1 Supplementary

2 **Supplementary Table 1.** Comparison of adverse events following immunization between

	Total	SV	AZ	Both	
	N=60 (%)	N=60 (%)	N=60 (%)	N=60 (%)	P-value
Total AEFI	50 (83.3)	16 (26.7)	43 (71.7)	9 (15.0)	< 0.001
Local AEFI	32 (53.3)	11(18.3)	29 (48.3)	7 (16.3)	< 0.001
Systemic AEFI	43 (71.6)	12 (20.0)	35(58.3)	4 (6.7)	< 0.001

3 CoronaVac and ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccine

4 AEFI, adverse events following immunization; AZ, ChAdOx1-nCoV-19 (Oxford-

5 AstraZeneca); SV, CoronaVac (Sinovac Life Sciences, Beijing, China)

7 Supplementary Table 2. SARS-CoV-2 anti-RBD Abs of CoronaVac followed by ChAdOx1

8 nCoV-19 (Oxford-AstraZeneca) vaccine according to the use of immunosuppressive drugs

9 compared with healthy group.

Immunosuppressive drug	SARS-CoV-2 anti-RBD Ab (BAU/mL)	P-value
Healthy group (n=30)	699.5 (399.0,1693.0)	reference
GC (n=24)	215.7 (52.6,539.8)	0.001
MTX (n=10)	973.4 (252.1,1671.0)	0.999
MMF (n=5)	19.0 (1.6,240.2)	0.001
AZA (n=13)	223.7 (91.2,537.6)	0.012

12

- 15

16

17

- -
- 19

⁶

Peptide number	Amino acid start position	Sequence	
1	1	MFVFLVLLPLVSSQC	
2	6	VLLPLVSSQCVNLTT	
3	11	VSSQCVNLTTRTQLP	
4	16	VNLTTRTQLPPAYTN	
5	21	RTQLPPAYTNSFTRG	
6	26	PAYTNSFTRGVYYPD	
7	31	SFTRGVYYPDKVFRS	
8	36	VYYPDKVFRSSVLHS	
9	41	KVFRSSVLHSTQDLF	
10	46	SVLHSTQDLFLPFFS	
11	51	TQDLFLPFFSNVTWF	
12	56	LPFFSNVTWFHAIHV	
13	61	NVTWFHAIHVSGTNG	
14	66	HAIHVSGTNGTKRFD	
15	71	SGTNGTKRFDNPVLP	
16	76	TKRFDNPVLPFNDGV	
17	81	NPVLPFNDGVYFAST	
18	86	FNDGVYFASTEKSNI	
19	91	YFASTEKSNIIRGWI	
20	96	EKSNIIRGWIFGTTL	
21	101	IRGWIFGTTLDSKTQ	
22	106	FGTTLDSKTQSLLIV	
23	111	DSKTQSLLIVNNATN	
24	116	SLLIVNNATNVVIKV	
25	121	NNATNVVIKVCEFQF	
26	126	VVIKVCEFQFCNDPF	
27	131	CEFQFCNDPFLGVYY	

20 Supplementary Table 3. Amino acid sequences of SARS-CoV-2 S1 peptides (ProImmune).

Peptide number	Amino acid start position	Sequence	
28	136	CNDPFLGVYYHKNNK	
29	141	LGVYYHKNNKSWMES	
30	146	HKNNKSWMESEFRVY	
31	151	SWMESEFRVYSSANN	
32	156	EFRVYSSANNCTFEY	
33	161	SSANNCTFEYVSQPF	
34	166	CTFEYVSQPFLMDLE	
35	171	VSQPFLMDLEGKQGN	
36	176	LMDLEGKQGNFKNLR	
37	181	GKQGNFKNLREFVFK	
38	186	FKNLREFVFKNIDGY	
39	191	EFVFKNIDGYFKIYS	
40	196	NIDGYFKIYSKHTPI	
41	201	FKIYSKHTPINLVRD	
42	206	KHTPINLVRDLPQGF	
43	211	NLVRDLPQGFSALEP	
44	216	LPQGFSALEPLVDLP	
45	221	SALEPLVDLPIGINI	
46	226	LVDLPIGINITRFQT	
47	231	IGINITRFQTLLALH	
48	236	TRFQTLLALHRSYLT	
49	241	LLALHRSYLTPGDSS	
50	246	RSYLTPGDSSSGWTA	
51	251	PGDSSSGWTAGAAAY	
52	256	SGWTAGAAAYYVGYL	
53	261	GAAAYYVGYLQPRTF	
54	266	YVGYLQPRTFLLKYN	
55	271	QPRTFLLKYNENGTI	

Peptide number	Amino acid start position	Sequence	
56	276	LLKYNENGTITDAVD	
57	281	ENGTITDAVDCALDP	
58	286	TDAVDCALDPLSETK	
59	291	CALDPLSETKCTLKS	
60	296	LSETKCTLKSFTVEK	
61	301	CTLKSFTVEKGIYQT	
62	306	FTVEKGIYQTSNFRV	
63	311	GIYQTSNFRVQPTES	
64	316	SNFRVQPTESIVRFP	
65	321	QPTESIVRFPNITNL	
66	326	IVRFPNITNLCPFGE	
67	331	NITNLCPFGEVFNAT	
68	336	CPFGEVFNATRFASV	
69	341	VFNATRFASVYAWNR	
70	346	RFASVYAWNRKRISN	
71	351	YAWNRKRISNCVADY	
72	356	KRISNCVADYSVLYN	
73	361	CVADYSVLYNSASFS	
74	366	SVLYNSASFSTFKCY	
75	371	SASFSTFKCYGVSPT	
76	376	TFKCYGVSPTKLNDL	
77	381	GVSPTKLNDLCFTNV	
78	386	KLNDLCFTNVYADSF	
79	391	CFTNVYADSFVIRGD	
80	396	YADSFVIRGDEVRQI	
81	401	VIRGDEVRQIAPGQT	
82	406	EVRQIAPGQTGKIAD	
83	411	APGQTGKIADYNYKL	

Peptide number	Amino acid start position	Sequence	
84	416	GKIADYNYKLPDDFT	
85	421	YNYKLPDDFTGCVIA	
86	426	PDDFTGCVIAWNSNN	
87	431	GCVIAWNSNNLDSKV	
88	436	WNSNNLDSKVGGNYN	
89	441	LDSKVGGNYNYLYRL	
90	446	GGNYNYLYRLFRKSN	
91	451	YLYRLFRKSNLKPFE	
92	456	FRKSNLKPFERDIST	
93	461	LKPFERDISTEIYQA	
94	466	RDISTEIYQAGSTPC	
95	471	EIYQAGSTPCNGVEG	
96	476	GSTPCNGVEGFNCYF	
97	481	NGVEGFNCYFPLQSY	
98	486	FNCYFPLQSYGFQPT	
99	491	PLQSYGFQPTNGVGY	
100	496	GFQPTNGVGYQPYRV	
101	501	NGVGYQPYRVVVLSF	
102	506	QPYRVVVLSFELLHA	
103	511	VVLSFELLHAPATVC	
104	516	ELLHAPATVCGPKKS	
105	521	PATVCGPKKSTNLVK	
106	526	GPKKSTNLVKNKCVN	
107	531	TNLVKNKCVNFNFNG	
108	536	NKCVNFNFNGLTGTG	
109	541	FNFNGLTGTGVLTES	
110	546	LTGTGVLTESNKKFL	
111	551	VLTESNKKFLPFQQF	

Peptide number	Amino acid start position	Sequence	
112	556	NKKFLPFQQFGRDIA	
113	561	PFQQFGRDIADTTDA	
114	566	GRDIADTTDAVRDPQ	
115	571	DTTDAVRDPQTLEIL	
116	576	VRDPQTLEILDITPC	
117	581	TLEILDITPCSFGGV	
118	586	DITPCSFGGVSVITP	
119	591	SFGGVSVITPGTNTS	
120	596	SVITPGTNTSNQVAV	
121	601	GTNTSNQVAVLYQDV	
122	606	NQVAVLYQDVNCTEV	
123	611	LYQDVNCTEVPVAIH	
124	616	NCTEVPVAIHADQLT	
125	621	PVAIHADQLTPTWRV	
126	626	ADQLTPTWRVYSTGS	
127	631	PTWRVYSTGSNVFQT	
128	636	YSTGSNVFQTRAGCL	
129	641	NVFQTRAGCLIGAEH	
130	646	RAGCLIGAEHVNNSY	
131	651	IGAEHVNNSYECDIP	
132	656	VNNSYECDIPIGAGI	
133	661	ECDIPIGAGICASYQ	
134	666	IGAGICASYQTQTNS	

Antibody	Fluorochrome	Dilution	Clone	Cat number	Source
CD3	PerCP	1:50	SP34-2	552851	BD Horizon
CD4	APC-H7	1:200	SK3	641398	BD
CD8	APC	1:200	SK1	340584	BD
L/D	Aqua	1:1000	-	L34957	Invitrogen
IFN-gamma	PE-Cy7	1:100	B27	557643	BD Pharmingen
TNF-alpha	PE-CF594	1:100	MAb11	562784	BD Horizon

27 Supplementary Table 4. Fluorochrome conjugated antibodies for flow cytometry analysis.

Supplementary Figure 1. T cell responses in patients with systemic autoimmune rheumatic diseases using different immunosuppressive drugs and healthy group. The cells were stained and analyzed using flow cytometry. T cell responses vary by immunosuppressive drugs. (a) Percentage of CD4+ T cells between each immunosuppressive drug and the healthy group.(b) Percentage of CD8+ T cells between each immunosuppressive drug and the healthy group. Each symbol represents one participant and data are presented as the median with 95% CI. Statistical significance was determined using the Mann–Whitney test between groups. *p≤0.05, **p≤0.01, ***p≤0.001, ns=non-significant.

Supplementary Figure 2. Effector cytokine-producing CD4+ T cell responses in patients with systemic autoimmune rheumatic diseases using different immunosuppressive and healthy group. Frozen PBMCs were thawed and stimulated with S1 peptide pools. Blood samples were processed to obtain PBMCs. The cells were stained for surface markers and intracellular cytokines. Representative the flow plots of IFN-y producing CD4+ T cell responses (a). TNF- α producing CD4+ T cells (b) and IFN- γ and/or TNF- α secreting CD4+ T cells (c) in SARDs with different immunosuppressive drugs and the healthy group. Each symbol represents one participant and data are presented as the median with 95% CI. Statistical significance was determined using Mann–Whitney test between groups. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.

Supplementary Figure 3. Effector cytokine-producing CD8+ T cell responses in patients 70 with systemic autoimmune rheumatic diseases using different immunosuppressive and 71 healthy group. Frozen PBMCs were thawed and stimulated with S1 peptide pools. Blood 72 samples were processed to obtain PBMCs. The cells were stained for surface markers and 73 intracellular cytokines. Representative the flow plots of IFN-y producing CD8+ T cell 74 responses (a). TNF- α producing CD8+ T cells (b) and IFN- γ and/or TNF- α secreting CD8+ 75 76 T cells (c) in SARDs with different immunosuppressive drugs and healthy group. Each symbol represents one participant and data are presented as the median with 95% CI. 77 Statistical significance was determined using Mann–Whitney test between groups. * $p \le 0.05$, 78 ****p≤0.0001, ns=non-significant. 79

83 Supplementary Figure 4. Gating strategy for the effector cytokine producing T cells. Live

- 84 CD3+ cells were gated to determine the percentages of IFN- γ and TNF- α production in CD8+
- and CD4+ T cells.