Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na⁺/H⁺ antiporter NHA2

SUPPLEMENTARY MATERIAL

Diego Velázquez¹, Vojtěch Průša¹, Gal Masrati², Elon Yariv², Hana Sychrova¹, Nir Ben-Tal², Olga Zimmermannova^{1*}

¹Laboratory of Membrane Transport, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic ²Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel

*corresponding author, e-mail: olga.zimmermannova@fgu.cas.cz (O.Z.)

E-mail addresses to other authors: Diego Vélazquez (D.V.): Diego.VelazquezSanchez@fgu.cas.cz Vojtěch Průša (V.P.): prusavojta2003@gmail.com Gal Masrati (G.M.): galmasrati@gmail.com Elon Yariv (E.Y.): elonyariv@gmail.com Hana Sychrova (H.S.): hana.sychrova@fgu.cas.cz Nir Ben-Tal (N.B-T.): bental@tauex.tau.ac.il

Figure S2: Comparison of localization of GFP-*Hs***NHA2 in two yeast backgrounds.** Transformants of AB11c (*ena1-4* Δ *nha1* Δ *nha1* Δ) or BW31 (*ena1-4* Δ *nha1* Δ) expressing GFP-*Hs*NHA2 from the pGFP-*Hs*NHA2 plasmid were grown in YNB-Pro (4% glucose) to the exponential phase and observed under a fluorescence microscope (right). A Nomarski prism was used for whole-cell imaging (left). The scale bar corresponds to 10 µm.

Figure S3: N-terminal GFP-tagging does not change substrate specificity, but increases activity of *Hs***NHA2 mutated versions.** Salt tolerance of *S. cerevisiae* BW31 cells containing empty vector or expressing GFP-*Hs*NHA2 or one of four GFP-*Hs*NHA2 versions with single point mutations P246A, T, S or G (A) or versions E215R, R432E or E215R + R432E (B) from pGFP-*Hs*NHA2*t* plasmid. Cells were grown on non-buffered YNB-Pro plates with the pH adjusted to 4.0 or 7.0 and supplemented with LiCl or NaCl as indicated. Plates were incubated at 30 °C and photographed on the indicated day.

			pH 4.0				
				LiCl	NaCl		
		Control	Control	12.5 mM	250 mM		
	Empty						
5	Native	O O		🔵 🌰 🌚 😚	🔵 🌒 🖗 🖂		
Μ	G238R	🔵 🔘 🏶 🎄			0		
F	V240L	• • * *		🌰 🎱 🎆 🗠	🕐 🎯 🌼 👘		
Hsl	D278G	• • * *		O	0		
-	K382E	🗩 🕘 🏶 🤫		🔘 🎲 🌛 \cdots	Ó		
Б	A406E		• • • •	🌑 🌚 🌐 👘			
ď	R432Q		•••	چ کې 🕘 🌒	🐠 🚸 🔆 🐳		

Figure S4: N-terminal GFP-tagging does not change substrate specificity of *Hs*NHA2 versions with mutations that belong to known human SNPs. The salt tolerance of *S. cerevisiae* BW31 cells containing the empty vector or expressing the native GFP-*Hs*NHA2 or one of six GFP-*Hs*NHA2 mutated versions - G238R, V240L, D278G, K382E, A406E and R432Q from the pGFP-*Hs*NHA2t plasmid. Cells were grown on non-buffered YNB-Pro plates with the pH adjusted to 4.0 and supplemented with LiCl or NaCl as indicated. Growth was monitored for 2 (control) or 7 (LiCl or NaCl) days at 30°C.

Figure S5: N-terminal GFP-tagging altered LiCl tolerance provided by *Hs***NHA2 versions truncated at N-terminus.** The salt tolerance of *S. cerevisiae* BW31 cells containing the empty vector or expressing the tagged GFP-*Hs*NHA2 or N-terminal truncated GFP-*Hs*NHA2 versions from the pGFP-*Hs*NHA2t. Cells were grown on non-buffered YNB-Pro plates with the pH adjusted to 4.0 and supplemented with LiCl or NaCl as indicated. Plates were incubated at 30 °C and photographed on the indicated day.

Tab	le S1.	Oligonuc	leotides	used	in	this	study
-----	--------	----------	----------	------	----	------	-------

Oligonucleotide	Sequence	Use
Hs NHA2-YEp-F	GTACATTATAAAAAAAAACCTGAACTTAGCTAGATATTATGGGGGATGAAGATAAAAG	pHs NHA2 and pHs NHA2t clonning
·	GTTTTTTGTACATTATAAAAAAAAAACCTGAACTTAGCTAGATATTATGTCTAAAGGTGAAGAA	
pNHA1-GFP-F	TTATTC	pGFP-Hs NHA2 and pGFP-Hs NHA2t
<i>Hs</i> NHA2 TPS1 Term F		pHs NHA2t and pGFP-Hs NHA2t clonning
U. NULAR TOCA To ma D		
HS NHA2_IPS1 Ierm R	GGALLAGGAATAGALGATLGTLTLATTIGLATLGGGTTLALTAAALTIGLALAGAAGTLTL	pHs NHA2t and pGFP-Hs NHA2t clonning
TPS1_Term_Yep_R	GTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCATGTGTTTCGAAGAAGAGAGATCAG	pHs NHA2t and pGFP-Hs NHA2t clonning
HsNHA2-P246A_Fw	GGTGCTGTATCTGCAGCTGTTGTGGTG	Mutagenesis P246A
<i>Hs</i> NHA2-P246A_Rev	CACCACAACAGCTGCAGATACAGCACC	Mutagenesis P246A
<i>Hs</i> NHA2-P246T_Fw	GGTGCTGTATCTACAGCTGTTGTGGTG	Mutagenesis P246T
<i>Hs</i> NHA2-P246T Rev	CACCACAACAGCTGTAGATACAGCACC	Mutagenesis P246T
	GGTGCTGTATCTTCAGCTGTTGTGGTG	Mutagenesis P246S
Hs NHA2-P2465 Rev		Mutagenesis P2/6S
		Mutagenesis P2465
		Nutagenesis P240G
HS NHA2_P246G_Rev		Mutagenesis P246G
HS NHA2-E215R_FW		Mutagenesis E215R and E215R + R432E
<i>Hs</i> NHA2-E215R_Rev	AGATGTGCACGCCCGCACAATACAGGG	Mutagenesis E215R and E215R + R432E
<i>Hs</i> NHA2-R432E_Fw	GCAGTATTGATAGAAATTTTGACTACA	Mutagenesis R432E and E215R + R432E
<i>Hs</i> NHA2-R432E_Rev	TGTAGTCAAAATTTCTATCAATACTGC	Mutagenesis E215R and E215R + R432E
<i>Hs</i> NHA2-G238R_Fw	GGATTTATACTGCGTTTTGTTTTAGGT	Mutagenesis G238R
Hs NHA2-G238R Rev	ACCTAAAACAAAACGCAGTATAAATCC	- Mutagenesis G238R
	ATACTGGGTTTTCTTTTAGGTGCTGTA	Mutagenesis V240
Hs NHA2-V2401 Rov	ΤΑΓΑΘΓΑΓΓΤΑΑΑΑΘΑΑΔΑΓΓΓΑΘΤΑΤ	Mutagenesis V240L
		Mutagenesis D2700
		Mutagenesis D278G
HS NHA2-D278G_Rev		Mutagenesis D278G
<i>Hs</i> NHA2-K382E_Fw	TGGACCAGCGAAGAGGCAGAGGTTGAA	Mutagenesis K382E
<i>Hs</i> NHA2-K382E_Rev	TTCAACCTCTGCCTCTCGCTGGTCCA	Mutagenesis K382E
<i>Hs</i> NHA2-A406E_Fw	GGACTAATTGGAGAAGAGGTATCTATT	Mutagenesis A406E
<i>Hs</i> NHA2-A406E_Rev	AATAGATACCTCTTCTCCAATTAGTCC	Mutagenesis A406E
<i>Hs</i> NHA2-R4320 Fw	GCAGTATTGATACAAATTTTGACTACA	Mutagenesis R432Q
Hs NHA2-R4320 Rev	TGTAGTCAAAATTTGTATCAATACTGC	Mutagenesis R4320
Hs NHA2 delta 1-20		$nH_{\rm S}$ NHA2t A1-20 clopping
H_2 NHA2 delta 1-20		$\mu_{\rm S}$ NHA2t A1 40 closning
Hs NHA2 delta 1-50	ACATTATAAAAAAAAACCTGAACTTAGCTAGATATTATGCTTCTGAAAAAGCAGTGAAAAAAAA	pHs NHA2t $\Delta 1-50$ clonning
<i>Hs</i> NHA2 delta 1-60	ACATTATAAAAAAAAATCCTGAACTTAGCTAGATATTATGGAAACACCAACTGAAGCAAATCAC	p <i>Hs</i> NHA2t Δ1-60 clonning
Hs NHA2 delta 1-70 F	ACATTATAAAAAAAAATCCTGAACTTAGCTAGATATTATGAGACTGAGACAAATGCTGGC	p <i>Hs</i> NHA2t Δ1-70 clonning
<i>Hs</i> NHA2 delta 1-75	ACATTATAAAAAAAAACCTGAACTTAGCTAGATATTATGCTGGCTTGCCCTCCACA	p <i>Hs</i> NHA2t Δ1-75 clonning
<i>Hs</i> NHA2 delta 1-80	ACATTATAAAAAAAAATCCTGAACTTAGCTAGATATTATGCATGGTTTACTGGACAGGGTC	p <i>Hs</i> NHA2t Δ1-80 clonning
<i>Hs</i> NHA2 delta 1-90	ACATTATAAAAAAAATCCTGAACTTAGCTAGATATTATGGTTACCATCATTGTTCTTCTGTGG	p <i>Hs</i> NHA2t Δ1-90 clonning
<i>Hs</i> NHA2 delta 1-110	ACATTATAAAAAAAAACCTGAACTTAGCTAGATATTATGCCTGGAGGAAACCTATTTGG	pHs NHA2t Δ 1-110 clonning
GFP-Hs NHA2 delta 1-20 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGTACACGCCCTCCATGCATCA	pGEP-Hs NHA2t A1-20 clonning
GEP-Hs NHA2 delta 1-20 R		nGEP-Hs NHA2t A1-20 clonning
GEP-Hs NHA2 delta 1-40 E		pGEP-Hs NHA2t A1-40 clopping
GFP-HS NHA2 delta 1-40 P		
GFP-HS NHAZ delta 1-40 K		$pGFP-Hs$ NHA2t $\Delta 1-40$ clonning
GFP-Hs NHA2 delta 1-50 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGCTTCTGAAAAAGCAGTGAAAAAAAA	pGFP-Hs NHA2t $\Delta 1-50$ clonning
GFP-Hs NHA2 delta 1-50 R	TTGGTGTTTCTTGTAGCTTTTTCACTGCTTTTCAGAAGCATAGAATTCGAAGCTTGAGCT	pGFP- <i>Hs</i> NHA2t Δ1-50 clonning
GFP- Hs NHA2 delta 1-60 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGGAAACACCAACTGAAGCAAATCAC	pGFP- <i>Hs</i> NHA2t Δ1-60 clonning
GFP- <i>Hs</i> NHA2 delta 1-60 R	TGTCTCAGTCTTTGTACGTGATTTGCTTCAGTTGGTGTTTCCATAGAATTCGAAGCTTGAGCT	pGFP- <i>Hs</i> NHA2t Δ1-60 clonning
GFP <i>Hs</i> NHA2 delta 1-70 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGAGACTGAGACAAATGCTGGC	pGFP- <i>Hs</i> NHA2t Δ1-70 clonning
GFP Hs NHA2 delta 1-70 R	GTAAACCATGTGGAGGGCAAGCCAGCATTTGTCTCAGTCTCATAGAATTCGAAGCTTGAGCT	pGFP-Hs NHA2t Δ 1-70 clonning
GFP- <i>Hs</i> NHA2 delta 1-75 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGCTGGCTTGCCCTCCACA	pGFP-Hs NHA2t Δ 1-75 clonning
GFP-Hs NHA2 delta 1-75 R	TTATGACCCTGTCCAGTAAACCATGTGGAGGGCAAGCCAGCATAGAATTCGAAGCT	pGFP-Hs NHA2t Δ 1-75 clonning
GFP-Hs NHA2 delta 1-80 F	ATCCGGACTCAGATCTCGAGCTCAAGCTTCGAATTCTATGCATGGTTTACTGGACAGGGTC	pGFP-Hs NHA2t A1-80 clonning
GFP-He NHA2 dolta 1.00 P	ΤGΔΤGGTΔΔCΔTTTGTTΔTGΔCCCTGTCCΔGTΔΔΔCCΔTGCΔTG	nGFP-Hs NHA2t A1-80 closning
GED_He NILA2 dolta 1 00 F		nGED_He NHA2t A1-00 clossing
GFP HS NHAZ delta 1-110 F		
GFP Hs NHA2 delta 1-110 R	AATAGAACAGGATTATAATTCCAAATAGGTTTCCTCCAGGCATAGAATTCGAAGCTTGAGCT	pGFP-Hs NHA2t Δ1-110 clonning
<i>Hs</i> NHA2 E47A Fw	AATGAACCAACAGCAGGAAGTATTCTT	Mutagenesis E47A
<i>Hs</i> NHA2 E47A Rev	AAGAATACTTCCTGCTGTTGGTTCATT	Mutagenesis E47A
<i>Hs</i> NHA2 E47K Fw	AATGAACCAACAAAGGAAGTATTCTT	Mutagenesis E47K
<i>Hs</i> NHA2 E47K Rev	AAGAATACTTCCTTTTGTTGGTTCATT	Mutagenesis E47K
Hs NHA2 E56A Fw	CTGAAAAGCAGTGCAAAAAAGCTACAA	Mutagenesis E56A
HS NHA2 F56A Roy	TTGTAGCTTTTTTGCACTGCTTTTCAG	Mutagenesis E56A
		Mutagenesis ESCV
		Mutagenesis E56K
Hs NHA2 E56K Rev	IIGIAGCTTTTTTACTGCTTTTCAG	Mutagenesis E56K
<i>Hs</i> NHA2 KK57-58AA F	TATTCTTCTGAAAAGCAGTGAAGCAGCACTACAAGAAACACCAACTGAAG	Mutagenesis K57A + K58A
<i>Hs</i> NHA2 KK57-58AA R	CTTCAGTTGGTGTTTCTTGTAGTGCTGCTTCACTGCTTTTCAGAAGAATA	Mutagenesis K57A + K58A
<i>Hs</i> NHA2 KK57-58EE F	TATTCTTCTGAAAAGCAGTGAAGAAGAACTACAAGAAACACCAACTGAAG	Mutagenesis K57E + K58E
Hs NHA2 KK57-58EE R	CTTCAGTTGGTGTTTCTTGTAGTTCTTCTTCACTGCTTTTCAGAAGAATA	- Mutagenesis K57E + K58E
2u-CEN6ARS4 for*	CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATAACGCGGGTCCTTTTCATCACGTGC	Centromeric plasmid construction
		Contromorie plasmid construction
_∠μ-υεινδΑΚ34_ΓΕν*		centrometic plasmid construction