose metabolism in Satbl cKO animals. BF indicates steady-state glucose levels, before a 6 hour fasting period.
Red and blue circles represent the mean £ s.d. The lines connecting circles represent the median values.



Supplementary Figure 4 Differential TAD analysis
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Supplementary Fig. 4. Characterization of chromatin architecture changes in Satbl cKO animals. a Heatmap
of normalized RNA-seq counts of sorted DN1, DN2b, DN3, DN4, ISP, DP, CD4SP and CD8SP T cell subset
populations (GSE109125%). Three clusters were selected as DN, DP and SP signature genes (orange, red and green
arrows, respectively; Supplementary Data 3). b Differential analysis of topologically associating domains using
TADCompare® at 100 kbp resolution between WT and factor-depleted cells (combined biological replicates). TAD
categories are explained by a graphical legend within the figure. SKO represents Satb1™fMCd4-Cre* murine
thymocytes, RKO —Rad21"Cd4-Cre* DP murine thymocytes® and CKO — CTCF-depleted (AID degron system)
mESCs’. Black dots represent different TAD categories for individual chromosomes (n=20). The red circles
represent the mean + s.d. P values by two-sided Wilcoxon rank sum test, non-adjusted for multiple comparisons. ¢
Analysis of A/B compartments performed according to the original protocol® at 100,000 resolution of Hi-C datasets
using HOMER?. Principal components of WT and Satb1 cKO annotated regions were plotted against each other to
show the proportion of compartment switch. d Long SATB1 isoform binding sites were spatially correlated with two
publicly available SATB1 ChlIP-seq datasets'®!! (both of which utilized antibodies targeting all SATB1 isoforms).
Data are based on the Relative Distance metric of Bedtools'?*3, therefore the relative distance represents a ratio
between the smaller distance between a feature from dataset A and an upstream or downstream feature from dataset
B, and the overall distance between the downstream and upstream features from dataset B. Jaccard statistic is also
provided. e Genomic feature association analysis (Genome Ontology) for the three datasets of SATB1 binding sites,
analyzed by the AnnotatePeak function of Homer®. Numbers represent the absolute % overlap of features with
SATBL1 binding sites. In figures d, e; the “Long iso” dataset represents the HiChIP-derived binding sites of the long
SATBI isoform used in this study. The “Shuffled long iso” dataset represents a negative control, i.e. randomly
shuffled binding sites of the long SATB1 isoform. f Aggregate peak analysis* was calculated and visualized by
Juicer Tools™ to show that SATB1 HiChIP loops had stronger signal in WT Hi-C datasets than in Satb1 cKO Hi-C.
CTCF HiChIP loops retained the same APA score indicating that CTCF-based high order chromatin organization
remained unchanged in Satbl cKO. g Intra-domain interaction frequencies of Hi-C matrices derived from WT and
Satbhl cKO (SKO) thymocytes, restricted to the SATB1/CTCF-dependent HiChIP loops. Provided bullseye
visualization by SIPMeta’® represents a transformed rectangular heatmap such that each bin’s Euclidean distance to
the center directly corresponds to its Manhattan distance in the original map. Each ring in the bullseye plot has
segments corresponding to the 4 x N bins with a Manhattan distance of N from the central bin. Each bin in a ring
takes up exactly the same angular area and they are evenly distributed around the circle. Z-score transformation is
done for each ring separately and the aggregate domain analysis (ADA) score was obtained by percentage of Z-
scores > 1 in the bottom left quarter vs the total plot. L and R denotes left and right loop anchors, respectively. Note
the disturbed interaction pattern within SATB1-dependent and not within CTCF-dependent loops in Satb1 cKO cells.
h Relative steady state Ctcf MRNA levels in WT and Satb1 cKO thymocytes detected by RT-gPCR. Results are from
2 biological replicates and the gPCR was performed in triplicates. The relative mMRNA expression level was corrected
based on Hprtl expression in WT and Satbl cKO thymocytes samples. Values were calculated based on the AACt
method and they are presented as fold change in Satbl cKO (SKO) over WT. Data are presented as mean values +
s.d. i Western blot analysis probing CTCF protein levels in WT and Satbl cKO (SKO) thymocytes. The Western
blot analysis was performed two times with similar results. j Transcriptional insulation scores calculated as described
in the methods section showed that expression of genes inside SATB1 and CTCF loops was different from genes
outside the loops. Both SATB1 and CTCF displayed a similar insulation effect which was significantly different
between the loops and randomly shuffled loops in both WT and Satbl cKO. P values by two-sided Wilcoxon rank
sum test, non-adjusted for multiple comparisons. The boxplots show median with the top and bottom edges of the
box representing the 75th and 25th percentiles, respectively. The whiskers represent the most extreme values that are
within 1.5 times the interquartile range of the 25th and 75th percentiles. Outliers outside the whiskers are shown as
dots. The exact number of features analyzed can be found in the source data.
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Supplementary Fig. 5. Dysregulated chromatin accessibility in Satb1 cKO animals. a Representative transmission
electron microscopy images of WT and Satbl cKO thymus sections indicating dysregulation of
heterochromatin/euchromatin arrangement in Satbl cKO thymocytes and also supporting the impairment in
intercellular contacts. Green and magenta arrows show examples of intact and disrupted intercellular contacts,
respectively. Scale bar 2 um. Data are representative of two biological replicates with similar results. b Gel
electrophoresis of genomic DNA from WT and Satbl cKO thymocytes treated with increasing concentration of
DNase I. The red rectangle indicates that for the same DNase | concentration the WT chromatin is digested more
and therefore is considered more accessible compared to the Satbl cKO thymocyte chromatin. One replicate was
performed to support the results from the ATAC-seq analysis. ¢ VVolcano plot of differentially accessible regions in
WT and Satb1 cKO as determined by ATAC-seg. d Satbl cKO thymocyte chromatin is less accessible to DNase I.
Nuclei from WT and Satb1 cKO thymocytes were either not treated or treated with increasing concentration of DNase
I. Genomic DNA was prepared and gPCR was performed with a pair of primers designed for a genomic region of
the Bcl6 promoter encompassing a SATB1 binding site which displayed differential chromatin accessibility based
on ATAC-seq experiments. Ct values for the pair of primers hybridizing on the Bcl6 promoter were corrected based
on the Ct values acquired for a control non-SATB1 bound region. e LEFT: Immunofluorescence experiments for the
detection of the phosphorylated form of RNA polymerase Il (phosphorylated Ser 5 of CTD, CTD4H8-Alexa Fluor
labeled; Covance, A488-128L) in WT and Satbl cKO thymocytes. Blue DAPI, scale bar 2 um. MIDDLE: The
cumulative DAPI signal detected per cell (y-axis) measured in three independent experiments with confocal
microscopy. RIGHT: The cumulative fluorescence of phosphorylated RNA polymerase Il per cell (y-axis) indicated
in each box plot is characterized by box plots. For MIDDLE and RIGHT, the boundary of the box closest to zero
indicates the 25th percentile, the line within the box marks the median, and the boundary of the box farthest from
zero indicates the 75th percentile. Whiskers (error bars) above and below the box indicate the 90th and 10th
percentiles. Single cell outliers (5% of total signals) are indicated in the vicinity outside the whiskers. Box plots were
created in Sigma Plot 12. f Log2 fold change of ATAC-seq differential chromatin accessibility between WT and
Satb1 cKO plotted along genes + 4 kbp. Graph depicts the drop in chromatin accessibility in Satbl cKO at the TSS
of genes, supporting a regulatory role for SATB1. g Correlation between RNA levels and promoter chromatin
accessibility changes (-2 kbp — TSS) of Satb1 cKO differentially expressed genes (DEGS; Spearman’s p = 0.438, P
=4.07e-88). h Regions with low chromatin accessibility in WT had mostly increased chromatin accessibility in Satbl
cKO. The average of log10 transformed read-normalized accessibility scores of ten randomizations depicted in Fig.
4a was used as a cutoff to determine SATB1 peaks with low accessibility levels.
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Supplementary Figure 6
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Supplementary Fig. 6. Linear regression model. a Diagnostic plot for residuals vs fitted values. Non-linear
relationships between predictor variables and logFC changes were evaluated. Values were distributed randomly
across a horizontal line with no obvious pattern arising, indicating that assumptions of the regression model were
fulfilled well. b Q-Q plot of residuals. The plot evaluates whether the residuals were normally distributed. Deviations
from the normal distribution were observed for a set of residuals. ¢ Diagnostic plot for homoscedasticity. Model
assumptions are not violated if data points are randomly distributed. No clear patterns were observed, indicating a
good fit to the model assumptions. d Diagnostic plot for influential outliers based on the Cook’s distance. No gene
was positioned outside the dashed line corresponding to the Cook’s distance of 1. As such no gene was excluded
when constructing the model. e Evaluation of the quality of each predictor. A regression model was first constructed
using all the predictors. For each predictor, a new model was constructed utilizing all predictors beside the one
studied. The Akaike Information Criterion (AIC) of the old model was subtracted from the AIC of the new model.
An increase in AIC after the removal of a predictor indicated that the model lacking that predictor performed worse
than the original one. The final model included only the predictors that were associated with an increase in AIC after
their removal. f Coefficients of final predictors. Positive values indicate that a variable was linked with an increase
in RNA levels in the Satb1 cKO cells, while negative values indicate the opposite.
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Supplementary Figure 7
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Supplementary Fig. 7. SATB1-dependent promoter-enhancer chromatin loops in developing T cells. a
Conditional inference tree systematically probing all options of SATB1 binding and looping and their impact on
gene expression. The x-axis indicates ranges of log2 fold change RNA-seq values. The y-axis represents a proportion
of genes meeting a condition specified in the tree belonging to the particular range of deregulated genes specified on
the x-axis. For example, ~20% of genes (y-axis) found in anchors of SATB1-dependent loops connected to an
enhancer (first red arrow) belong to the range of 5% of the most underexpressed genes in Satb1l cKO. The red arrows
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highlight the disruption of the normal distribution of differentially expressed genes in the respective ranges that is
present in SATB1-dependent loops. Differentially expressed genes that do not overlap with anchors of SATBL1 loops
display a normal distribution — reflecting the respective log2 fold change ranges (the three rightmost graphs). b
Overlap enrichment between loop anchors and enhancers, presented separately for SATB1- and CTCF-dependent
loops. ¢ Overlap enrichment of T cell subset signature genes at anchors of H3K27ac under- and over-interacting loop
anchors. Note the high enrichment of DP signature genes for both categories. Overlapping genes are depicted in the
Source Data File. d Scatter plots indicating positive correlation (Spearman’s p) between changes in RNA levels
based on RNA-seq and differential H3K27ac looping between WT and Satbl cKO. Three leftmost graphs show
correlation for DN, DP and SP T cell subset signature genes (described in Supplementary Fig. 4a). The rightmost
graph shows that the correlation is highest when only significantly differentially expressed genes (DEGS) are
selected. Note that in DP subset, the majority of genes is located in the bottom left quadrant and present in SATB1-
dependent loops (triangles). P values and correlation coefficients were calculated using a function stat_cor from the
R package ggpubr with default settings. The grey zones indicate 95% confidence level interval for predictions from
a linear model (blue line).
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Supplementary Figure 8
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Supplementary Fig. 8. Genomic tracks and SATB1 HiChlIP loops for important immune-related genes. Depicted
genes displayed strong SATB1 looping connecting them with enhancers. Numbers next to gene regions within the
RNA-seq tracks represent DESeq2 normalized RNA-seq counts. Genes related to cellular adhesion and
communication Cd28, Ccr7 and Tnf locus (including Lta, Ltb) are presented in Supplementary Fig. 12. Legend: th —

thymocytes, DP — CD4*CD8" T cells, RKO — Rad21"MCd4-Cre* and SKO — Satb1"fCd4-Cre*.
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Supplementary Figure 9
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Supplementary Fig. 9. Chromosome conformation capture at Bcl6 locus. a A scheme of the Chromosome
Conformation Capture (3C) for the mouse Bcl6 gene locus (525 kb). Coordinates (mm10) of the Dpnll restriction
fragments used in the 3C analysis assay are indicated for the Bcl6 promoter region, its two enhancers and the genomic
regions utilised as controls. The arrows indicate the Dpnll recognition sites. For each fragment of interest, a pair of
primers was designed and used for PCR reactions in pairwise combinations. Gapd products obtained with primer
pairs for two genomic fragments of the Gapd locus, being 559 bp apart, were used as control. The 3C analysis has



been performed two times with three technical replicates for each biological replicate and similar results have been
obtained.
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Supplementary Figure 10
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Supplementary Fig. 10. SATB1 regulates Bcl6 expression via promoter-enhancer loops. a A scheme of the
Chromosome Conformation Capture (3C) for the mouse Bcl6 gene locus (525 kb). Coordinates (mmZ10) of the Bglll
restriction fragments used in the 3C analysis assay are indicated for the Bcl6 promoter region, its two enhancers and
the genomic regions utilised as controls. The arrows indicate the Bglll recognition sites. For each fragment of interest,
a pair of primers was designed and used for PCR reactions in paired combinations. The signal of each reaction was
measured to calculate the relative crosslinking frequency. Gapd products obtained with primer pairs for two Bglll
genomic fragments of the Gapd locus, being 559 bp apart, were used for normalization. b Results of the 3C
experiments depicted in a. The relative crosslinking frequency (y axis) was calculated for the Bcl6 promoter Bglll
fragment with the two control (Ctrl-1 and Ctrl-2) fragments as well as the two upstream enhancers (Enhl and Enh2).
Results are from 2 technical replicates from 1 biological replicate to support data in Supplementary Fig. 9 and data
from Hi-C and HiChlIP experiments. Data represent the mean * s.d. ¢ Relative steady state mRNA levels in WT and
Satbl cKO (SKO) thymocytes. RT-qPCR results for the mouse Bcl6, Ragl and Rag2 genes. Results are from 2
biological replicates and the gPCR was performed in triplicates. The relative mRNA expression level for each gene
was corrected based on Hprtl expression in WT and Satb1 cKO thymocytes samples. Values were calculated based
on the AACt method and they are presented as fold change in Satbl cKO (SKO) over WT. Data represent the mean
+ s.d. d Immunofluorescence experiments on WT and Satbl cKO thymocytes for BCL6 expression. Blue DAPI,
scale bar 2 um. RIGHT: The cumulative fluorescence per cell values (y-axis) for each genotype (wild type and Satbl
cKO) are characterized by box plots. The boundary of the box closest to zero indicates the 25th percentile, the line
within the box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile.
Whiskers (error bars) above and below the box indicate the 90th and 10th percentiles. Single cell outliers (5% of
total signals) are indicated in the vicinity outside the whiskers. Box plots were created in Sigma Plot 12.
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Supplementary Figure 11
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Supplementary Fig. 11. Deregulation of Bcl6 promoter-enhancer contacts results in autoantibody production.
a 3D computational modeling of the Bcl6 locus utilizing chromatin contact domains (CCD) from HiChlIP data. The
model indicated that CTCF is responsible for maintaining the high order structure which is not sufficient to mediate
the contact between the Bcl6 gene and its enhancers. The combination of CTCF and SATB1-based models
emphasized the importance of SATBL in mediating the promoter-enhancer contacts. b Hi-C-derived 3D models for
WT and Satb1 cKO thymocytes with overlaid WT ChlP-seq data for histone modifications H3K27ac, H3K4mel and
H3K4me3 (visualized as a color-gradient). Models indicate how active enhancers decorated by H3K27ac and
H3K4mel are located in a close spatial proximity to Bcl6 gene via SATB1-dependent chromatin interactions in WT
and not in Satbl cKO cells. WT ChlIP-seq data were used to emphasize the importance of the 3D organization. 1D
H3K27ac ChlP-seq peaks derived from HiChIP experiments available for WT and Satbl cKO did not reveal any
major differences between the genotypes, further reinforcing the importance of SATB1-dependent 3D chromatin
organization regulating Bcl6 expression. Position of beads corresponding to SATB1 loop anchors and demarcating
the super-enhancer regions were: chrl6:23985000-23990000 (Bcl6), chrl6:24245000-24250000 (SE1) and
chr16:24505000-24510000 (SE2). c Distances between Bcl6 and its super-enhancer 1 were quantified based on
n=5,000 models derived from n=2 biological replicates of WT and Satbl cKO Hi-C datasets. The boxplots in the
upper panel show median (red line) and mean (black dot) with the left and right edges of the box representing the
25" (Q1) and 75" (Q3) percentiles, respectively. The whiskers represent positions of the lowest data point above Q1-
1.5*(Q3-Q1) and the highest data point below Q3+1.5*(Q3-Q1). Outliers outside the whiskers are shown as dots.
All the distances for each model analyzed can be found in the source data file. Mean rank WT: 2616.3162. Mean
rank Satbl cKO: 7384.6838, P = 0.0 (two-sided Mann-Whitney U test, non-adjusted for multiple comparisons), Dip
test results: WT: [171.205, 200.087], [200.248, 298.606] and Satb1 cKO: [198.063, 441.868]. d Satb1l cKO pancreas
and lung sections were incubated with serum from either WT or Satbl cKO animals to detect the presence of
autoantibodies. Scale bar 100 um. Two biological replicates have been performed for the pancreas sections and two
biological replicates for the lung sections and similar results have been obtained.
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Supplementary Figure 12
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Supplementary Fig. 12. Gene ontology pathways for the omics datasets used in this study. a Gene ontology (GO)
pathways of Satbl cKO underexpressed genes. b GO pathways of Satbl cKO overexpressed genes. ¢ GO pathways
of genes located in regions with less accessible chromatin in Satb1 cKO. d GO pathways of genes located in regions
with more accessible chromatin in Satbl cKO. e GO pathways of genes located in anchors of SATB1-dependent
loops which were also H3K27ac underinteracting in Satbl cKO. f GO pathways of genes located in anchors of
SATB1-dependent loops which are also H3K27ac overinteracting in Satb1 cKO. In a-f, cumulative hypergeometric
P values calculated by g:Profiler'” are displayed.
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Supplementary Figure 13
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Supplementary Fig. 13. Genomic tracks and SATB1 HiChIP loops for genes related to cellular adhesion and
communication. SATB1-dependent regulatory looping affects genes related to cellular adhesion and communication
such as Cd28, Ccr7 and Tnf locus (including Lta, Ltb). Numbers next to gene regions within the RNA-seq tracks

represent DESeq2 normalized RNA-seq counts. Legend: th — thymocytes, DP — CD4"CD8" T cells, RKO —
Rad21"MCd4-Cre* and SKO — Satb1"MCd4-Cre*.
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Supplementary Notes
Validation of long SATB1 isoform binding sites

To validate the long SATBL1 isoform-specific binding sites that we have characterized, we compared
them to two publicly available SATB1 ChIP-seq datasets that were prepared using standard SATB1
antibodies targeting non-selectively, both the short and long SATB1 isoforms!®!8, Our dataset for the
long SATBL1 isoform binding sites had closer relative distance to both public SATB1 ChIP-seq datasets
than expected by chance (Supplementary Fig. 4d). Irrespective of the differential peak size among the
datasets, this method allowed us to validate a non-random overlap between the long and all SATB1
isoform datasets. Similarly, a pixel-based colocalization analysis based on super-resolution microscopy
confirmed the significant correlation and overlap between the immunofluorescence staining utilizing
antibodies targeting the long and all SATB1 isoforms®®. Moreover, all three SATB1 binding site datasets
showed qualitatively comparable association with genomic features (Supplementary Fig. 4e),
collectively supporting the quality of our dataset. Ultimately, the validity of our dataset was also
confirmed by the correlation between the peaks and peak-based chromatin loops and their functional

deregulation in SATB1-depleted cells as discussed in the main text.

Results of the linear regression model

The quality plots of the model are depicted in Supplementary Fig. 6a-d and the adjusted R-square of the
model was 0.1128. The change of the Akaike Information Criterion (AIC, Supplementary Fig. 6e)
estimated how the quality of the model was affected when all the predictors were kept intact except one.
The y-axis corresponds to the removed predictor, while the x-axis indicates how the AIC for the new
model was altered. An increase indicated that the predictor was “useful” for the model. Based on the AIC
plot, neither SATB1 binding upstream and downstream of genes nor CTCF-dependent loops contributed
to the accuracy of the model. On the other hand, differences in chromatin accessibility and connectivity

via H3K27ac loops along with SATB1-dependent loops performed very well as predictors. Non-useful
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predictors were not used in the final model. The final model coefficients for the important predictors are
displayed in Supplementary Fig. 6f. The sign of each coefficient indicates whether a predictor is
associated with decreased (negative) or increased (positive) RNA levels in Satb1 cKO. Genes present at
anchors of overinteracting H3K27ac chromatin loops and/or with increased chromatin accessibility were
associated with increased RNA levels in Satbl cKO. In contrast, the genes present at anchors of
underinteracting H3K27ac chromatin loops or SATB1-dependent loops and/or genes bound by SATB1

were associated with reduced RNA levels.
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