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In this Supplementary Information document, we assess the structural properties of
the considered model for fibromyalgia pathogenesis (cf. Eqs. (1)-(3) in the main paper)
and, in particular, we mathematically analyze the effect of the negative feedback loops,
driven by GABAergic activity, on the system behavior.

We consider Eqs. (1)-(3) in the main paper, reported here for ease of perusal,

τ Ṡ + S = f(V ) (1)

τ Ṫ + T = f(V + S) (2)

τ V̇ + V =
g(aT ) · Sp

h(aT )p + Sp
(3)

where the variables S, T and V represent the mean firing rates of neuron populations
belonging to SC, TRN, and VPL, respectively (with the neuron baseline firing rate set
to 0), while f(·) is a generic increasing Hill function, g(·) is a generic decreasing Hill
function and h(·) is a generic increasing Hill function plus a constant.

The strength of the inhibitory interaction (giving rise to both negative feedback
loops) is represented by parameter a ≥ 0, which represents the efficacy of the inhibitory
GABAergic activity.

Here, we prove that the following qualitative properties hold.

• The system always admits the zero equilibrium (corresponding to baseline
activity for all neuron populations), which is always stable.

• When the inhibitory GABAergic activity is absent, i.e. a = 0, the system is
cooperative and it may exhibit multistability. The number of equilibria is then
odd (including the zero equilibrium).

• For any possible strength of the GABAergic inhibitory interaction a ≥ 0, the
equilibria can always be ordered, namely, at each equilibrium the values of
all variables (S, T , V ) are larger than the corresponding values at the previous
equilibrium. For instance, in the case of three equilibria, the equilibrium values for
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the variables S, T , and V are ordered as follows:

0 = S̄0 < S̄1 < S̄2

0 = T̄ 0 < T̄ 1 < T̄ 2

0 = V̄ 0 < V̄ 1 < V̄ 2

• Which type of behavior can we expect for a small? If for a = 0 there are
three equilibria, then the system is bistable and it remains bistable for a small
enough. In particular, there are two stable equilibria, the “low” zero equilibrium
(S̄0, T̄ 0, V̄ 0) = (0, 0, 0) and the “high” equilibrium (S̄2, T̄ 2, V̄ 2), while the equilib-
rium (S̄1, T̄ 1, V̄ 1) in the middle is unstable. There exists a threshold a∗ such that
the bistability property remains valid for all 0 ≤ a ≤ a∗.

• Which type of behavior can we expect for a large? There is a threshold ā such that,
for all a > â, no positive equilibria can exist: the only admissible equilibrium
is the zero equilibrium corresponding to baseline neuron activity, (S̄0, T̄ 0, V̄ 0) =
(0, 0, 0), which is stable.

• Corresponding to the critical value a∗, a single positive equilibrium exists, besides
the equilibrium at zero, which is shown to be unstable.

An important conclusion can be drawn based on our model: the transition to a
pathological state is not continuous, because a threshold a∗ is expected to lead to an
abrupt change in the qualitative behaviour. Precisely, a∗ corresponds to the transition
value above which only the zero (healthy) equilibrium is possible and below which also
pathological equilibria exist. For values of a approaching 0, the stable pathological
equilibrium becomes the highest possible in terms of the values of S̄, T̄ and V̄ .

1 Model Formulation and Assumptions

Definition 1 A twice differentiable function f(x), defined for x ≥ 0, is a sigmoidal
function if f(0) = 0 and f is increasing (for positive values of the argument) and asymp-
totically constant: limx→∞ f(x) = c, with 0 < c < ∞. Moreover, the derivative of f is
zero both at 0, f ′(0) = 0, and at infinity, limx→∞ f

′(x) = 0, and it has a single maximum
for some positive x̂.

An example of a sigmoidal function is the Hill-type expression considered in the main
paper:

f(x) =
αxp

βp + xp
,

with p > 1 and positive real parameters α and β.

Definition 2 A twice differentiable function g(x), defined for x ≥ 0, is a complementary
sigmoidal function if g(0)−g(x) is a sigmoidal function, namely, if g(0) = c > 0 and g is
decreasing (for positive values of the argument) and asymptotically zero: limx→∞ g(x) =
0. Moreover, the derivative of g is zero both at 0, g′(0) = 0 and at infinity limx→∞ g

′(x) =
0, and it has a single minimum for some positive x̂.
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An example of a complementary sigmoidal function is the Hill-type expression considered
in the main paper:

g(x) =
γ

δp + xp

with p > 1 and positive real parameters γ and δ.

Then, the model considered in the main paper belongs to the general class

τSṠ + S = f1(V ) (4)

τT Ṫ + T = f2(V + S) (5)

τV V̇ + V = k(aT, S) (6)

where functions f1 and f2 are assumed to be sigmoidal (as per Definition 1, see Figure
1 left), while function k(aT, S) is decreasing in the first argument and increasing in the
second (see Figure 1 right).

For a fixed value of T = T0 > 0, function k̃(S)
.
= k(aT0, S) is sigmoidal (as per

Definition 1, hence it has the same properties stated before). Conversely, for a fixed
value of S = S0 > 0, k̂(aT )

.
= k(aT, S0) is a decreasing function of aT , asymptotically

converging to 0: limaT→∞ k̂(aT ) = limaT→∞ k(aT, S0) = 0. We also assume that

• k(0, S) > 0 for all S > 0, while k(0, 0) = 0

• k(aT, 0) = 0 for all aT ≥ 0

• ∂k
∂aT

= 0 for aT = 0

• ∂k
∂S

= 0 for S = 0

An example of such function k is the one considered in the main paper:

k(aT, S) =
g(aT ) · Sp

h(aT )p + Sp
,

where g is a complementary sigmoidal function (as per Definition 2), and

h(aT ) = e0 +m2
(aT )p

ep + (aT )p
.

f

V S

k

aT

Figure 1: Function f(V ) is a sigmoidal function of V (left), while function k(aT, S) is a sig-
moidally increasing function of S and a decreasing function of aT (right).

2 Model analysis

We are interested in a parametric investigation with respect to a ≥ 0 (in the main paper,
we focus on 0 ≤ a ≤ 1).
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2.1 Boundedness

Since the functions f1, f2 and k are bounded (they cannot exceed a maximum value,
regardless of the values of their arguments), the solutions of the system are bounded due
to the presence of the linear terms.

2.2 Equilibria

Let us consider the set of possible equilibria. The zero vector (S̄0, T̄ 0, V̄ 0) = (0, 0, 0)
is always an equilibrium, associated with the baseline neuron activity (healthy state).
This can be immediately checked by substituting the zero vector in the system equations
(4)–(6): then, the resulting derivatives become zero. We wonder whether there are other
equilibrium points.

The equilibria are derived by setting Ṡ = 0, Ṫ = 0, V̇ = 0 and finding the solution of
the resulting system of algebraic equations:

S = f1(V ) (7)

T = f2(V + S) (8)

V = k(aT, S) (9)

As anticipated, (S̄0, T̄ 0, V̄ 0) = (0, 0, 0) is always a solution. In general, from (9) we get

Ψ(a, V ) = −V + k(af2(V + f1(V )), f1(V )), (10)

where we consider V as a variable and a as a parameter. The roots of function Ψ in V
correspond to the possible equilibrium values, for a given a.

V

a
a>0

a=0

VV

Figure 2: The roots of function Ψ(a, V ) in (10) (Ψ(a, V ) = 0). The value V = 0 is always
a root, regardless of the value of a. The two positive roots obtained for a = 0 (black curve)
include all the possible positive roots for a > 0 (blue curve) ; in fact, increasing the value of a
lowers the curve. The presence of three roots corresponds to the existence of three equilibria for
the dynamical system, hence bistability occurs. For a > 0 large enough, no positive roots can
exist: the only root is the one at zero, hence the only possible equilibrium for the dynamical
system is the zero equilibrium associated with baseline neuron activity.

Figure 2 offers a visual intuition of the mathematical analysis.
For fixed a ≥ 0, the function Ψ as a function of V is initially decreasing and, for

large values of V , it converges to −∞, therefore the number of intersections is odd.
Consider the curve for a = 0 and assume that the largest root of Ψ(0, V ) = 0 is V̄ . Then,
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since increasing the value of a lowers the curve, for positive values of a all the roots of
Ψ(a, V ) = 0 are smaller than V̄ .

Before proceeding with our analysis, we introduce the notion of critical root.

Definition 3 Given the equation f(V ) = 0, a root V ∗ is critical if, besides being a zero
of the function, f(V ∗) = 0, it is a zero also of the function derivative: f ′(V ∗) = 0.
For our considered system, we call critical equilibrium an equilibrium corresponding to
a critical root of function Ψ(a, V ).

We may have a critical root V ∗ of Ψ(a, V ) for some critical value of a, a = a∗. In
fact, we can have the following possible cases, depicted in Fig. 2.

• For large values of a, there is only the root at zero (cf. the red curve in Fig. 2).

• For small values of a, in addition to the root at zero, there are multiple roots
(cf. the blue curve in Fig. 2), all included between the extremal positive roots
of Ψ(0, V ), corresponding to a = 0 (cf. the black curve in Fig. 2, with extremal
positive roots V̂ and V̄ ).

• There is a critical intermediate value, a = a∗, for which a critical root exists (cf.
the green curve in Fig. 2), in addition to the root at zero.

We can formalize these findings in the following propositions.

Proposition 1 Assume that there are no critical roots. Then, the number of nonnegative
roots of equation Ψ(a, V ) = 0 is odd.

Proof: Let a ≥ 0. The derivative of function Ψ computed at V = 0 is

dΨ(a, V )

dV

∣∣∣∣
V=0

= −1 + a
∂k

∂(af2)
f ′2(V + f1(V ))(1 + f ′1(V )) +

∂k

∂f1

f ′1(V )

∣∣∣∣
V=0

= −1,

because both f ′1(0) = 0 and f ′2(0) = 0. Hence, for any fixed a, function Ψ(a, V ) is
negative in a right neighborhood of 0. For V large, function Ψ(a, V ) tends to −∞,
because function k is a composition of bounded functions, while function (−V ) tends to
−∞. Therefore, the curve can intersect the abscissa axis an odd number of times overall
(counting also the intersection at 0). �

If, for some value a = a∗, there is a critical root V = V ∗ (see the green curve
shown in Fig. 2), Proposition 1 still holds provided that the roots are “counted with
their multiplicity”. Since Ψ(a∗, V ∗) = 0, d

dV
Ψ(a∗, V ∗) = 0 and the second derivative is

non-zero, the Taylor expansion is:

Ψ(a∗, V ) =
1

2!

d2

dV 2
Ψ(a∗, V ∗)(V − V ∗)2 +

1

3!

d3

dV 3
Ψ(a∗, V ∗)(V − V ∗)3 + . . . ,

and the critical root has multiplicity 2; the roots have a multiplicity corresponding to the
index of the first non-zero derivative. Later on, we will analyse the stability properties
of the critical equilibrium, corresponding to a critical root, and conclude its instability.

Proposition 2 Consider the largest (positive) root V̄ of ψ(0, V ) = 0, with a = 0, and
the corresponding equilibrium values S̄ = f1(V̄ ) and T̄ = f2(V̄ +S̄). Let V̂ be the smallest
positive root of ψ(0, V ) = 0, with a = 0, and Ŝ = f1(V̂ ), T̂ = f2(V̂ +Ŝ) the corresponding
equilibrium values. Then, for all a > 0, all possible equilibria (S̄a, T̄a, V̄a) satisfy

Ŝ < S̄a < S̄, T̂ < T̄a < T̄ , V̂ < V̄a < V̄ .

In case no positive equilibria exists for a = 0, namely V̄ = T̄ = S̄ = 0 is the unique
equilibrium when a = 0, then no positive equilibrium can exist also for a > 0.
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Proof: The result follows immediately from the fact that, being function k decreasing in
the first argument, increasing the value of a shifts the curve down-word. Therefore, since
Ψ(a, V ) ≤ Ψ(0, V ) and Ψ(0, V ) < 0 for V > V̄ , the roots V̄a of Ψ(a, V ) = 0 are smaller
than V̄ : V̄a < V̄ . In turn, S̄a = f1(V̄a) < f1(V̄ ) = S̄ and T̄a = f2(V̄a + S̄a) < f2(V̄ + S̄) =
T̄ , because both f1 and f2 are increasing functions. The proof for the lower bounds is
identical. �

2.3 Stability analysis

We consider the following definition of stability.

Definition 4 An equilibrium is stable if the linearized system around that equilibrium
has eigenvalues with strictly negative real part. Otherwise, the equilibrium is unstable.

In principle, this definition is restrictive, since there are examples of systems whose
linearization has eigenvalues with non-positive real part, including eigenvalues with zero
real part, and whose trajectories converge to the equilibrium if the initial condition is close
enough. However, we do not contemplate this fragile situation as a stable equilibrium,
hence we rule out eigenvalues with zero real part, because infinitesimal perturbations can
make their real part positive.

We now prove that the healthy equilibrium at zero, corresponding to baseline activity
for all neuron populations, is always stable.

Proposition 3 The equilibrium (S̄0, T̄ 0, V̄ 0) = (0, 0, 0) is always stable.

Proof: Since the derivatives of functions f1, f2 and k are zero when computed at the
origin, the linearized system at the origin is associated with a diagonal state matrix

A = diag{ − 1/τS, − 1/τT , − 1/τV },

whose eigenvalues are the diagonal elements, which are real and negative. Hence, the
equilibrium is stable. �

The theory that follows allows for any (odd) number of equilibria. However, to avoid
cumbersome notations, we assume that the equilibria can be at most three: the possible
roots of ψ(a, V ), for a given a, are

0 = V̄ 0
a < V̄ 1

a < V̄ 2
a

of which only the zero root surely exists. Correspondingly, the values for S and T are

0 = S̄0
a < S̄1

a = f1(V̄ 1
a ) < S̄2

a = f1(V̄ 2
a )

and
0 = T̄ 0

a < T̄ 1
a = f2(V̄ 1

a + S̄1
a) < T̄ 2

a = f2(V̄ 2
a + S̄2

a)

This proves the ordering among the equilibria.
We can also prove the following result.

Proposition 4 For a = 0, if there are three ordered equilibria, the zero equilibrium
(S̄0, T̄ 0, V̄ 0) = (0, 0, 0) and the “high” equilibrium (S̄2, T̄ 2, V̄ 2) are stable, while the
medium equilibrium (S̄1, T̄ 1, V̄ 1) is unstable. There exists a threshold a∗ > 0 such that
this pattern is preserved for all a < a∗.

Proof: The result immediately follows from the fact that, for a = 0, the system is
monotone (see [1] and [2]) and therefore enjoys special properties: its equilibria are
ordered and alternating, stable and unstable. The last claim follows by continuity. �
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2.4 Equilibria for large a

Finally, the next proposition states that, for a large enough, there are no positive roots
for Ψ(a, V ) = 0.

Proposition 5 There exists a threshold â such that, for a > â, the only possible equilib-
rium is the one at zero.

Proof: Assume that two positive roots exists for Ψ(0, V ) = 0, denoted as V̂0 and V̄0, with
0 < V̂0 < V̄0. For any a, all other positive roots must be in the interval [V̂0, V̄0] (whose
extrema are the black dots shown in Figure 2), according to Proposition 2.

Now, by contradiction, assume that no such threshold â exists. Hence there exists a
sequence aj →∞ for which a positive root V̄aj exists, which must necessarily be within

the interval [V̂0, V̄0]. The sequence of such roots {V̄aj} has an accumulation point V̄ ∗.
Without loss of generality, we can assume that {V̄aj} converge to V̄ ∗ (if not, we just
need to consider a proper converging sub-sequence). Then, since Ψ(aj, Vaj) = 0 and
V̄aj → V̄ ∗, necessarily Ψ(aj, V

∗) → 0 for some j. On the other hand, by assumption
k(ajT, S) converges to 0 as aj →∞. Since

Ψ(aj, V
∗)︸ ︷︷ ︸

→0

= −V ∗ + k(ajf2(V ∗ + f1(V ∗)), f1(V ∗))︸ ︷︷ ︸
→0

,

then V ∗ must be 0, which is not possible because V ∗ ≥ V̂0 > 0. The result is therefore
proven by contradiction. �

2.5 Critical equilibria

When a critical equilibrium is present, then we can show that it is unstable.

Proposition 6 Assume that, besides the equilibrium at zero, there exists a critical equi-
librium. Then, the critical equilibrium is unstable.

Proof: Let us rewrite the derivative of Ψ(a, V ) as follows:

dΨ(a, V )

dV

∣∣∣∣
V=V ∗

= −1 + a
∂k

∂(aT )
f ′2(V + S)(1 + f ′1(V )) +

∂k

∂S
f ′1(V )

∣∣∣∣
V=V ∗

= 0.

The derivative is zero by assumption, because we are considering a critical equilibrium
with S∗ = f1(V ∗) and T ∗ = f2(V ∗ + S∗). Now consider the Jacobian J of the system
factorized as follows:

J =

 1
τS

0 0

0 1
τT

0

0 0 1
τV

  −1 0 f ′1(V ∗)
f ′2(V ∗ + S∗) −1 f ′2(V ∗ + S∗)
∂k(aT ∗,S∗)

∂S
a∂k(aT ∗,S∗)

∂(aT )
−1


Computing its determinant, det(J), we immediately check that it is proportional to the

derivative dΨ(a,V )
dV

, therefore it is zero when computed at V = V ∗:

det(J) =
1

τSτT τV

dΨ(a, V )

dV

∣∣∣∣
V=V ∗

= 0,

which is in line with the definition of critical equilibrium. This means that the Jacobian
is singular, hence it admits λ = 0 as an eigenvalue, which implies the instability of the
equilibrium, according to our definition. �
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Although the scenario with a critical equilibrium is unlikely to occur, because it
happens for a specific value of a∗, the analysis is interesting also to understand the
case in which two equilibria are very close: in this case we could have, in principle,
stability of the upper equilibrium, but its domain of attraction would be very small.
This implies that, for the upper (pathological) equilibrium to be stable with a large
domain of attraction, the value of a must be sufficiently small.
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