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Supplementary Fig. 1. Reconstitution of the human NT and SD reactions.                  
(A) Multiple turnover ligation assays of nick substrates containing a complete DNA block 
(Sub#5; Supplementary Fig. 7) or 1-nt RNA to the 5’ end of the nick junction (Sub#6; 
Supplementary Fig. 7) under 1 nM Lig1 conditions. (B) Quantification of the ligation yields 



of the reactions presented in panel A. For Lig1 WT, the initial reaction rate was estimated 
as the slope of a linear fit of the first three experimental datapoints.                                           
(C) and (D) Quantification of the NT (C) reaction median product lengths and (D) yields 
from Figures 1D, E. The quantification was performed for the reaction products formed in 
50 s and the median length synthesis was determined using median analysis as 
described in Methods. NT products were only quantified for those above the length of the 
first NP. (E) SD and (F) NT products of a primer-labeled 5-nt gap (Sub#2; Supplementary 
Fig. 7) at room temperature (RT) under 25 nM Polδ Exo– and 25 nM FEN1 conditions. 
(G) Quantification of SD (panel E) and NT (panel F) median product lengths as a function 
of time. Experimental datapoints were fitted to linear dependencies with a fixed intercept 
of 33 nt. (H) Quantification of the relative abundance of the 1-nt NT products at various 
intervals determined from panel F. (I) Quantification of the insertion probabilities of the 
first 11 nt following gap closure from the data presented in panels E and F. Nucleotide 
insertion probabilities were determined using Eq. S21 (Supplementary Methods).             
(J) Product survival probabilities estimated from the data presented in panel I using Eq. 
S22 (Supplementary Methods). The experimental datapoints were fitted to single-
exponential survival functions as detailed in Eq. S26 (Supplementary Methods). For 
panels I and J the datapoints and the error bars represent the average and the standard 
deviation between the probabilities estimated at 30, 40 and 50 s reaction times. (K) SD 
products of a primer-labeled 5-nt gap (Sub#2), (L) NT products of a primer-labeled 5-nt 
gap (Sub#2), and (M) NT products of a block-labeled 5-nt gap (Sub#3; Supplementary 
Fig. 7) at 37 °C under 25 nM Polδ Exo– and 25 nM FEN1 conditions. (N) Quantification of 
SD (panel K) and NT (panel L) median product lengths as a function of time. Experimental 
datapoints were fitted to linear dependencies with a fixed intercept of 33 nt.                          
(O) Quantification of the reaction rates presented in panel L and M. Median product 
lengths beyond the first NP were determined for each reaction time as described in 
Methods. The experimental datapoints were fitted to linear dependencies with fixed 
intercepts (28 nt for block length reduction and 33 nt for primer length increase). (P) SD 
and (Q) NT products of a primer-labeled 5-nt gap (Sub#2) at 37 °C under 25 nM Polδ WT 
and 25 nM FEN1 conditions. (R) Quantification of SD (panel P) and NT (panel Q) median 
product lengths as a function of time. Experimental datapoints were fitted to linear 
dependencies with a fixed intercept of 33 nt. (S) Quantification of the yield of products 
with lengths strictly higher than the Primer (28 nt) and strictly lower than the first NP (33 
nt) as a percentage of total products not including the substrate, from panels K, L, P, and 
Q. (T) SD products of a primer-labeled 5-nt gap (Sub#2) at 37 °C for 30 s under 25 nM 
Polδ Exo– conditions in the presence of increasing concentration of Polδ Exo– Pol– as 
competitor for dissociated Polδ Exo–. The reactions were initiated by the addition of 
dNTPs and Polδ Exo– Pol–. Median SD product lengths beyond the first NP were 
determined at each Polδ Exo– Pol– concentration as described in Methods. (U) Multiple 
turnover cleavage of flap substrates with various 5’ flap lengths (Subs#7–10; 
Supplementary Fig. 7) by FEN1 WT or FEN1 ΔC in the absence of PCNA under the 
following conditions: 1 nM FEN1, 37 °C, 3 min. Source data are provided as a Source 
Data file. 



 

Supplementary Fig. 2. MOF protein interactions. (A) Schematic illustration of the flap 
labeling scheme used to monitor flap cleavage. (B) Examples of emission spectra of the 
flap-labeled double flap (Sub#22; Supplementary Fig. 7) after the addition of various MOF 
protein combinations. (C) Apparent FRET efficiencies of the flap-labeled double flap 
(Sub#22) after the addition of various MOF protein combinations in the presence of 
RFC•PCNA and under the following conditions: 15 nM FEN1, 250 nM Polδ, and 500 nM 
Lig1. The bar chart illustrates the mean (as bar height) and one standard deviation (as 
error bar) of three independent measurements. (D) Apparent FRET efficiencies of the 
internally labeled substrates (Subs#14–21; Supplementary Fig. 7) after the addition of 



Polδ and Lig1. The bar chart illustrates the mean (as bar height) and one standard 
deviation (as error bar) of three independent measurements. (E) and (F) The effect of 
increasing the Lig1 WT or Lig1 ΔN concentrations on the (E) SD and (F) NT reactions. 
For panel E, the DNA substrate was a 5-nt gap containing an unphosphorylated and 
unpaired 5’ nucleotide (Sub#4; Supplementary Fig. 7); while for panel F, an unmodified 
5-nt gap was used (Sub#2; Supplementary Fig. 7) under the following conditions: 250 nM 
Polδ, 250 nM FEN1, RT, 30 seconds. (G) Quantification of the experimental data 
presented in panels E (top) and F (bottom). The top sub-panel was generated using the 
median analysis on each lane for products above and including the first NP. Source data 
are provided as a Source Data file. 
  



 

Supplementary Fig. 3. FEN1 and Polδ interactions monitored at the single-molecule 
level. (A) and (B) Monitoring FEN1 (250 nM FEN1 D181A)-induced bending at the single-
molecule level through (A) the flap labeling scheme (Sub#22; Supplementary Fig. 7) and 
(B) the internal labeling scheme (Sub#12; Supplementary Fig. 7). In the absence of 
FEN1, the substrates were found in single stable FRET states. Upon FEN1 addition, a 
sharp FRET transition was observed. At saturating FEN1 concentration the substrates 
were found in different stable FRET states. All single-molecule time traces were acquired 
with a temporal resolution of 160 ms. (C) Histogram illustrating the distribution of FRET 
efficiencies of the NP (Sub#24; Supplementary Fig. 7) determined from single-molecule 
measurements. For all FRET states histograms, the average FRET efficiencies for the 
various substrates and conformations were obtained as the mean of histogram-fitted 
Gaussian distributions. (D) Histogram of the distributions of dwell times of the bent 
conformer from the internal labeling scheme in the absence (Sub#12) of pre-loaded 
PCNA from time-traces similar to the one illustrated in Figure 3D. The indicated mean 



and error of the dwell time distribution represent the raw arithmetic mean and standard 
error of the mean of the raw datapoints that were binned into the histogram, without 
additional histogram fitting. (E) Bar chart illustrating the efficiency of Polδ holoenzyme 
assembly on the double flap (Sub#12) in the presence of pre-loaded PCNA as deduced 
from a single-molecule field of view (time-traces illustrated in Figures 3F, G). (F) Box plot 
illustrating the time-averaged FRET efficiencies before and after the transition of the 
double flap (Sub#12) from Polδ to FEN1 as deduced from time-traces similar to the one 
illustrated in Figure 3I. The box of the box plot is bounded by the 25th and 75th percentiles, 
and the centerline is placed at the median level (50th percentile). The whiskers of the box 
plot are placed at the 5th and 95th percentiles. The experimental datapoints, spanning 
from the minimum to the maximum values, are overlapped over the boxes. The p-value 
was determined using a two-sample two-sided t-test for equal means together with 
unknown and unequal standard deviations (a Behrens-Fisher problem). The MATLAB 
implementation of the test uses Satterthwaite’s approximation for the effective degrees of 
freedom. No additional adjustments were applied to the data or to the test. Source data 
are provided as a Source Data file. 
  



 

Supplementary Fig. 4. MOF protein interactions via PCNA. (A)–(D) Protein-protein 
EMSA to test the interaction between (A) Polδ and (C) Lig1 using PCNA in solution in the 
absence of DNA. Quantification of the experimental results illustrated in (B) panel A and 
(D) panel C. The experimental datapoints were fitted to a dependence proportional to that 
in Eq.1 (Methods). (E) Emission spectra of a double flap (Sub#25; Supplementary Fig. 7) 
labeled with Cy5 at the tip of the 5’flap and Cy3 at position four downstream of the 3’ end 
of the double flap junction in the presence of NT proteins. This experiment, conducted 
under 250 nM Polδ and 15 nM FEN1 conditions, monitored both the flap cleavage induced 
by FEN1 (FRET and PIFQ) as well as the recruitment of Polδ (FeSQ) to form the 
FEN1•Polδ•PCNA toolbelt complex on the FEN1 cleavage-generated NP: 250 nM Polδ, 
15 nM FEN1. (F) Emission spectra of an internally labeled NP (Sub#26; Supplementary 
Fig. 7) in the presence of FEN1 (2000 nM), pre-loaded PCNA, and/or Lig1 (500 nM). 
Source data are provided as a Source Data file. 
 
 
  



 

Supplementary Fig. 5. FEN1 exonuclease activities. (A) and (C) FEN1 (250 nM) 
exonuclease activity on (A) a 5-nt gap (Sub#3; Supplementary Fig. 7) and (C) NP 
(Sub#11; Supplementary Fig. 7), in the presence of pre-loaded PCNA. (B) and (D) 
Quantification of the time-dependence of FEN1 exonuclease activity illustrated in (B) 
panel A and (D) panel C. The experimental datapoints were fitted to single-exponential 
substrate-depletion burst equations as !𝑆ubstrate	amount = 10	nM ∗ 𝑒!" #!"#$%&'($)*+	-./⁄ 4 
and !Substrate	amount = 10	nM ∗ 𝑒!" #!"#$%&'($'0⁄ 4. Source data are provided as a Source 
Data file. 
 
 
  



 

Supplementary Fig. 6. RNase H2 ribonuclease activity. (A) RNase H2 (250 nM) 
cleavage activity on a 5-nt gap (Sub#33; Supplementary Fig. 7) containing 12-nt RNA at 
the 5’ end of the block. (B) Quantification of the time-dependence of RNase H2 
exonuclease activity is presented in panel A. The experimental block reduction datapoints 
were fitted to a single-exponential substrate-depletion burst equation as 
!Substrate	amount = 10	nM ∗ 𝑒!" #(1*+	2'3$)*+	-./$2'.45	61⁄ 4. Source data are provided as a 
Source Data file. 
 
  



 

Supplementary Fig. 7. Structure and sequences of the DNA substrates used. The 
mixing ratios of the oligonucleotides used for substrate annealing before gel purification 
are indicated as 3’Primer:Template:5’Block/Flap ratios, with 3’ and 5’ relative to the 
junction. 
  



Supplementary Methods 

Derivation of a fitting model for polymerization kinetics data 
 

The purpose of the current derivation is to obtain and prove analytical expressions that 

relate well-established processivity parameters to the empirical cumulative occupancies 

of polymerization products (Eqs. 19, 21, 25, 26). These equations are employed for the 

empirical data analysis presented in Figures S1I, J. The kinetic scheme used for the 

derivation is based on the model presented in Ref.1 for a DNA motor moving in uniform 

steps with finite processivity. The scheme is expanded to include the contribution of 

protein-unbound intermediate products to the empirical cumulative occupancies of the 

polymerization products, which are not taken into account in the original model presented 

in Ref.1. In general, throughout the existing literature, the expression illustrated by Eq. 

S21 is consider well-established and employed empirically without additional proof based 

on an underlying kinetic model. 

 

Consider the following: a DNA polymerase enzyme (E) associates with a primer-template 

DNA substrate (S0) prior to the initiation of the polymerization reaction to give an enzyme-

substrate complex (ES0). The efficiency of the assembly of this complex is dictated by the 

enzyme and substrate concentrations as well as their affinity. Nevertheless, for all intents 

and purposes, a case is considered here in which this initial complex formation is 

saturated. Upon the initiation of the polymerization reaction, for example, by the addition 

of dNTPs, the chain reaction can be modeled via the following kinetic scheme: 
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where N represents each substrate extension length from 0 to Nmax, kf is the rate of 

incorporation of the following nucleotide, kd is the dissociation rate of the polymerase from 

the current substrate, ESN is the polymerase-bound substrate extended by N nucleotides, 



SN is the substrate extended by N nucleotides after polymerase dissociation, and Nmax is 

the maximum number of nucleotides that can be added by polymerase because of the 

finite length of the DNA template. This scheme is precise in instances where a trap is 

added to prevent the re-binding of free polymerases to the SN intermediates. Should a 

trap not be present, then kd would be the net rate of dissociation, defined as the difference 

between the true rate of dissociation and the instantaneous rate of enzyme re-

association. The fractional occupancy of each of the ESN intermediates for such an N-

steps kinetic scheme was derived previously1 as: 
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where Γ(𝑁) is the Euler Gamma function defined as Γ(𝑁) = ∫ 𝑥)!'𝑒!2𝑑𝑥4
%  and 𝛾(𝑁, 𝑧) is 

the lower incomplete gamma function defined as 𝛾(𝑁, 𝑧) = ∫ 𝑥)!'𝑒!2𝑑𝑥5
%  with a dummy 

integration variable x. Upon reaction quenching, proteinase treatment, and substrate 

denaturation, both ESN and SN intermediates contribute to the intensity of the same Nth 

product band; therefore, the expression of the fractional occupancy of the SN 

intermediates needs to be derived. This procedure starts by noting the kinetic equation 

for SN formation: 
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where square brackets denote the concentrations of the corresponding species. Dividing 

both sides by the total substrate concentration allows for Eq. S3 to be formed with 

fractional occupancies: 
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This final equation can be integrated directly, giving the fractional occupancy of the 

substrate extended by N nucleotides following polymerase dissociation: 
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As mentioned previously, both ESN and SN intermediates contribute to the intensity of the 

same Nth product band; therefore, the fractional intensity of the Nth product band is 

obtained as the sum of 𝑓*+;(𝑡) and 𝑓+;(𝑡) which is denoted as 𝑓)(𝑡) with the general 

expression: 
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To simplify these expressions, the following variable changes can be made, as was 

previously described1: 
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Given these changes, the system described in Eq. S6 can be redefined as: 
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where 𝑘678 is the effective reaction rate, and P is a microscopic factor related to enzyme 

processivity1,2. At a fixed reaction time, 𝑓)(𝑡) can be regarded as a discrete probability 

momentum function (PMF) of the distribution of various intermediate products (e.g., the 

distribution of normalized band intensities on a gel). This PMF system contains all the 

kinetic information about the system. Since the Gamma functions are well defined, even 

for real-valued N, this PMF can be naturally extended to a continuous probability 

momentum function (PDF). Nevertheless, for model fitting purposes, in general, the 

cumulative density function (CDF) functions better than the PDF, as integration may 

average random fluctuations. Therefore, we define the cumulative density of the products 

from 0 to N (e.g., for data obtained by the integration of intensity along a gel’s lane, as 

was previously described for median rate determination3) as FN(t): 
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Thereafter, the system can be redefined using Eq. S7 and the recurrence relations for the 

Gamma functions: Γ(𝑁 + 1) = 𝑁	Γ(𝑁) and 𝛾(𝑁 + 1, 𝑧) = 𝑁	𝛾(𝑁, 𝑧) −	𝑧)𝑒!5. Following 

simple algebraic operations, the system can be redefined as: 
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The summation in Eq. S9 can then be carried out immediately as a telescoping series, 

yielding: 

 

𝐹)(𝑡) = 𝑃%
𝛾(0, 𝑘678	𝑡)

Γ(0) − 𝑃).'
𝛾(𝑁 + 1, 𝑘678	𝑡)

Γ(𝑁 + 1) ,			𝑓𝑜𝑟	0 ≤ 𝑁 < 𝑁012			(𝑆11) 

 

It is worth noting that the expression on the right-hand side is not directly well defined 

because the integrals that define the Gamma functions are not convergent for N = 0. 



Nevertheless, this can be overcome by introducing a limit and by considering the following 

series expansion of the lower incomplete Gamma function: 𝛾(𝑁, 𝑧) =
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4
&;% . Rearranging the terms and setting the limit to zero with respect 

to N yields results in the following for any finite non-zero z: 
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The last infinite sum is immediately recognized as the Maclaurin series expansion of 	𝑒5. 

With this observation, the above limit can be defined as: 
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This observation defines the final expression for cumulative occupancy as: 
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Given that the fractional occupancies must add up to unity, as expected, it can easily be 

verified that 𝐹)89"(𝑡) = 𝐹)89"!'(𝑡) + 𝑓)89"(𝑡) ≡ 1. As such, the final kinetic model in 

cumulative form can be defined as: 
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Observations: 
 

1. Asymptotic behavior of the cumulative form in the long timescale, as 𝒕 ≫ 𝟏 𝒌𝒐𝒃𝒔⁄ . 
To determine this, the following property of the incomplete gamma function was used: 
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=1, for any real finite N. If 𝑘678 is finite and strictly positive, the desired limit can 

be defined as: 

 

lim
"→4

𝐹)(𝑡) = 1 − 𝑃).' lim
"→4

𝛾(𝑁 + 1, 𝑘678	𝑡)
Γ(𝑁 + 1) = 1 − 𝑃).',			𝑓𝑜𝑟	0 ≤ 𝑁 < 𝑁012			(𝑆16) 

 

This equation demonstrates that over a long timescale, the cumulative distribution of the 

products depends exclusively on the processivity. 

 

2. Concentration dependence of processivity in cases where enzyme re-association 
occurs. For this purpose, the general step of the scheme presented in Eq. S1 can be 

reconsidered as: 
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where 𝑘6,, is the microscopic dissociation rate, 𝑘6G is the microscopic association rate, 

and 𝑐* is the free enzyme concentration. Given that free enzyme is present in the system, 

it can be assumed that the instantaneous dissociation rate, 𝑘3, depends on a combination 

of 𝑘6,, and 𝑐* ∗ 𝑘6G. Given that the processivity factor (i.e., Eq. S7) depends on 𝑘3, it 

follows that it will also depend on 𝑐* ∗ 𝑘6G and therefore also on 𝑐*. In combination with 

the asymptotic behavior described above, the enzyme concentration dependence of the 

processivity can be used to assess whether complete dissociation and re-association of 

the enzyme takes place during the entirety of the intermediary steps. If processivity-like 

behavior is present on a long timescale, but it is concentration independent, then other 

explanations must be sought; such models may include bifurcations into inactive 

conformers, incomplete dissociation, and a non-uniform rate throughout the reaction. 

These intermediates may contribute to protein removal and substrate denaturation during 

the distribution of SN. 



3. An alternative empirical derivation of processivity and an extension to pointwise 
processivity factors. Inspired by methodology applied previously4, the following limit can 

be considered: 
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Considering the asymptotic behavior presented in Eq. S16, the desired limit can be 

redefined as: 
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This expression offers an empirical method for determining the processivity factor from 

the relative distribution of the reaction products. In cases where the processivity is non-

uniform throughout the reaction, as previously described4, this expression is generalized 

as: 

 

𝑃).' = lim
"→4

∑ 𝑓:(𝑡)
)89"
:;).'

∑ 𝑓:(𝑡)
)89"
:;)

,			𝑓𝑜𝑟	0 ≤ 𝑁 < 𝑁012			(𝑆20) 

 

Moving the N+1 index back by one unit on both sides of the equation above is useful, 

resulting in the following: 

 

𝑃) = lim
"→4

∑ 𝑓:(𝑡)
)89"
:;)

∑ 𝑓:(𝑡)
)89"
:;)!'

,			𝑓𝑜𝑟	1 ≤ 𝑁 ≤ 𝑁012			(𝑆21) 

 

Here, 𝑃) describes an apparent pointwise processivity factor associated with the 

probability of the Nth product being formed over a long timescale. In other words, it 

describes the probability of moving forward from the (N-1)th step to the Nth step of the 

reaction. This value is considered apparent because the condition 𝑡 → ∞ is impossible to 



achieve experimentally; moreover, some residual contribution of the rate may still be 

present, despite experimental efforts. By default, P0 = 1 because the existence of ES0 

and S0 does not involve any catalytic step. It is worth noting that mathematically, PN 

describes a series of conditional probabilities because the Nth step of the reaction can 

only occur if all the previous N-1 steps have already occurred. Based on the definition of 

conditional probability, the total probability of the formation of the Nth product can now be 

defined as: 

 

𝑄) ={𝑃:

)

:;%

,			𝑓𝑜𝑟	0 ≤ 𝑁 ≤ 𝑁012			(𝑆22) 

 

Given the above definition of P0, it can immediately be deduced that Q0 = 1. For simple 

cases where the processivity factor is uniform throughout the reaction (i.e., Pi = P), then 

the last equation can be reduced to: 

 

𝑄) = 𝑃) ,			𝑓𝑜𝑟	0 ≤ 𝑁 ≤ 𝑁012			(𝑆23) 

 

Given Eq. S16, it is clear that 𝑃) = 1 − lim
"→4

𝐹)!'(𝑡). Inserting this expression on the right-

hand side of Eq. S23 results in 𝑄) = 1 − lim
"→4

𝐹)!'(𝑡). This expression alludes to the link 

between a survival function and its corresponding CDF in general. In fact, by following a 

few clear algebraic operations and considering that 0 < 𝑃 ≤ 1 < 𝑒, it can be shown that: 

 

𝑄) = 𝑃) = B𝑒HI JD) =	𝑒K	HI J = 𝑒!K	HI
'
J			(𝑆24) 

 

The expression 𝑒!L) can immediately be recognized as the survival function of an 

exponential distribution with a mean 1 𝜆⁄ . Setting 𝜆 = ln '
J
 results in a mean macroscopic 

processivity defined as: 

 



𝑃M1EN6 =
1

ln 1𝑃
= −

1
ln𝑃			

(𝑆25) 

 

As such, the expression in Eq. S24 can finally be redefined as: 

 

𝑄) = 𝑒!) JB9CD#⁄ 			(𝑆26) 

 

An exponential decay fit of 𝑄) vs. N can immediately recover 𝑃M1EN6 in the same units as 

N. Further, as mentioned above, the intercept of the fit was Q0 = 1. Ultimately, this mean 

macroscopic processivity (Eq. S25) contains less information than the set of pointwise 

processivity factors (Eq. S21), as it averages along the reaction steps. Nevertheless, the 

mean processivity can be useful for performing simple semi-quantitative comparisons 

under different reaction conditions. 
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