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Supplementary Methods and Results 

 

Exploring the parameter space of the MAG-based simulations 

The selection simulation framework that we describe in the main text represents an extremely 

strong selection acting upon taxa encoding the focal gene in each profile. Specifically, this 

simulated selective advantage included (in the sample group experiencing selection) adding a 

pseudocount of one to the abundance of all taxa that encoded the focal gene and then multiplying 

the resulting abundance by 1.5. 

To confirm that POMS is not only performing better under this extreme condition, we 

also created and tested simulated profiles over a range of weaker selection settings. These altered 

settings included not adding a pseudocount and/or multiplying the abundances by lower factors 

(1.05 and 1.25, in addition to the original value of 1.5). In addition to either adding a 

pseudocount or not, we also varied what proportion of relevant metagenome-assembled genomes 

(MAGs) would receive a pseudocount (the pseudocount itself was 1 in all cases), testing 

specifically proportions of 0, 0.3, 0.7, and 1. These proportions represent the proportion of 

randomly sampled MAGs, of the subset that encode the focal gene, whose abundance is 

increased by one. We additionally tested the impact of different numbers of MAGs in these 

simulations, to investigate how dataset size affects the POMS framework. We varied the number 

of MAGs between these values: 100, 250, 500, 1000, and 1595 MAGs. To keep this analysis 

manageable, we considered only 10 independent replicates for each of the 60 combinations of 

these simulation settings. To enable clearer comparisons between replicates with differing 

number of MAGs, we considered the same 10 KEGG orthologs to be the focal genes for all 

settings combinations. When subsampling MAGs, this was done randomly except that the 

proportion of MAGs encoding the focal KEGG ortholog was kept as similar as possible (to a 

minimum of five MAGs). This analysis clearly demonstrated that across most settings the focal 

genes were substantially more highly ranked by the phylogenetic methods compared with the 

Wilcoxon test approach (Supp. Figure 2). The Wilcoxon test was chosen as the representative 

differential abundance test for these additional experiments due to its high speed of computation. 

The same overall trends for the random taxa and clade-based analyses presented in the main text 

were also observed consistently under these varied parameter settings. 
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The exception to the above observation was in simulation settings where no pseudocount 

was added, in which the focal gene was largely non-significant in the POMS output due to 

insufficient statistical power. This drop in statistical power is reflected by lower numbers of 

balance-significant nodes (BSNs) on average for these settings (Supp. Figure 3). In contrast, the 

focal genes were highly ranked on average based on the Wilcoxon test for these simulation 

settings. 

Our analysis also demonstrated a marked drop in the number of BSNs in simulations with 

250 or fewer MAGs (Supp. Figure 3). POMS was unable to call any focal genes as significant 

in these simulations due to the small number of BSNs, while many were called as significant by 

other approaches. 

 Finally, these analyses also demonstrated that two other observations reported in the main 

text—the overall tendency of phylogenetic regression to result in a non-negligible proportion of 

significant hits under the random taxa and clade-based simulations, as well as the observation 

that the Wilcoxon test identifies a higher proportion of significant hits overall—were robust to 

the simulation settings (Supp. Figure 8). 

 

Reference-genome-based simulations 

Our observations based on the MAG-based simulations are valuable, but one caveat is that the 

quality of published MAGs is often questionable1. To ensure that misassembled MAGs were not 

driving our results, we repeated our simulation approach on 500 reference genomes. 

 These genomes were taken from the Integrated Microbial Genomes database2 and were 

previously parsed for use with PICRUSt23. Per-genome KEGG ortholog annotations were taken 

from the default PICRUSt2 database. To clarify, these annotations are based on complete 

genomes (i.e., with no imputation) and were obtained from the PICRUSt2 database as it provided 

a convenient and easy-to-use format for our analyses. We created a de novo phylogenetic tree 

based on a set of universal single-copy genes with GToTree4 v1.4.16. This approach parses out 

universal single-copy genes from genome sequences and wraps several tools to build a 

phylogenetic tree. The tool was run with the bacterial hidden Markov model setting and with 

FastTree5 v2.1.10. GToTree also returns estimates of the percent completeness and redundancy 

for each genome. We excluded all genomes with completeness below 95% and/or redundancy 
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above 5%. We then randomly sampled 500 of the remaining high-quality genomes for the 

subsequent analyses. 

 We next simulated random abundances of these genomes across 1000 samples based on 

the zero-inflated beta distribution implemented in the rBEZI function of the gamlss.dist v5.1.7 R 

package6. Simulations under this model can be modified with three key metrics: mu (the mean), 

nu (the probability of zero abundance), and sigma (the standard deviation). For these simulations 

we maintained values of mu and sigma of 0.1 and 1, respectively, throughout. We generated four 

simulated datasets based on nu values set to 0.5, 0.65, 0.8, and 0.95. When generating these 

simulated datasets we required that each sample contain a minimum of five genomes (i.e., 

simulated profiles were re-run if fewer than five genomes had non-zero abundance). These 

altered nu values had a large impact on the sparsity and inter-sample overlap of each dataset 

(Supp. Figure 4a). 

We then re-ran the key steps of our simulation analysis on these simulated abundance 

tables and genomes. Specifically, we repeated the focal gene-based simulation, including 

applying POMS, both phylogenetic regression approaches, and the Wilcoxon tests (USCG-

corrected), over 500 replicate profiles for each of the four datasets. In all cases, we filtered out 

genes found in <5 genomes prior to running analyses. The Wilcoxon test was applied after taking 

the cross-product of the taxonomic abundances and taxa gene copy numbers to get the sample-

wise gene abundances, as in the main text. The focal gene ranks varied substantially depending 

on the abundance table simulation approach (Supp. Figure 4b). The focal genes were ranked 

significantly highest for the Wilcoxon approach under the low sparsity settings (the distributions 

were significantly different [Wilcoxon test P < 0.01] in all cases). For example, when nu = 0.5, 

the median gene ranks were one and 13.5 for the Wilcoxon test and POMS, respectively. This 

trend reversed with the sparser abundance tables with nu = 0.8 (POMS median rank: 16; 

Wilcoxon test median rank: 19.5) and nu = 0.95 (POMS median rank: 34.25; Wilcoxon test 

median rank: 968). Notably, sparse abundance tables are the norm in microbiome data, and the 

non-sparse settings indicated in Supp Figure 4a are biologically unrealistic in virtually all 

environments. 

We also investigated the relationship between focal gene ranks and the number of 

genomes encoding the focal gene. Like in the MAG-based simulation results, those significant 

focal genes in the POMS output that were not amongst the most significant genes (i.e., focal 
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genes at higher ranks) were encoded by fewer genomes (Supp. Figure 5). This was true for the 

other tested approaches as well, overall. However, the focal gene ranks based on Wilcoxon test 

p-values displayed a positive linear relationship with the number of encoding genomes for the 

sparsest simulated dataset (nu = 0.95). There was a significant positive correlation in this case 

(Pearson R = 0.756; P < 10-15). This result was similar to the positive correlation between focal 

gene rank and number of encoding genomes that we also observed in the corresponding analysis 

on the MAG-based simulations (Supp. Figure 6). Overall, these reference genome-based 

simulation results are consistent with the key observations from the MAG-based simulations, at 

least when taxa are sparsely distributed, which is characteristic of microbiome datasets. 
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Supplementary Figure 1: Workflow diagram for metagenome-assembled genome-based simulations. 
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Supplementary Figure 2: Median significance ranking of focal gene determined by representative tools across 

replicates per simulation setting. The “pseudo” setting is the proportion of metagenome-assembled genomes (MAGs) that 

encoded the focal gene that were randomly selected per sample to have a pseudocount of 1 added to their abundance. The 

“abun” setting represents the scaling factor of the abundance of each genome encoding the focal gene after addition of the 

pseudocount. Grey boxes indicate cases where the focal gene was not significant in any replicate. There were 4710 genes 

tested as part of the full dataset (with 1595 MAGs). For each dataset of decreasing size there are fewer genes tested. On 

average there were 2342.3, 3040.9, 3786.0, and 4419.7 for datasets of size 100, 250, 500, and 1000 MAGs, respectively. 
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Supplementary Figure 3: Mean number of significant nodes based on sample balances (i.e., balance-significant 

nodes) across replicates for each simulation setting. The “pseudo” setting is the proportion of metagenome-assembled 

genomes that encoded the focal gene that were randomly selected per sample to have a pseudocount of 1 added to their 

abundance. The “abun” setting represents the scaling factor of the abundance of each genome encoding the focal gene after 

this pseudocount step. 
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Supplementary Figure 4: Genome prevalence and ranking percentiles of focal genes varies across all simulation 

datasets. (a) The prevalence (%) of each genome (or metagenome-assembled genome [MAG]) across all samples in a 

dataset. (b) The ranking percentiles of the focal gene within the list of significant genes for each simulated dataset setting. 

The reference genome-based simulated datasets were altered based on four parameter settings, which greatly affect 

genome prevalence. The “MAG-based” group corresponds to the simulation results shown in the main text, which were 

included to enable comparisons with those results. There were 6191 genes tested for all reference-genome based 

simulations, and 4710 genes tested as part of the MAG-based validations. 
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Supplementary Figure 5: Focal gene ranks versus the number of genomes in which they are encoded, based on 

reference genome simulations. Simulation setting (determined by the value of nu, the probability that a feature has an 

abundance of 0), and tool name, are indicated above each panel. Each panel matches a boxplot shown in Supplementary 

Figure 4b. There were 6191 genes tested for all reference-genome based simulations.  
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Supplementary Figure 6: Focal gene rankings are strongly associated with the number of metagenome-assembled 

genomes (MAGs) in which the focal gene is encoded. Each point is a simulation replicate analyzed with each of the 

approaches described in the main text. Each scatterplot represents the distribution of how the focal gene was ranked (1 being 

most significant) in the output of each tool, against how many MAGs encoded that gene. Only replicates where the focal gene 

was significant are shown. There were 4710 genes (KEGG orthologs) tested in all cases. 
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Supplementary Figure 7: Number of metagenome-assembled genomes (MAGs) that encode the focal gene in cases 

where it was called as significant and cases where it was not. The tested approach and result category are indicated 

above each panel. Bin sizes of 5 were used for all panels, except for non-significant phylogenetic regression and Wilcoxon 

test panels, where a bin size of 50 was used to allow improved visualization. The number of replicates is indicated in each 

panel.  
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Supplementary Figure 8: 

Mean proportion of 

significant functions in 

output of the two 

phylogenetic regression 

workflows, the Wilcoxon 

test, and POMS across 

focal gene-based 

replicates per simulation 

setting. The three panels 

(a-c) correspond to the 

three simulation 

approaches described in 

the main text. The 

“pseudo” setting is the 

proportion of 

metagenome-assembled 

genomes (MAGs) that 

encoded the focal gene 

that were randomly 

selected per sample to be 

given a pseudocount of 1 

to their abundance. The 

“abun” setting represents 

the scaling factor of the 

abundance of each 

genome encoding the focal 

gene after this 

pseudocount step. KOs: 

KEGG orthologs (i.e., the 

tested functions). 
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Supplementary Figure 9: Runtime for phylogenetic regression approaches and POMS. Each runtime shown is a mean 

of three replicates. Timing includes entire workflow (e.g., the time to read in the in-files and compute the specificity scores is 

included for the upper-right panel). 
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Supplementary Figure 10: Faith’s phylogenetic diversity of taxa that encode significant functions in (a) Tara Oceans 

and (b) human case-control datasets. Each point is a function that was identified as significant (false discovery rate < 0.25) 

based on POMS or phylogenetic regression. Faith’s phylogenetic distance is the sum of all branch lengths connecting all taxa 

in a phylogenetic tree (restricted to taxa that encode a given significant function in this case). Data types (e.g., KOs and 

pathways) without significant hits output by both approaches were dropped. KOs: KEGG orthologs. 
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Supplementary Figure 11: Consistently enriched functions (CEFs) in POMS output are not generally amongst the top 

significant hits based on other tested approaches. Each dot corresponds to the rank of a CEF (i.e., a function identified 

as significant based on POMS) in the list of significant functions identified by an alternative tool. 
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Supplementary Table 1: Significant KEGG pathways and modules in obesity datasets based on POMS (KEGG 
orthologs were excluded here due to the high number of hits) 

 

 
 

aSignificant based on phylogenetic regression in the same dataset 


